Principle Component Analysis

Plain Hebb

$$\frac{d\mathbf{w}}{dt} = \mu \,\mathbf{Q} \,\mathbf{w} \tag{1}$$

The correlation matrix is rewritten in eigenvector form with eigenvalue λ_{ν} and -vector e_{ν} :

$$\mathbf{Q} \, \mathbf{e}_{\nu} = \lambda_{\nu} \, \mathbf{e}_{\nu} \tag{2}$$

Thus, the weight vector w can be rewritten in Q-space

$$\mathbf{w}(t) = \sum_{\nu}^{N} c_{\nu}(t) \,\mathbf{e}_{\nu} \tag{3}$$

with coefficients c_{ν}

$$c_{\nu}(t) = \mathbf{w}(t) \cdot \mathbf{e}_{\nu} \tag{4}$$

and we can rewrite Eq. 1 to

$$\sum_{\nu}^{N} \frac{dc_{\nu}}{dt} \mathbf{e}_{\nu} = \mu \mathbf{Q} \sum_{\nu}^{N} c_{\nu} \mathbf{e}_{\nu}. \tag{5}$$

Thus, with Eq. 2 we get

$$\sum_{\nu}^{N} \frac{dc_{\nu}}{dt} \mathbf{e}_{\nu} = \mu \sum_{\nu}^{N} \lambda_{\nu} c_{\nu} \mathbf{e}_{\nu}$$

$$\sum_{\nu}^{N} \frac{dc_{\nu}}{dt} \mathbf{e}_{\nu} \cdot \mathbf{e}_{\kappa} = \mu \sum_{\nu}^{N} \lambda_{\nu} c_{\nu} \mathbf{e}_{\nu} \cdot \mathbf{e}_{\kappa} \qquad , \mathbf{e}_{\nu} \cdot \mathbf{e}_{\kappa} = 0 \,\forall \, \nu \neq \kappa$$

$$\frac{dc_{\nu}}{dt} = \mu \, \lambda_{\nu} c_{\nu}.$$

If we solve this differential equation we obtain the development of the coefficients over time

$$c_{\nu}(t) = c_{\nu}(0) e^{\mu \lambda_{\nu} t}.$$
 (6)

Insert this solution in Eq. 3 and the coefficients (Eq. 4) for t=0:

$$\mathbf{w}(t) = \sum_{\nu}^{N} c_{\nu}(0) e^{\mu \lambda_{\nu} t} \mathbf{e}_{\nu}$$

$$= \sum_{\nu}^{N} (\mathbf{w}(\mathbf{0}) \cdot \mathbf{e}_{\nu}) e^{\mu \lambda_{\nu} t} \mathbf{e}_{\nu}.$$
(7)

As the eigenvalues are rank-ordered ($\lambda_1 > \lambda_2 > ...$) the largest eigenvalue λ_1 with the corresponding eigenvector \mathbf{e}_1 will dominate the weight development.

Ocular Dominance in small network

Plain Hebb

The system has the two inputs u_r and u_l and corresponding weights w_r and w_l to one neuron. The correlation matrix has the form:

 $\mathbf{Q} = \begin{pmatrix} q_S & q_D \\ q_D & q_S \end{pmatrix} \tag{8}$

To calculate the development of the weights one has to consider the eigenvalues and -vectors of the correlation matrix.

