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Abstract— Human-robot interaction strongly benefits from
fast, predictive action recognition. For us this is relatively easy
but difficult for a robot. To address this problem, here we
present a novel prediction algorithm for manipulation action
classes in natural scenes. Manipulations are first represented
using the Enriched Semantic Event Chain (ESEC) framework.
This creates a temporal sequence of static and dynamic spatial
relations between the objects that take part in the manipulation
by which an action can be quickly recognized. We measured
performance on 32 ideal as well as real manipulations and
compared our method also against a state of the art trajectory-
based HMM method for action recognition. We observe that
manipulations can be correctly predicted after only (on average)
45% of action’s total time and that we are almost twice as
fast as the HMM-based method. Finally, we demonstrate the
advantage of this framework in a simple robot demonstration
comparing two different approaches.

I. INTRODUCTION

In most cases, action recognition is considered as a clas-
sification problem, mapping image sequences to previously
known actions. In general, here the question arises “how fast”
can an action be recognized. Many systems will only respond
after an action has finished, while here we are concerned
with action prediction, leading to a system that provides
recognition output before an action has completed. This is
also the way humans interpret actions performed by others:
we continuously perceive and update our belief about an
ongoing action not waiting for its end.

Many applications exist, where action (or event) prediction
is beneficial in autonomous navigation, surveillance, health
care, and others. Two examples can make this clear: 1) driver
action prediction to prevent accidents or 2) prediction of a
handicapped person’s looming fall and a proactive help by a
robot. While in these two examples post-hoc recognition will
usually not help, action prediction may prevent problems.

For a robot, the capability of on-line prediction (and
behavioral adaptation) in a human-robot interaction scenario
is a difficult and challenging problem, because human actions
are complex, performed in variable ways [1], and decisions
must be made based on incomplete action executions [2].
In this work, we are interested in manipulation action-class
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prediction. If one wants to analyse (and/or predict) the dy-
namics of an action, fully continuous action information —
for example hand trajectories — should be used. For action-
class prediction, this is not needed. Instead, here we focus
on very simple hand-object and object-object relations, like
“getting closer”, “moving together”, etc. The strength of this
approach is that we only have to use a very small set of such
relations to achieve high predictive power. To achieve this,
in the current study we extend our recently introduced action
classification framework based on Enriched Semantic Event
Chains (ESECs) [3] to implement temporal action prediction.
Each action is distinguished and classified semantically “as
fast as possible” according to the differences in static and
dynamic spatial information between the involved objects.
We show with different experiments that this creates a new
and robust framework for real time action prediction.

II. RELATED WORK

There has been a great deal of research in the field
of human activity recognition from simple human actions
in constrained situations [4][5][6][7] to complex actions in
cluttered scenes or in realistic videos [8][9][10][11]. Also
there are recent works in early event detection that have
attempted to expand human action recognition towards action
prediction [12][13][14][15][16]. These approaches try to
predict actions from incomplete video data.

Ryoo [12] proposed a method which explains each activity
as an integral histogram of spatio-temporal features. Their
recognition methodology named dynamic bag-of-words con-
siders sequential nature of human activities and uses those
for prediction of ongoing activities.

Cao et al. [13] proposed an optimization approach and for-
mulated the problem of action prediction as a posterior max-
imization problem. They randomly removed some frames in
a video to simulate missing data and then performed feature
reconstruction based on previous frames for creating new
frames. After that, the accuracy of the newly created features
are computed by comparing them to those in the actual next
frames.

Kong et al. in [2] proposed a structured SVM learning
method to simultaneously consider both local and global
temporal dynamics of human actions for action prediction.
In another study [14] it had been proposed to use a deep
sequential context network (DeepSCN), which first elegantly
gains sequential context information from full videos and
then uses the resulting discriminative power to classify partial
videos.



Fig. 1. Flow diagram of the prediction algorithm including human-robot interaction.

