Principle Component Analysis

Plain Hebb
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The correlation matrix is rewritten in eigenvector form with eigenvalue A, and -vector e, :
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Thus, the weight vector w can be rewritten in Q-space

with coefficients ¢,
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and we can rewrite Eq. 1 to
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N N
de,
Zﬁ v =M ZU:)\IJCVeV
N e N
zy: dtyeu e, ,uzy:)\l,cl,el, e, ,€, €, =0YVV#K
de,
. )\y v
at e

If we solve this differential equation we obtain the development of the coefficients over time
cu(t) = ¢, (0) et L, (6)

Insert this solution in Eq. 3 and the coefficients (Eq. 4) for t = 0:
N
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As the eigenvalues are rank-ordered (A; > Ao > ...) the largest eigenvalue \; with the corresponding
eigenvector e; will dominate the weight development.



Ocular Dominance in small network

Plain Hebb

The system has the two inputs u, and w; and corresponding weights w, and w; to one neuron. The
correlation matrix has the form:
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dqp gs

To calculate the development of the weights one has to consider the eigenvalues and -vectors of the
correlation matrix.
Eigenvalue:
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The corresponding eigenvectors are calculated by

[Q—Aij21]-e12=0
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Thus, we obtain for A\; and Ay the following normalized eigenvectors
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The next step is to decouple the differential equation of Hebbian learning (Eq. 1) by changing the
coordinate system to the correlation matrix system.
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The first (corresponding to e1) is to sum Eq. 9 with Eq. 10 and the second (corresponding to ez) is to
subtract Eq. 10 from Eq. 9:
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With wy = w, +w; and w_ = w, — w; the equations can be reformulated to
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Of course the first eigenvalue is larger than the second (A1 > Az) and, therefore, w4 or rather e; grows
faster than w_/es. This means that w, and w; grow the same way and no orientation selectivity can
occur.

Hebb and multiplicative normalization

The eigenvalues and -vectors of the correlation matrix are not effected by the learning rule. Thus, we
can directly start at the decoupling of the differential equations
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by transformation (summation and subtraction)
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As awv? is equal for both terms again the difference between the eigenvalues A\; and A, determines the
weight growth.

Hebb and subtractive normalization

We again start at the decoupling stage:
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and

ldw,_ w
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Therefore, subtractive normalization guarantees a weight development in eq direction. Both weights (w,
and w;) develop in contrary direction. Who is large and who is small depends on the initial w_(0).

Network
When do we have stable activity development?
d
d—: =—~v+Mv+Wu

=M-1)- v+ Wu.
Solve this equation

v(t) = v(0) eMD 4 ¢(t)

~v(0)eMVte, +c(t)
If all A, < 1, the system is stable and we can rewrite the differential equation of the activity for dv/dt = 0
to

v=Wu+Mu

v=(1-M)"'Wu

=KWu.

We assume that the recurrent connections K are constant over time and only the input weights W are

plastic. Thus, we have a similar problem as shown above with a bias K. Assuming again only two inputs
u, and u;, we can decouple the differential equations as above:
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If we assume again a subtractive normalization (dw, /dt = 0), the development of w_ depends now on
the principle eigenvector of K.



We assume periodic boundaries, thus, K is a ciculant matrix with following eigenvalues and -vectors:
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This means for each row:
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renumbering leads to
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with neuron and entry a and eigenvector/ -value w.



We can define the eigenvalue problem also in the functional space:
Ae, =M\ e,
= /dt'A(t,t’)e(t’) = Xe(t).
This means for K with eigenvector exp(iwa)

K(w) = /daK(|a —ad'|) e, (14)

Interestingly K is the Fourier transformed of K. As we have a discrete number of neurons a, we also
have to use the discrete version of the Fourier transformation

~ N71 .
K(m)=Y " K(la—ad|)e?> ™/, (15)
a=0

Thus, with ¢ = cos(y) + isin(p) we get the real part of the ath entry of the mth eigenvector:

ent = cos (27rma+q)> (16)

N

As we need to know the maximal eigenvalue to get the principle eigenvector, we have to introduce into
Eq 14 A=a—d

Rw) = </dAK(A)e‘“"A> €190 A(w) i, (17)

Thus, A(w) is the distribution of eigenvalues. To obtain the maximum w we have to solve the discrete
version of K as the eigenvectors have the length one (by definition, see above)

K(w) = M\w) e™? continuous
= K(m) = \(m) e??™ma/N discrete
2mm
- lize by k = ——
re-normalize by Na

= K(k) = A(k) ek,

For given K (e.g., two gaussians), the & with the maximal eigenvalue (A(k)) can be calculated and set
into e*® to get the direction of the principle eigenvector of K and, therefore, the main direction of w_.



