
Omnidirectional vision odometry for low power hardware
on flying robots

Simon Reich1, Maurice Seer1, Lars Berscheid1, Florentin Wörgötter1, and Jan-Matthias Braun1

Abstract— In this work we will show our method parts in
more detail than possible in the original submission. However,
some steps are omitted as they refer to standard text book
examples. They are noted as such. Images are enlarged to
ease understanding; Fig. 4 holds more camera sketches. The
referenced sources are the same as in the original submission;
however, the numbering does not align.

I. METHOD

This section divides into three parts: In I-A the hardware
setup is presented, and in I-B our algorithms to arrive at safe
trajectory planning are shown. Lastly, we will discuss briefly
the theoretical limit of the algorithms.

A. HARDWARE SETUP

Fig. 1 shows the hardware setup: A quadrocopter, controlled
by a Raspberry Pi mini computer running a linux operating
system. Connected to the Camera Serial Interface (CSI)
port of the Raspberry Pi is a monocular RGB camera,
which photographs with a resolution of 320x320 px at a
frequency of 30 Hz. The camera is pointed upwards on a
hyperbolically shaped mirror, which can also be replaced
with a spherical shaped mirror. Later, we will discuss the
advantages and disadvantages of these shapes. Additionally,
we use an accelerometer, gyroscope, and ultrasonic sensor as
input. Also, any contemporary bluetooth gaming controller
can be attached. This allows easy control of high level features,
e.g. issue the start or landing command. Of course, manual
flight control is also possible—a feature not used in this work.

As software we use the Robot Operating System (ROS,
see [1]). ROS offers efficient message transport capabilities,
locally as well as via network connection. This function is
heavily used to guarantee modular program design, as well
as real time network connections. The latter is very important
for debugging and visualization purposes on the flying robot
via wlan. Fig. 3 lists all functional units as ROS nodes
and thus provides a system overview. An Extended Kalman
Filter (EKF) [2] performs sensor fusion and computes pose
information. Afterwards, a PID controller, as demonstrated
by Åström and Hägglund [3], adjusts the motor controllers
to manipulate the quadrocopter into the goal pose. The goal
position is defined by higher level algorithms (e.g. SLAM,
see [4], corridor flight algorithms, see [5], etc.).

1Third Institute of Physics - Biophysics, Georg-August-Universität
Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
{sreich, mseer, lberscheid, worgott,
jbraun}@phys.uni-goettingen.de
(The first two authors contributed equally to this paper.)

Monocular Camera

Vision Odometry

Extended Kalman Filter

PID Controller

Motor Controllers

Other Sensors
• Accelerometer
• Gyroscope
• Ultrasonic

RGB image

rotation, translation rotation, translation

pose

power settings

Fig. 3: Overview of the system nodes. Each block is a separate
process; the Robot Operating System (ROS, [1]) exchanges
messages between them. This way a modular design is
guaranteed. In this work we focus on Vision Odometry
(marked in red).

B. ALGORITHMS

In this section we will describe how we arrive from an
omnidirectional monocular RGB image at pose information.
Please remember, that we are using a flying robot, which is
very fast and agile. This means that a front facing camera
will have problems recognizing features in adjacent camera
frames; Features belonging to the same object will have a
huge offset from one frame to the next. Because of this,
we are using the omnidirectional camera setup as shown in
Fig. 4a. Fig. 2 then takes you through the processing steps,
which we will explain below in detail. First, features are
computed on the omnidirectional image. Here we are using
FAST features [6], but any desired feature set will work. On
these features optical flow is computed. As we know the
transfer function for image dewarping, we can now estimate
the robots rotation and translation. Using this information
and enriching it with data from the accelerometer, gyroscope,
and ultrasonic sensor, we can compute new pose information.
Additionally, we can track features over multiple frames—
meaning, we have arrived at a list of pose information, each
having a small offset. Combining both information we can
perform 3D stereo vision and also estimate depth for each
feature.

1) Vision Odometry Algorithm: In this section, we compute
features on the raw camera image (Fig. 2a and Fig. 2b).



Fig. 1: The quadrocopter utilized in this work. In the center, a camera captures omnidirectional images via the mounted
mirror (Compare Fig. 4a).

(a) Camera view of the hyperbola mirror with computed features
and optical flow.

(b) Enlarged view of the red square in left image. The lower
structure belongs to the robot.

(c) Dewarped Image showing the 360◦ view around the quadrocopter.

Fig. 2: Processed camera images with features and computed optical flow.



Features are areas in an image, which are easy to find,
recognize, and track in consecutive frames—usually areas
rich in texture. Afterwards, we compute the optical flow on
these features. Both are very much solved problems and we
will rather focus and describe methods dedicated to run on
limited hardware.

