
Principle Component Analysis

Plain Hebb
dw

dt
= µQw (1)

The correlation matrix is rewritten in eigenvector form with eigenvalue λν and -vector eν :

Qeν = λν eν (2)

Thus, the weight vector w can be rewritten in Q-space

w(t) =

N∑
ν

cν(t) eν (3)

with coefficients cν
cν(t) = w(t) · eν (4)

and we can rewrite Eq. 1 to
N∑
ν

dcν
dt

eν = µQ
N∑
ν

cν eν . (5)

Thus, with Eq. 2 we get

N∑
ν

dcν
dt

eν = µ

N∑
ν

λν cν eν

N∑
ν

dcν
dt

eν · eκ = µ

N∑
ν

λν cν eν · eκ , eν · eκ = 0∀ ν 6= κ

dcν
dt

= µλν cν .

If we solve this differential equation we obtain the development of the coefficients over time

cν(t) = cν(0) eµλν t. (6)

Insert this solution in Eq. 3 and the coefficients (Eq. 4) for t = 0:

w(t) =

N∑
ν

cν(0) eµλν t eν

=

N∑
ν

(w(0) · eν) eµλν t eν . (7)

As the eigenvalues are rank-ordered (λ1 > λ2 > ...) the largest eigenvalue λ1 with the corresponding
eigenvector e1 will dominate the weight development.
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Ocular Dominance in small network

Plain Hebb

The system has the two inputs ur and ul and corresponding weights wr and wl to one neuron. The
correlation matrix has the form:

Q =

(
qS qD
qD qS

)
(8)

To calculate the development of the weights one has to consider the eigenvalues and -vectors of the
correlation matrix.
Eigenvalue:

det (Q− λ1) = 0

det

((
qS qD
qD qS

)
)− λ

(
1 0
0 1

))
= 0

det

(
qS − λ qD
qD qS − λ

)
= 0

(qS − λ)
2 − q2

D = 0

⇒ λ1/2 = qS ± qD

The corresponding eigenvectors are calculated by[
Q− λ1/2 1

]
· e1/2 = 0[(

qS qD
qD qS

)
− λ1/2

(
1 0
0 1

)]
·
(
a1/2

b1/2

)
=

(
0
0

)
Thus, we obtain for λ1 and λ2 the following normalized eigenvectors

e1 =
1√
2

(
1
1

)
e2 =

1√
2

(
1
−1

)
The next step is to decouple the differential equation of Hebbian learning (Eq. 1) by changing the

coordinate system to the correlation matrix system.

1

µ

dwr
dt

= qS wr + qD wl (9)

1

µ

dwl
dt

= qD wr + qS wl (10)

The first (corresponding to e1) is to sum Eq. 9 with Eq. 10 and the second (corresponding to e2) is to
subtract Eq. 10 from Eq. 9:

1

µ

d(wr + wl)

dt
= (qS + qD) · (wr + wl)

1

µ

d(wr − wl)
dt

= (qS − qD) · (wr − wl) .
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With w+ = wr + wl and w− = wr − wl the equations can be reformulated to

1

µ

dw+

dt
= λ1 · w+ (11)

1

µ

dw−
dt

= λ2 · w−. (12)

Of course the first eigenvalue is larger than the second (λ1 > λ2) and, therefore, w+ or rather e1 grows
faster than w−/e2. This means that wr and wl grow the same way and no orientation selectivity can
occur.

Hebb and multiplicative normalization

The eigenvalues and -vectors of the correlation matrix are not effected by the learning rule. Thus, we
can directly start at the decoupling of the differential equations

1

µ

dwr
dt

= qS wr + qD wl − αv2 wr

1

µ

dwl
dt

= qD wr + qS wl − αv2 wl

by transformation (summation and subtraction)

1

µ

dw+

dt
= λ1 · w+ − αv2w+

1

µ

dw−
dt

= λ2 · w− − αv2w−.

As αv2 is equal for both terms again the difference between the eigenvalues λ1 and λ2 determines the
weight growth.

Hebb and subtractive normalization

We again start at the decoupling stage:

1

µ

dwr
dt

= qS wr + qD wl −
v(n · u)

N

1

µ

dwl
dt

= qD wr + qS wl −
v(n · u)

N
.

Summation leads to

1

µ

dw+

dt
= λ1 · w+ −

2

N
v(n · u) , N = 2, v = w · u

= λ1 · w+ − (Q ·w) · n , Q ·w =
∑
ν

cνλνeν

= λ1 · w+ −
(

1√
2
λ1 w+ e1 +

1√
2
λ2 w− e2

)
· n , e2 · n = 0, e1 · n =

√
2

= λ1 · w+ − λ1 · w+ = 0
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and

1

µ

dw−
dt

= λ2 · w−.