The importance of action prediction has been demon-
strated recently in several robotic applications [15] [16]. For
example [15] anticipates future activities from RGB-D data
by considering human-object interaction. This method has
been embedded into a real robot system to interact with
a human in regular daily tasks. It considers each possible
future activity using an anticipatory temporal conditional
random field (ATCRF) that models the rich spatial-temporal
relations through object affordances and then considers each
ATCRF as a particle, and represents the distribution over
the potential future activities using a set of particles. In
our approach, we do not use particle filters; instead we
represent each action as a matrix of spatial relations. Wang
et al. [16] used probabilistic modelling of human movements
for intention inference and action prediction. They applied
an Intention-Driven Dynamics Model (IDDM) as a latent
variable model for inferring unknown human intentions and
performed predictions according to that.

In another work about prediction in human-robot interac-
tion, a joint assembly task is specified and provided by a
finite state machine representation. Here the robot learns to
predict the next action of the human by discovering repeated
patterns of low level actions like grasping an object. By
assuming that repeated low level actions also imply repeated
higher level sub-tasks, the robot learns to predict human
actions [12]. This low-to-high level transfer may, however,
often not really hold. A more sophisticated state/action model
is described in [13], who applied an adaptive Markov model
to assign confidence regarding predictions of the human
partners’ actions.

Our focus in the current work is on manipulations, which

are actions performed by hands. Recently Fermüller et al.
have developed a recurrent neural network based method
for manipulation action prediction [17]. They depicted the
hand movements before and after contact with the objects
during the preparation and execution of actions and applied a
recurrent neural network (RNN) based method while patches
around the hand were their input. They additionally used
the estimations of forces on finger tips during the different
manipulations for having more accurate predictions.

A central problem that can be found in all of the above
approaches is that action recognition (and prediction) heav-
ily relies on time-continuous information (e.g. trajectories,
movie sequences, etc.). This type of information, however,
is highly variable. It is interesting to note that — indeed
— we (humans) have a hard time to describe an action in
words using this level of detailed-ness. Instead, we prefer
using relational descriptions like “X moves toward Y”, or “X
is on top of Y”. We may add “... is moved fast...” or similar
specifiers but we usually cannot express in words detailed
information on the actual speed, etc. Therefore, in this study
we decided to shy away from continuous descriptions, too,
trying to obtain leverage from a relational representation
as discussed in our older works [18][19][20], which makes
this system robust against individual spatial and temporal
variations in the actual action execution. We will continue to
discuss these issues in the Conclusion section, arguing that
time-continuous information (dynamics) may not play much
of a role for action-class prediction.

III. OVERVIEW OF OUR METHOD

First we will explain the whole process and then its
components. A workflow diagram of action prediction and



execution is shown in Fig. 1. For each video frame, RGB
and depth images are used to generate point clouds. Next, a
segmentation algorithm based on color and depth information
is used for preprocessing the input to extract and track objects
and the hand in a scene using algorithms presented in [19]
and [21]. Since segmentation and tracking is not the main
focus of the current work, we will not discuss those methods
in more detail.

Note that for action recognition, the ESEC framework
used here [3] does not require any object and movement
recognition. It only considers the spatial relations between
objects. Since objects have different sizes and shapes we
need to model them as simpler structures for judging their
spatial relations. For this we use “Axis Aligned Bounding
Boxes” (AABB).

Static and Dynamic spatial relations (SSR and DSR)
are then computed according to the relative positions of
these bounding boxes (for details see section IV-B). After
that we define the Enriched Semantic Event Chain (ESEC)
framework in section IV-C. An ESEC represents an action
based on the relative spatial relations between the objects
in a scene. Whenever a spatial relation changes, the corre-
sponding change-event is stored in a transition matrix, the
“ESEC”.

The temporal action prediction is then formalized in
section IV-E. The prediction algorithm is a step by step
procedure that utilizes the ESEC matrices in order to dis-
criminate actions according to their event chains.

Results are then analyzed or, in case of a robotic experi-
ment, used to trigger the robot action.

For quantifications, we used the MANIAC data set [19]
1. This data set consists of the following eight manipulation
actions: push, put, take, stir, cut, chop, hide and uncover.
Each action type is performed in 15 different versions by
five human actors. Each version has a differently configured
scene with different objects and poses.

Fig. 2. (a) Static Spatial Relations: (a1) Above/Below, (a2) Right/Left, (a3)
Front/Behind, (a4) Around. (b) Dynamic Spatial Relations: (b1) Moving
Together, (b2) Halting Together, (b3) Fixed-Moving Together, (b4) Getting
Close, (b5) Moving Apart, (b6) Stable.