There are numerous publications comparing different
feature algorithms—the most prominent algorithms include
FAST [6], GFTT [7], ORB [8], SIFT [9], and SURF [10].
In this work we tried FAST, SIFT, SURF, and GFTT. We
ran quantitative tests, which are shown on our web page
[11]. These tests showed that FAST offers the best trade-
off between computational complexity and quality of found
features. This result is not surprising, as FAST is known to
be faster but also finds less features [12, 13]—as we work
on very limited hardware, our focus lays on computational
complexity.

For FAST, the image is first converted to greyscale. Then,
areas with a high intensity variation are searched. The
algorithm makes use of linearization and therefore offers
low computational complexity. A detailed overview is given
by Rosten and Drummond [6].

Next, we compute the optical flow. The optical flow is
a vector field describing the apparent motion, usually the
motion of tracked features. Let I (x, y, t) be the intensity of
the greyscale pixel position (x, y) at time t ∈ R. We assume
that the overall intensity does not change and therefore

dI

dt
=
∂I

∂t
+
∂I

∂x

∂x

∂t
+
∂I

∂y

∂y

∂t
= It + Ix ~Vx + Iy ~Vy

!
= 0 ,

where ~V is the optical flow. This under-determined problem
can be solved using the Lucas-Kanade method [14], which
only assumes a constant flow in a local pixel neighborhood.
A detailed introduction can be found in Dunkel [15], a rather
pratical approach is given in Bradski and Kaehler [16]. This
established method gives us the robots displacement relative
to the features.

Next, we will discuss very shortly the camera pinhole
model, which we will then generalize to the spherical mirror
model. The pinhole model is a standard physics model and can
be found in various undergraduate text books, e.g. [17, 18, 16].

2) Pinhole Camera: A pinhole camera at position ~c,
orientation in x-y-plane ~q, and focal length f points at an
object at position ~o which lies in a plane with distance b;
~c, ~q, ~o ∈ R3. We choose the origin of the camera’s 2D-image
space to be in the center of the sensor and denote image
coordinates with a prime as in ~o ′. To map an image position
~o ′ to world coordinates ~o, we define the transformation

TP : ~o ′ 7−→ ~o = ~c+
b

f
·R (~q) · ~Π(~o ′) , (1)

with the rotation matrix R (~q) and Π(~o ′) =
(
o′x, f, o

′
y

)ᵀ
.

Analogously, we compute the inverse transformation using

(a) The hyperbola mirror.

x

y

~o ′
r ′ ρ ′

−φ

(b) Camera view of spherical
mirror.

x
z

y

~o

~c

l

f

h

ρr

α
β

δ

(c) Side view of spherical mirror.

x
z

y

~o

~c

F1

F2

2ε

f

a

ρr

d

(d) Side view of hyperbola mirror.

Fig. 4: Sketch of a camera observing an object ~o, which
appears at position ~o ′ in the image plane (bottom left). The
top left figure depicts a simple pinhole model; on the top
right the camera is pointed at a spherical mirror and at the
bottom right at a hyperbolic mirror.

the depth b =
(
R (~q)

−1
(~o− ~c)

)
y

as

~Π =
f

b
R(~q)−1 (~o− ~c)

=
fR(~q)

(R(~q) (~o− ~c))y
(~o− ~c) .

(2)

3) Spherical Mirror Model: Next, we will add a fixture
holding a spherical mirror with its center in distance b
(Fig. 4c). For simplicity, we will use a coordinate system
that has its origin at the camera ~c with the z-Axis oriented
towards the mirror. We will denote reflections on the mirror
with the caretˆas in ~̂o. Using the real sphere radius r and
radius r ′ in image space (Fig. 4b), the reflection point ~̂o can
be computed independently of camera parameters using the
scaling factor s = r/r ′ :

~̂o =
(
s o ′x, s o

′
y, b− h

)ᵀ
, h =

√
r2 − ρ2 . (3)

Given the distance d, we now compute the object position
~o. Let ~e be a vector of unit length, satisfying the condition
~o− ~̂o = d~e. This vector can be expressed with the angles β
and ϕ (Fig. 4c, Fig. 4b):

~e =

 cosβ cosφ
cosβ sinφ
− sinβ

 ,

with ρ = s
√
o ′x

2 + o ′y
2, ϕ = −atan2(o ′y, o

′
x), α =



arccos (ρ/r) and thus

δ = arctan

(
ρ

b− h

)
β =2α+ δ − π

2
.

Using the camera position and pose, we transform to world
coordinates

TS : ~o = ~r +R(~q)
(
~̂o+ d~e

)
.

