Supervised Learning

Artificial Neural Networks and Single Layer Perceptron
Supervised Learning

• Learning from correct answers

Training info: desired (target outputs)
Supervised Learning Methods

- Artificial neural networks
- Decision trees
- Gaussian process regression
- Naive Bayes classifier
- Nearest neighbor algorithm
- Support vector machines
- Random forests
- Ensembles of classifiers
- …
Applications of Supervised Learning

- Handwriting recognition
- Object recognition
- Optical character recognition
- Spam detection
- Pattern recognition
- Speech recognition
- Prediction models
- …
Inspiration: The Human Brain

• The brain doesn’t seem to have a CPU

• Instead, it has got lots of simple parallel, asynchronous units, called *neurons*

• There are about 10^{11} (100 billion) neurons of about 20 types

• GPU NVIDIA Tesla K80 has 4992 cores
Neurons

- A neuron is a single cell that has a number of relatively short fibers, called **dendrites**, and one long fiber, called an **axon**.
- A synapse is a structure that permits a neuron (or nerve cell) to pass an electrical signal to another cell.
Signal Generation: Action Potential

- The fibers of surrounding neurons emit chemicals (neurotransmitters) that move across the synapse and change the electrical potential of the cell body.
From Real to Artificial Neurons

\[a = \sum_{i=1}^{n} w_i u_i \]

\[a \text{= activation function} \]

\[\theta \text{= output} \]
Artificial Neurons

- **Threshold Logic Unit (TLU)** proposed by Warren McCulloch and Walter Pitts in 1943
 - Initially with binary inputs and outputs
 - Heaviside function as threshold

- **Perceptron** developed by Frank Rosenblatt in 1957
 - Arbitrary inputs and outputs
 - Linear transfer function
Activation Functions

- **Threshold**
- **Piece-wise Linear**
- **Linear**
- **Sigmoid**
Threshold Logic Unit (TLU)

\[a = \sum_{i=1}^{n} w_i u_i \]

\[v = \begin{cases}
1 & \text{if } a \geq \theta \\
0 & \text{if } a < \theta
\end{cases} \]
Decision Surface of a TLU

Decision line:
\[w_1 u_1 + w_2 u_2 = \theta \]
Scalar Products and Projections

\[w \cdot u > 0 \]
\[w \cdot u = 0 \]
\[w \cdot u < 0 \]

\[w \cdot u = |w||u| \cos \phi \]
\[|u_w| = |u| \cos \phi \]
\[w \cdot u = |w||u_w| \]
Geometric Interpretation

\[w_1 u_1 + w_2 u_2 = \theta \]
\[w \cdot u = \theta \]
\[w \cdot u = |w||u| \cos \varphi \]
\[|u_w| = |u| \cos \varphi \]
\[w \cdot u = |w||u_w| = \theta \]
\[|u_w| = \frac{\theta}{|w|} \]

Decision line
Geometric Interpretation (cont.)

Decision line

\[w_1 u_1 + w_2 u_2 = \theta \]

\[w \cdot u = \theta \]

\[w \cdot u = |w||u| \cos \varphi \]

\[|u_w| = |u| \cos \varphi \]

\[w \cdot u = |w||u_w| = \theta \]

\[|u_w| = \theta/|w| \]
Decision line

\[w_1 u_1 + w_2 u_2 = \theta \]
\[w \cdot u = \theta \]
\[w \cdot u = |w||u| \cos \varphi \]
\[|u_w| = |u| \cos \varphi \]
\[w \cdot u = |w||u_w| = \theta \]
\[|u_w| = \theta/|w| \]
In n dimensions the relation $w \cdot u = \theta$ defines a $n-1$ dimensional hyper-plane, which is perpendicular to the weight vector w.

On one side of the hyper-plane ($w \cdot u > \theta$) all patterns are classified by the TLU as “1”, while those that get classified as “0” lie on the other side of the hyper-plane.
Example: Logical AND

\[u_1 \quad u_2 \quad a \quad v \]

\[
\begin{array}{cccc}
0 & 0 & ? & 0 \\
0 & 1 & ? & 0 \\
1 & 0 & ? & 0 \\
1 & 1 & ? & 1 \\
\end{array}
\]
Example: Logical AND

\[w_1 = 1 \]
\[w_2 = 1 \]
\[\theta = ? \]

\[
\begin{array}{c|c|c|c|c}
 u_1 & u_2 & a & v \\
 \hline
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 1 & 0 \\
 1 & 1 & 2 & 1 \\
\end{array}
\]
Example: Logical AND

$w_1 = 1$
$w_2 = 1$
$\theta = 1.5$

<table>
<thead>
<tr>
<th>u_1</th>
<th>u_2</th>
<th>a</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Example: Logical OR

\[w_1 = ? \]
\[w_2 = ? \]
\[\theta = ? \]

\[\begin{array}{cccc}
 u_1 & u_2 & a & v \\
 0 & 0 & ? & 0 \\
 0 & 1 & ? & 1 \\
 1 & 0 & ? & 1 \\
 1 & 1 & ? & 1 \\
\end{array} \]
Example: Logical OR