1Publicly available at: http://www.dpi.physik.uni-goettingen.de/cns/
index.php?page=maniac-data set.

Fig. 3. Description of “Put on Top” action in SEC and ESEC frameworks.
Image frames (top): Frame segmentation of a “Put on Top” video. Blue
object (3) is the main object (M), table is the primary object (P) and yellow
object (4) is the secondary object (S). Event matrix (bottom): White cells
of the table - SEC matrix; green cells - ESEC Static relation matrix; blue
cells - ESEC dynamic spatial relation matrix. The ESEC framework uses
the whole table, while the SEC framework only includes the white part.

IV. DETAILED METHODS

A. Object Modelling
After segmentation, each object in a scene is represented

as a point cloud that includes a set of points in a three
dimensional coordinate system. Our scene at frame f is
defined as a set of point clouds: αf

1 , ..., α
f
N , where N is

the number of objects and αi represents the point cloud of
object i, which is tracked throughout the action-sequence
[3]. We approximate each point cloud as an Axis Aligned
Bounding Box (AABB) to allow for efficient detection of
spatial relations. An AABB is a model that surrounds a point
cloud by a box such that its sides are parallel to the directions
of the axes of the coordinate system.

B. Extraction of Spatial Relations
In this work, three types of spatial relations have been

considered: 1) “Touching” (T) and “Non-touching” (N),
2) Static Spatial Relations (SSR) and 3) Dynamic Spatial
Relations (DSR) [3]. T and N relations between two point
clouds of objects are determined by applying the “kd-tree
algorithm” and evaluating occurrence (or non-occurrence) of
collision between them [22].

Both static and dynamic spatial relations between two
objects can be extracted simultaneously by evaluating the
relations between AABBs of the objects. In the following,
we will describe SSR and DSR in more detail.



1) Static Spatial Relations: Static spatial relations rely
on the relative position of two objects in space. They do not
need any data from previous frames and determine relations
only at the current time moment (frame).

We define the following types of SSRs: “Above” (Ab),
“Below” (Be), “Right” (R), “Left” (L), “Front” (F),
“Back”(Ba) and “Between” (Bw). Right, Left, Front and
Back are merged into “Around” (AR) or “Not-Around”
(N-Ar) if one object is surrounded by the other or not,
respectively. Moreover, “Above”, “Below” and “Around”
relations in combination with “Touching” are converted to
“Top” (To), “Bottom” (Bo) and “Touching Around” (ArT),
respectively, which correspond to the same cases but now
with physical contact.

If two objects are far from each other or they have not
any of the above mentioned relations, their static relation is
assumed as Null (O). This leads to a set of 12 static relations:
SSR = {Ab, Be, To, Bo, R, L, F, Ba, Ar, ArT, N-Ar, O}.

Fig. 2 (a1-a4) represents static spatial relations between
two objects in terms of cubes.

2) Dynamic Spatial Relations: Dynamic spatial relations
define the spatial relation of two objects during movement
of either or both of them. Here, different from SSR, some
information from the previous K frames (e.g., distance
related parameters) between each pair of objects is necessary.

The parameter K is related to the frame-rate of the movie,
where we determine K as frame number for covering 0.5
seconds, which is a good estimate for the time that a human
takes to change the relations between objects. Therefore, if
the video rate is µ frames per second, then K = 0.5µ.

DSRs consist of the following relations: “Moving To-
gether” (MT), “Halting Together” (HT), “Fixed-Moving
Together” (FMT), “Getting Close” (GC), “Moving Apart”
(MA) and “Stable” (S). Dynamic spatial relations between
two objects in term of cubes are shown in Fig. 2 (b1-b6).
MT, HT and FMT denote situations when two objects are
touching each other while both of them are moving in a
same way (MT), are constant (HT), or one object is fixed
and does not move, while the other one is moving on or
across it (FMT). Case S denotes that any distance-change
between objects is less than a defined threshold (here, we
have considered this threshold as ξ = 1 cm) and remains
constant during the action sequence. The other cases are clear
from looking at Fig. 2 (b). In addition, Q is used to denote
a dynamic relation between two objects if their distance is
more than the defined threshold ξ or if they have not any of
the above defined dynamic relations.