The inverse transformation T−1S calculates ~o ′ from ~o and the
camera pose. As the construction of T−1S is lengthy but does
not add much to understanding of this work, we provide the
solution at [11] and continue with the result

cosα = (θ − sinα)

· tan

(
arctan

(
−∆ sinβ

ρ− cosα

)
− 2α+

π

2

)
where ∆ = d/r. This function can only be solved iteratively.
Using a generous approximation of small focal lengths
(θ = b/r) and large depths (∆� 1) we approximate

cosα ≈
(
b

r
− sinα

)
· tan

(
arctan

(
− sinα−∆ sinβ

ρ

)
− 2α+

π

2

)
.

Still, the solution is nontrivial and computational very
expensive. Considering that we are using autonomous robots,
which perform all computations online on limited hardware
this poses a problem.

4) Hyperbolic Mirror Model: Using a hyperbola, the
inverse function can be computed easier and thus faster. The
surface of a hyperbolic mirror is defined by

y2

a2
− x2

b2
= 1 , a, b ∈ R (4)

with the semi-major axis a. The focal points
F1,2 =

(
0,±
√
a2 + b2

)
=: (0,±ε) are defined as in

Fig. 4d. For the following derivation, we place the origin
of the coordinate system ~c in the middle of these two
focal points and place the focal point of the camera at
F2. Given the image position ~o ′, the reflection point is
~̂o =

(
~sx, ~sy, a

√
ρ2/b2 + 1

)ᵀ
. The unit vector ~e to the object

~o is

~e =
~̂o−F1∣∣∣~̂o−F1

∣∣∣
=

1∣∣∣~̂o−F1

∣∣∣
(
s~o ′x, s ~o

′
y, a
√
ρ2/b2 + 1− ε

)ᵀ (5)

and therefore the object position at a distance d is defined
as ~o = ~r + R

(
~̂o+ d~e

)
. It can be shown that the inverse

transformation is

ρ =
(~o− ~c)ρ

(~o− ~c)2ρ · ε2/b2 − 1
((~o− ~c)z ε+ a) . (6)

All steps are shown in detail in [11]. The corresponding
image position is given by ~o ′ = (ρ cosφ, ρ sinφ)

ᵀ. Different
camera orientations ~q are accounted for by rotating the vector
(~o− ~c) before calculations.

5) Motion and Depth Estimation: Now, we have arrived
at a point where we can first detect features, track them, and,
furthermore, compute the robots displacement (translation
and rotation) between consecutive frames from the dewarped
image. An example of a transformed camera frame is given in
Fig. 2c. As we store all tracked features, we can additionally
perform simple 3D stereo vision on them. While in theory
we would get a very good estimate, real world experiments
show that quite a lot of noise gets introduced.

Estimating the depth for N features adds significant
complexity to the problem. Currently, we try to estimate the
6D motion M—consisting of translation ∆~r and orientation
∆~q. Our problem has now increased to N + 6 dimensions.
Changes in the feature set from frame ~ii,t−1 to frame ~ii,t
provide N equations, meaning features need to be tracked
for at least 3 consecutive frames.

Matching features with the inverse estimation at time-step
t:

1) Depth di,t−1 and motion Mt are initialized using
previous data di,t−2 and motion Mt−1. The camera
pose Pt−1, consisting of position ~ct−1 and rotation
~qt−1, is known.

2) For every feature i, calculate the global position ~oi,t−1
using the depth di,t−1, the image coordinates ~o ′i,t1
and the camera pose Pt−1. The transformation TX ,
X ∈ {P, S,H} is chosen according to the camera setup,
as detailed above.

3) Apply the inverse motion to all global positions ~oi,t−1.
This results in the predicted global positions ~opi,t.

4) Use the inverse transformation T−1X , to compute the
predicted image position ~o ′,pi,t = T−1X

(
~opi,t
)
.

5) Lastly, we consider the environment as well as all global
features to be static. Therefore, ~oi and ~o ′i should be
equal for corresponding features i: we minimize the
sum of the squared distances for the last L time steps:

SD (di,t,M) =
∑N

i=0

∑0
τ=−L

∥∥∥õ ′i,t − õ ′,pi,t

∥∥∥2.