\(w_1 = 1 \)
\(w_2 = 1 \)
\(\theta = 0.5 \)

\[
\begin{array}{c|c|c|c|c}
 u_1 & u_2 & a & v \\
 \hline
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 2 & 1 \\
\end{array}
\]
Example: Logical NOT

\[w_1 = ? \]
\[\theta = ? \]

<table>
<thead>
<tr>
<th>(u_1)</th>
<th>(a)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: Logical NOT

- \(w_1 = -1 \)
- \(\theta = -0.5 \)

<table>
<thead>
<tr>
<th>(u_1)</th>
<th>(a)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Threshold as Weight

\[\sum u_{n+1} = -1 \]

\[a = \sum_{i=1}^{n+1} w_i u_i \]

\[\theta = w_{n+1} \]

\[v = \begin{cases}
1 & \text{if } a \geq 0 \\
0 & \text{if } a < 0
\end{cases} \]
Geometric Interpretation

Decision line

\[w \cdot u = 0 \]
Training ANNs

- **Training set S of examples** \{u,v^t\}
 - u is an input vector and
 - v^t the desired target output
 - Example: Logical And
 S = \{(0,0),0\}, \{(0,1),0\}, \{(1,0),0\}, \{(1,1),1\}

- **Iterative process**
 - present a training example u
 - compute network output v
 - compare output v with target v^t
 - adjust weights w and threshold θ

- **Learning rule**
 - Specifies how to change the weights w and threshold θ of the network as a function of the inputs u, output v and target v^t.
Presentation of Training Samples

• Presenting all training examples once to the ANN is called an epoch

• Training examples can be presented in
 – Fixed order (1,2,3…,M) [on/off-line]
 – Randomly permutated order (5,2,7,…,3) [off-line]
 – Completely random (4,1,7,1,5,4,…….) [off-line]
Perceptron Learning Rule

• \(w' = w + \mu (v^t - v) \ u \)

 – \(w'_i = w_i + \Delta w_i = w_i + \mu (v^t - v) \ u_i \) \quad (i=1..n+1), with \(w_{n+1} = \theta \) and \(u_{n+1} = -1 \)

 – The parameter \(\mu \) is called the \textit{learning rate}. It determines the magnitude of weight updates \(\Delta w_i \)

 – If the output is correct \((v^t = v)\) the weights are not changed \((\Delta w_i = 0)\)

 – If the output is incorrect \((v^t \neq v)\) the weights \(w_i \) are changed such that the output of the TLU for the new weights \(w'_i \) is \textit{closer/further} to the input \(u_i \)
• If we do not include the threshold as an input we use the following description of the perceptron with symmetrical outputs

\[
v = \begin{cases}
+1 & \text{if } w \cdot u - \theta \geq 0 \\
-1 & \text{if } w \cdot u - \theta < 0
\end{cases}
\]

• Then we get the following learning rule

\[
w' = w + \frac{\mu}{2} (v^t - v) u \quad \text{and} \quad \theta' = \theta - \frac{\mu}{2} (v^t - v)
\]
Adjusting the Weight Vector

\[\text{Target } v^t = 1 \]
\[\text{Output } v = 0 \]

\[\phi > 90 \]

Move \(w \) in the direction of \(u \)

\[\text{Target } v^t = 0 \]
\[\text{Output } v = 1 \]

\[\phi < 90 \]

Move \(w \) away from the direction of \(u \)

\[w' = w - \mu u \]

\[w' = w + \mu u \]
Procedure of Perceptron Training

• While $v \neq v^t$ for all training vector pairs
 – For each training vector pair (u, v^t)
 • calculate the output v: $v = \sum wu$
 • if $v \neq v^t$
 update weight vector w: $w' = w + \mu (v^t - v)u$
 update threshold θ: $\theta' = \theta - \mu(v^t - v)$ (if not included in weights)
 else
 do nothing
Demo: Perceptron with TLU
TLU Convergence

- The algorithm converges to the correct classification
 - if the training data is linearly separable
 - given sufficiently small learning rate μ

- Solution w is not unique, since if $w \cdot u = 0$ defines a hyper-plane, so does $w' = k \cdot w$
Multiple TLUs

- Learning rule:

\[w'_{ji} = w_{ji} + \mu (v^t_j - v_j) u_i \]

\(w_{ji} \) connects \(u_i \) with \(v_j \)
Example: Character Recognition

- 26 classes: A, B, C, ..., Z
- Target output is a vector
 - e.g., $v^t_A = [1 \ 0 \ 0 \ ... \ 0]$, $v^t_B = [0 \ 1 \ 0 \ ... \ 0]$, ...

\[
\begin{array}{cccccccc}
A & B & \cdots & Z \\
v_1 & v_2 & \cdots & v_{26} \\
u_1 & u_2 & u_3 & \cdots & u_n \\
\end{array}
\]
Activation Functions

threshold

piece-wise linear

linear

sigmoid
Perceptron with Linear Function

\[v = a = \sum_{i=1}^{n} w_i v_i \]

Note: We will use notation \(t \) instead of \(v^t \)
Gradient Descent Learning Rule

- Consider linear unit without threshold and continuous output \(v \) (not just \(-1,1/1,0\))
 \[v = w_1 u_1 + \ldots + w_n u_n \]

- Train the \(w_i \) such that they minimize the squared error
 \[E[w_1,\ldots,w_n] = \frac{1}{2} \sum_{d \in D} (t_d - v_d)^2 \]
 - where \(D \) is the set of training examples and
 - \(t \) the target outputs
Gradient Descent Learning Rule (cont.)