Eigenvalue:

$$det (\mathbf{Q} - \lambda \mathbf{1}) = 0$$

$$det \begin{pmatrix} q_S & q_D \\ q_D & q_S \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = 0$$

$$det \begin{pmatrix} q_S - \lambda & q_D \\ q_D & q_S - \lambda \end{pmatrix} = 0$$

$$(q_S - \lambda)^2 - q_D^2 = 0$$

$$\Rightarrow \lambda_{1/2} = q_S \pm q_D$$

The corresponding eigenvectors are calculated by

$$\begin{bmatrix} \mathbf{Q} - \lambda_{1/2} \, \mathbf{1} \end{bmatrix} \cdot \mathbf{e}_{\mathbf{1/2}} = \mathbf{0}$$

$$\begin{bmatrix} \begin{pmatrix} q_S & q_D \\ q_D & q_S \end{pmatrix} - \lambda_{1/2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} a_{1/2} \\ b_{1/2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Thus, we obtain for λ_1 and λ_2 the following normalized eigenvectors

$$\mathbf{e_1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$
$$\mathbf{e_2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

The next step is to decouple the differential equation of Hebbian learning (Eq. 1) by changing the coordinate system to the correlation matrix system.

$$\frac{1}{\mu} \frac{dw_r}{dt} = q_S w_r + q_D w_l \tag{9}$$

$$\frac{1}{\mu} \frac{dw_l}{dt} = q_D w_r + q_S w_l \tag{10}$$

The first (corresponding to $\mathbf{e_1}$) is to sum Eq. 9 with Eq. 10 and the second (corresponding to $\mathbf{e_2}$) is to subtract Eq. 10 from Eq. 9:

$$\frac{1}{\mu} \frac{d(w_r + w_l)}{dt} = (q_S + q_D) \cdot (w_r + w_l) \frac{1}{\mu} \frac{d(w_r - w_l)}{dt} = (q_S - q_D) \cdot (w_r - w_l).$$

With $w_{+} = w_{r} + w_{l}$ and $w_{-} = w_{r} - w_{l}$ the equations can be reformulated to

$$\frac{1}{\mu} \frac{dw_+}{dt} = \lambda_1 \cdot w_+ \tag{11}$$

$$\frac{1}{\mu} \frac{dw_{+}}{dt} = \lambda_{1} \cdot w_{+}$$

$$\frac{1}{\mu} \frac{dw_{-}}{dt} = \lambda_{2} \cdot w_{-}.$$
(11)

Of course the first eigenvalue is larger than the second $(\lambda_1 > \lambda_2)$ and, therefore, w_+ or rather $\mathbf{e_1}$ grows faster than w_{-}/\mathbf{e}_{2} . This means that w_{r} and w_{l} grow the same way and no orientation selectivity can occur.

Hebb and multiplicative normalization

The eigenvalues and -vectors of the correlation matrix are not effected by the learning rule. Thus, we can directly start at the decoupling of the differential equations

$$\begin{split} &\frac{1}{\mu}\frac{dw_r}{dt} = q_S\,w_r + q_D\,w_l - \alpha v^2\,w_r\\ &\frac{1}{\mu}\frac{dw_l}{dt} = q_D\,w_r + q_S\,w_l - \alpha v^2\,w_l \end{split}$$

by transformation (summation and subtraction)

$$\frac{1}{\mu} \frac{dw_+}{dt} = \lambda_1 \cdot w_+ - \alpha v^2 w_+$$
$$\frac{1}{\mu} \frac{dw_-}{dt} = \lambda_2 \cdot w_- - \alpha v^2 w_-.$$

As αv^2 is equal for both terms again the difference between the eigenvalues λ_1 and λ_2 determines the weight growth.

Hebb and subtractive normalization

We again start at the decoupling stage:

$$\begin{split} &\frac{1}{\mu}\frac{dw_r}{dt} = q_S\,w_r + q_D\,w_l - \frac{v(\mathbf{n}\cdot\mathbf{u})}{N} \\ &\frac{1}{\mu}\frac{dw_l}{dt} = q_D\,w_r + q_S\,w_l - \frac{v(\mathbf{n}\cdot\mathbf{u})}{N}. \end{split}$$