Estimating the depth with the forward estimation:

1) Perform step 1. and 2. from the inverse estimation.
2) Our goal is to find the new depth di,t based on

the previous estimate di,t−1. In the pinhole model,
the depth is defined as the y-component of the
difference between the object position ~oi and the
camera position ~c: dt = (R (∆~qt) (~o− ~ct−1 −∆~ct))y .
In omnidirectional mirror models, the depth is
dt =

∥∥∥R (∆~qt) (~o− ~c−∆~ct)− ~̂op
∥∥∥ . The new reflec-

tion point ~̂op is calculated with the inverse transforma-
tion T 1

X . For the spherical mirror, an approximation
considering only rotations is easily possible. Let ~k =
(0, 0, b)ᵀ be the center of the spherical mirror. Then
~̂op ≈ R (∆~q)

(
~̂o− ~k

)
+ ~k is leading to the new depth



d0 =
∥∥∥R (∆~qt)

(
~o− ~c−∆~rt − ~̂o+ ~k

)
− ~k
∥∥∥ . (7)

Due to ∆m� d, the approximation can be considered
to be vanishing.

3) Compute the new predicted pose Pt = Pt−1 +Mt.
4) Compute predicted global positions ~o pi,t=0 for every

feature i based on the camera model.
5) The positions ~oi,t and ~o pi,t should be equal for corre-

sponding features i. We use this to minimize the sum
of the squared distances

SD (di,t,M) =

N∑
i=0

0∑
τ=−L

∥∥∥∥∥ õi,t−τ − õ p
i,t−τ

di,t−τ

∥∥∥∥∥
2

.

The factor di,t weights all summands consistently as
the position-error scales linearly with d.

C. ACHIEVABLE ANGULAR RESOLUTION

Given a fixed camera resolution of 320x320 px we can
now compute the projection of the hyperbola mirror onto the
camera. We assume that the object is at a distance of 2 m
and we require five pixels width to separate it from adjacent
objects. After straight forward application of above formulas,
we arrive at a limit of approximately 1.9◦.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-
source robot operating system,” in ICRA Workshop on
Open Source Software, 2009.

[2] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of basic Engineering,
vol. 82, no. 1, pp. 35–45, 1960.

[3] K. J. Åström and T. Hägglund, Advanced PID control.
ISA-The Instrumentation, Systems and Automation
Society, 2006.

[4] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid,
and J. Tardós, “A comparison of loop closing techniques
in monocular slam,” Robotics and Autonomous Systems,
vol. 57, no. 12, pp. 1188–1197, 2009, inside Data
Association.

[5] S. Lange, N. Sünderhauf, P. Neubert, S. Drews, and
P. Protzel, Autonomous Corridor Flight of a UAV Using
a Low-Cost and Light-Weight RGB-D Camera. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 183–
192.

[6] E. Rosten and T. Drummond, Machine Learning for
High-Speed Corner Detection. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 430–443.

[7] J. Shi and C. Tomasi, “Good features to track,” in IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE, 1994, pp. 593–600.

[8] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“Orb: An efficient alternative to sift or surf,” in Interna-
tional conference on computer vision. IEEE, 2011, pp.
2564–2571.

[9] D. G. Lowe, “Object recognition from local scale-
invariant features,” in The proceedings of the seventh
IEEE international conference on Computer vision,
vol. 2. IEEE, 1999, pp. 1150–1157.

[10] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded
up robust features,” in European conference on computer
vision. Springer, 2006, pp. 404–417.

[11] S. Reich, M. Seer, L. Berscheid, and J.-M.
Braun, “Computational Neuroscience - Quadrocopter
Vision Odometry,” 2016, accessed: 2016-09-
09. [Online]. Available: http://www.dpi.physik.uni-
goettingen.de/cns/redir.php?s=quadrocopter

[12] M. El-gayar, H. Soliman, and N. Meky, “A comparative
study of image low level feature extraction algorithms,”
Egyptian Informatics Journal, vol. 14, no. 2, pp. 175–
181, 2013.

[13] J. Heinly, E. Dunn, and J.-M. Frahm, Comparative Eval-
uation of Binary Features. Springer Berlin Heidelberg,
Oct 2012, pp. 759–773.

[14] B. D. Lucas, T. Kanade et al., “An iterative image
registration technique with an application to stereo
vision.” in IJCAI, vol. 81, no. 1, 1981, pp. 674–679.

[15] C. T. Dunkel, Person Detection and Tracking Using
Binocular Lucas-Kanade Feature Tracking and K-means
Clustering. ProQuest, 2008.

[16] G. Bradski and A. Kaehler, Learning OpenCV: Com-
puter vision with the OpenCV library. ”O’Reilly Media,
Inc.”, 2008.

[17] R. Hartley and A. Zisserman, Multiple view geometry
in computer vision. Cambridge university press, 2003.

[18] Z. Gan and Q. Tang, Visual sensing and its applica-
tions: integration of laser sensors to industrial robots.
Springer Science & Business Media, 2011.