Gradient:
\[\nabla E[w] = [\partial E/\partial w_0, \ldots, \partial E/\partial w_n] \]
\[\Delta w = -\mu \nabla E[w] \]
\[E_d[w] = 1/2 (t_d-v_d)^2 \]

\[-1/\mu \Delta w_i = \partial E/\partial w_i = \partial/\partial w_i 1/2 (t_d-v_d)^2 = \partial/\partial w_i 1/2 (t_d-\Sigma_i w_i u_i)^2 = \Sigma_d (t_d- v_d) (-u_i) \]

We get:
\[\Delta w_i = \mu (t_d- v_d) u_i \]
Also known as Delta rule
Incremental vs. Batch Gradient Descent

- **Incremental (stochastic) mode:**
 \[w' = w - \mu \nabla E_d[w] \text{ over individual training examples } d \]
 \[E_d[w] = \frac{1}{2} (t_d - v_d)^2 \]

- **Batch mode:**
 \[w' = w - \mu \nabla E_D[w] \text{ over the entire data } D \]
 \[E_D[w] = \frac{1}{2} \sum_d (t_d - v_d)^2 \]
Perceptron vs. Gradient Descent Rule

• Perceptron rule
 \[w'_{i} = w_{i} + \mu \ (v^{t}-v) \ u_{i} \]
 – derived from manipulation of decision surface

• Gradient descent rule
 \[w'_{i} = w_{i} + \mu \ (t_{d}-v_{d}) \ u_{i} \]
 – derived from minimization of error function
 \[E[w_{1},...,w_{n}] = 1/2 \ \Sigma_{d} \ (t_{d}-v_{d})^{2} \]
 by means of gradient descent
Demo: Gradient Descent Learning Rule
Linear Regression

• Common statistical method

• Describe relationship between variables

• Predict one variable knowing the others

• We make assumption that there is a \textit{linear} relationship

 – between an outcome (dependent variable, response variable) and a predictor (independent variable, explanatory variable, feature) or

 – between one variable and several other variables
Describing Relationships

Very weak relationship / very low correlation

cor. coef. = -0.1094

Strong relationship / high correlation

cor. coef = 0.8180
Making predictions

Predicting variables

Predicting future outcomes

Father's height (cm) vs. Son's height (cm)

Profit (Euro) vs. Days

Questions mark indicate data points for prediction.
Demo: Linear Regression
Perceptron vs. Gradient Descent

• **Perceptron (TLU)**
 – Guaranteed to succeed if
 • training examples are linearly separable
 • given sufficiently small learning rate μ
 – Robust against outliers

• **Gradient descent (linear transfer function)**
 – Guaranteed to converge to hypothesis with minimum squared error
 • even when training data not separable by hyperplane
 • given sufficiently small learning rate μ
 – Very sensitive to outliers
Activation Functions

threshold

piece-wise linear

linear

sigmoid
Perceptron with Sigmoid Function

\[a = \sum_{i=1}^{n} w_i u_i \]

\[v = \sigma(a) = \frac{1}{1 + e^{-a}} \]
Gradient Descent Rule for Sigmoid Activation Function

Gradient:
\[\nabla E[w] = [\partial E/\partial w_0, \ldots, \partial E/\partial w_n] \]
\[\Delta w = -\mu \nabla E[w] \]
\[E_d[w] = 1/2 (t_d-v_d)^2 \]

-1/\mu \Delta w_i = \partial E/\partial w_i

= \partial/\partial w_i 1/2 (t_d-v_d)^2
= \partial/\partial w_i 1/2 (t_d - \sigma(\sum_i w_i u_i))^2
= (t_d-v_d) \sigma'(\sum_i w_i u_i) (-u_i)

We get:
\[\Delta w_i = \mu v_d (1-v_d) (t_d-v_d) u_i \]

\[v_d = \sigma(a) = 1/(1+e^{-a}) \]
\[\sigma'(a) = e^{-a}/(1+e^{-a})^2 = \sigma(a) (1-\sigma(a)) \]
Demo: Gradient Descent with Sigmoid Activation Function
Summary

- **Threshold Logic Unit**
 - works only for linearly separable patterns
 - robust to outliers

- **Linear Neuron**
 - converges to minimal squared error even when patterns are not linearly separable
 - very sensitive to outliers

- **Sigmoid Neuron**
 - combination of TLU and linear neuron
 - converges to minimal squared error even when patterns are not linearly separable
 - robust to outliers