Summation leads to

$$\begin{split} \frac{1}{\mu}\frac{dw_{+}}{dt} &= \lambda_{1}\cdot w_{+} - \frac{2}{N}\,v(\mathbf{n}\cdot\mathbf{u}) &, N = 2,\,v = \mathbf{w}\cdot\mathbf{u} \\ &= \lambda_{1}\cdot w_{+} - (\mathbf{Q}\cdot\mathbf{w})\cdot\mathbf{n} &, \mathbf{Q}\cdot\mathbf{w} = \sum_{\nu}c_{\nu}\lambda_{\nu}e_{\nu} \\ &= \lambda_{1}\cdot w_{+} - \left(\frac{1}{\sqrt{2}}\,\lambda_{1}\,w_{+}\,\mathbf{e_{1}} + \frac{1}{\sqrt{2}}\,\lambda_{2}\,w_{-}\,\mathbf{e_{2}}\right)\cdot\mathbf{n} &, \mathbf{e_{2}}\cdot\mathbf{n} = 0,\,\mathbf{e_{1}}\cdot\mathbf{n} = \sqrt{2} \\ &= \lambda_{1}\cdot w_{+} - \lambda_{1}\cdot w_{+} = 0 \end{split}$$

and

$$\frac{1}{\mu} \frac{dw_{-}}{dt} = \lambda_2 \cdot w_{-}.$$

Therefore, subtractive normalization guarantees a weight development in $\mathbf{e_2}$ direction. Both weights (w_r and w_l) develop in contrary direction. Who is large and who is small depends on the initial $w_-(0)$.

Network

When do we have stable activity development?

$$\frac{d\mathbf{v}}{dt} = -\mathbf{v} + \mathbf{M}\,\mathbf{v} + \mathbf{W}\,\mathbf{u}$$
$$= (\mathbf{M} - \mathbf{1}) \cdot \mathbf{v} + \mathbf{W}\,\mathbf{u}.$$

Solve this equation

$$\mathbf{v}(t) = \mathbf{v}(0) e^{(\mathbf{M} - \mathbf{1}) t} + \mathbf{c}(t)$$
$$\approx \mathbf{v}(0) e^{(\lambda_{\nu} - 1) t} \mathbf{e}_{\nu} + \mathbf{c}(t)$$

If all $\lambda_{\nu} < 1$, the system is stable and we can rewrite the differential equation of the activity for $d\mathbf{v}/dt = 0$ to

$$\begin{aligned} \mathbf{v} &= \mathbf{W} \, \mathbf{u} + \mathbf{M} \, \mathbf{u} \\ \mathbf{v} &= \left(\mathbf{1} - \mathbf{M} \right)^{-1} \, \mathbf{W} \, \mathbf{u} \\ &= \mathbf{K} \, \mathbf{W} \, \mathbf{u}. \end{aligned}$$

We assume that the recurrent connections \mathbf{K} are constant over time and only the input weights \mathbf{W} are plastic. Thus, we have a similar problem as shown above with a bias \mathbf{K} . Assuming again only two inputs u_r and u_l , we can decouple the differential equations as above:

$$\frac{1}{\mu} \frac{dw_+}{dt} = \lambda_1 K w_+$$

$$\frac{1}{\mu} \frac{dw_-}{dt} = \lambda_2 K w_-$$

If we assume again a subtractive normalization $(dw_+/dt = 0)$, the development of w_- depends now on the principle eigenvector of \mathbf{K} .

We assume periodic boundaries, thus, \mathbf{K} is a ciculant matrix with following eigenvalues and -vectors:

$$\begin{pmatrix} k_0 & k_1 & k_2 & \dots & k_{N-1} \\ k_{N-1} & k_0 & k_1 & \dots & k_{N-2} \\ \vdots & & \ddots & & \vdots \\ k_1 & & & \dots & k_0 \end{pmatrix} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{N-1} \end{pmatrix} = \lambda \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{N-1} \end{pmatrix}$$