Therefore, subtractive normalization guarantees a weight development in e2 direction. Both weights (wr
and wl) develop in contrary direction. Who is large and who is small depends on the initial w−(0).

Network

When do we have stable activity development?

dv

dt
= −v + Mv + Wu

= (M− 1) · v + Wu.

Solve this equation

v(t) = v(0) e(M−1) t + c(t)

≈ v(0) e(λν−1) t eν + c(t)

If all λν < 1, the system is stable and we can rewrite the differential equation of the activity for dv/dt = 0
to

v = Wu + Mu

v = (1−M)
−1

Wu

= KWu.

We assume that the recurrent connections K are constant over time and only the input weights W are
plastic. Thus, we have a similar problem as shown above with a bias K. Assuming again only two inputs
ur and ul, we can decouple the differential equations as above:

1

µ

dw+

dt
= λ1K w+

1

µ

dw−
dt

= λ2K w−

If we assume again a subtractive normalization (dw+/dt = 0), the development of w− depends now on
the principle eigenvector of K.
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We assume periodic boundaries, thus, K is a ciculant matrix with following eigenvalues and -vectors:
k0 k1 k2 . . . kN−1

kN−1 k0 k1 . . . kN−2

...
. . .

...
k1 . . . k0

 ·


e0

e1

...
eN−1

 = λ


e0

e1

...
eN−1


This means for each row:

λ e0 = k0 e0 + k1 e1 + · · ·+ kN−1 eN−1

=

N−1∑
j=0

kj ej

λ e1 = kN−1 e0 + k0 e1 + k1 e2 + · · ·+ kN−2 eN−1

= kN−1 e0 +

N−1∑
j=1

kj−1 ej

λ e2 = kN−2 e0 + kN−1 e1 + k0 e2 + · · ·+ kN−3 eN−1

=

2∑
j=0

kN−2−j ej +

N−1∑
j=2

kj−2 ej

. . .

λ em =

m−1∑
j=0

kN−m−j ej +

N−1∑
j=m

kj−m ej

renumbering leads to

λ em =

N−m−1∑
j=0

kj ej+m +

N−1∑
j=N−m

kj ej−N+m

this can be solved by the ansatz ej = f j

λfm =

N−m−1∑
j=0

kj f
j+m +

N−1∑
j=N−m

kj f
j−N+m

λ =

N−m−1∑
j=0

kj f
j + f−N

N−1∑
j=N−m

kj f
j

if we assume the nth root of unity: f−N = 1

λ =

N−1∑
j=0

kj f
j

with eigenvector entries ej = 1/
√
N f j . Or written different

eωa = ei ω a (13)

with neuron and entry a and eigenvector/ -value ω.
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We can define the eigenvalue problem also in the functional space:

Aeν = λν eν

⇒
∫
dt′A(t, t′) e(t′) = λ e(t).

This means for K with eigenvector exp(iωa)

K̃(ω) =

∫
daK(|a− a′|) eiω a. (14)

Interestingly K̃ is the Fourier transformed of K. As we have a discrete number of neurons a, we also
have to use the discrete version of the Fourier transformation

K̃(m) =

N−1∑
a=0

K(|a− a′|) ei 2π am/N . (15)

Thus, with eiϕ = cos(ϕ) + i sin(ϕ) we get the real part of the ath entry of the mth eigenvector:

ema = cos

(
2πma

N
+ Φ

)
(16)

As we need to know the maximal eigenvalue to get the principle eigenvector, we have to introduce into
Eq. 14 ∆ = a− a′

K̃(ω) =

(∫
d∆K(|∆|) e−i ω∆

)
ei ω a = λ(ω) ei ω a. (17)

Thus, λ(ω) is the distribution of eigenvalues. To obtain the maximum ω we have to solve the discrete
version of K̃ as the eigenvectors have the length one (by definition, see above)

K̃(ω) = λ(ω) eiωa continuous

⇒ K̃(m) = λ(m) ei2πma/N discrete

re-normalize by k =
2πm

Nd

⇒ K̃(k) = λ(k) eikad.

For given K (e.g., two gaussians), the k with the maximal eigenvalue (λ(k)) can be calculated and set
into eikda to get the direction of the principle eigenvector of K and, therefore, the main direction of ω−.
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