This means for each row:

$$\lambda e_0 = k_0 e_0 + k_1 e_1 + \dots + k_{N-1} e_{N-1}$$

$$= \sum_{j=0}^{N-1} k_j e_j$$

$$\lambda e_1 = k_{N-1} e_0 + k_0 e_1 + k_1 e_2 + \dots + k_{N-2} e_{N-1}$$

$$= k_{N-1} e_0 + \sum_{j=1}^{N-1} k_{j-1} e_j$$

$$\lambda e_2 = k_{N-2} e_0 + k_{N-1} e_1 + k_0 e_2 + \dots + k_{N-3} e_{N-1}$$

$$= \sum_{j=0}^{2} k_{N-2-j} e_j + \sum_{j=2}^{N-1} k_{j-2} e_j$$

$$\dots$$

$$\lambda e_m = \sum_{j=0}^{m-1} k_{N-m-j} e_j + \sum_{j=m}^{N-1} k_{j-m} e_j$$

renumbering leads to

$$\lambda e_m = \sum_{j=0}^{N-m-1} k_j e_{j+m} + \sum_{j=N-m}^{N-1} k_j e_{j-N+m}$$

this can be solved by the ansatz $e_j = f^j$

$$\lambda f^m = \sum_{j=0}^{N-m-1} k_j f^{j+m} + \sum_{j=N-m}^{N-1} k_j f^{j-N+m}$$

$$\lambda = \sum_{j=0}^{N-m-1} k_j f^j + f^{-N} \sum_{j=N-m}^{N-1} k_j f^j$$

if we assume the nth root of unity: $f^{-N} = 1$

$$\lambda = \sum_{j=0}^{N-1} k_j f^j$$

with eigenvector entries $e_j = 1/\sqrt{N} \, f^j.$ Or written different

$$e_a^{\omega} = e^{i\,\omega\,a} \tag{13}$$

with neuron and entry a and eigenvector/ -value ω .

We can define the eigenvalue problem also in the functional space:

$$A e_{\nu} = \lambda_{\nu} e_{\nu}$$

$$\Rightarrow \int dt' A(t, t') e(t') = \lambda e(t).$$

This means for K with eigenvector $\exp(i\omega a)$

$$\tilde{K}(\omega) = \int da K(|a - a'|) e^{i\omega a}. \tag{14}$$

Interestingly \tilde{K} is the Fourier transformed of K. As we have a discrete number of neurons a, we also have to use the discrete version of the Fourier transformation

$$\tilde{K}(m) = \sum_{a=0}^{N-1} K(|a-a'|) e^{i 2\pi a m/N}.$$
(15)

Thus, with $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$ we get the real part of the ath entry of the mth eigenvector:

$$e_a^m = \cos\left(\frac{2\pi m a}{N} + \Phi\right) \tag{16}$$

As we need to know the maximal eigenvalue to get the principle eigenvector, we have to introduce into Eq. 14 $\Delta = a - a'$

$$\tilde{K}(\omega) = \left(\int d\Delta K(|\Delta|) e^{-i\,\omega\,\Delta} \right) e^{i\,\omega\,a} = \lambda(\omega) e^{i\,\omega\,a}. \tag{17}$$

Thus, $\lambda(\omega)$ is the distribution of eigenvalues. To obtain the maximum ω we have to solve the discrete version of \tilde{K} as the eigenvectors have the length one (by definition, see above)

$$\begin{split} \tilde{K}(\omega) &= \lambda(\omega)\,e^{i\omega a} & \text{continuous} \\ \Rightarrow \tilde{K}(m) &= \lambda(m)\,e^{i2\pi ma/N} & \text{discrete} \\ \text{re-normalize by}\,k &= \frac{2\pi m}{Nd} \\ \Rightarrow \tilde{K}(k) &= \lambda(k)\,e^{ikad}. \end{split}$$

For given K (e.g., two gaussians), the k with the maximal eigenvalue $(\lambda(k))$ can be calculated and set into e^{ikda} to get the direction of the principle eigenvector of K and, therefore, the main direction of ω_- .