Thus, we have a set of seven dynamic relations:
DSR = {MT, HT, FMT, GC, MA, S, Q}.

C. Action Representation by ESEC

The ESEC framework is inspired by the original Semantic
Event Chain (SEC) framework [1]. The original SECs con-
sider only touching (T) and not-touching (N) events between
all pairs of objects along a manipulation action and focus
on the changes of these relations (see white rows of the
matrix in Fig. 3). Here (U) annotates the situation that the

TABLE I
DEFINITION OF THE FUNDAMENTAL OBJECTS DURING A MANIPULATION

ACTION [3].

Object Definition Relation
Hand The object that Not touching anything at

performs the action. the beginning and at the end of
the action. It touches at least
one object during an action.

Main The object which Not touching the hand at
is directly in contact the beginning and at the end of

with the hand. the action. It touches the hand
at least once during an action.

Primary The object from Initially touches the main
which the main object object. Changes its relation to

separates. not touching during an action.
Secondary The object to Initially does not touch the

which the main object main object. Changes its
joins. relation to touching during an

action.

role of the respective fundamental object is not yet known.
The definition of object roles is given in Table I. (Note,
objects obtain their role through the course of the action!).
The extracted sequences of relational changes had been used
for recognition of manipulation actions. In the Enriched SEC
(ESEC) framework, in addition to touching and not-touching
relations, sequences of static and dynamic relations described
in section IV-B are analyzed (see green and blue rows of the
matrix in Fig. 3).

It is important to note that one does not have to extract
all relations between each pair of objects in a scene. It
is only necessary to consider the so-called “fundamental
objects”, which are those that have an essential role in the
manipulation for determining an ESEC matrix. This has been
discussed in [3] and is an important step forward for reducing
action-analysis complexity. This way, we naturally exclude
distractor objects without any role in our manipulation and
reduce computations.

D. Manipulation Action Ontology [20]

Manipulations can be divided into three main groups
(Fig. 4 A): “Hand-Only Actions”, “Separation Actions”
and “Release Determined Actions”. Hand-Only Actions are
actions where the hand alone acts on a target object (or
first grasps a tool and then the tool acts on the target
object). According to their goals and effects on the scene
they can be subdivided into “Rearranging” (like stirring)
and “Destroying” (like cutting) actions. Separation Actions
denote actions where the hand manipulates one object to
either destroy it or remove it from another object. This group
is also divided into two cases: “Break” (ripping-off) and
“Take-Down” (taking down one object from another one). Fi-
nally, there are so-called Release Determined Actions, which
include all actions where the hand manipulates an object
and combines it with another object. This type of actions is
subdivided into “Hide” (covering an object with another one)
and “Construct” (building a tower) [20]. According to this



Fig. 4. (a) Categorization of 32 manipulation actions. (b) Prediction tree
of manipulation actions according to ESEC framework.

subdivision, in this work, we have analyzed and categorized
32 manipulation actions as listed in Fig. 4 (a).

E. Action Prediction and Quantification Measures

We define these 32 actions as α1, α2, ..., α32. Each action
in the ESEC framework has its own matrix with a specific
total number of columns Ni (1 ≤ i ≤ 32). For the theoretical
analysis the event chains for all 32 actions were manually
created in an ideal and noise free way. Furthermore, αk

i

denotes the k-th column of action αi. Due to the predefined
set of fundamental objects, the number of rows is 18 and is
the same for all actions.

The distinct structure of the ESECs allows for temporal
action prediction, which can be shown as a tree diagram
(Fig. 4 (b)). This will be discussed in the Results section.

We call the column number in a SEC or ESEC at which
the prediction of an action has occurred the “Prediction Event
Column”. This parameter for action αi is displayed as E(αi).
We define a prediction power measure for the event based
prediction as below (in percent):

PE(αi) =
(
1− E(αi)

Ni

)
∗ 100%. (1)

Hence, here the completion of an action corresponds to 1. A
prediction power of 0% would then correspond to the case
where action recognition only happens at the very end of the
action while 100% would refer to the action’s start.

Due to noise that exists in real data (e.g., due to inaccu-
racies in segmentation, detection of object collisions, etc.),
predictions using real data will often not correspond exactly
to theoretical predictions. Thus, we define another prediction
power measure for the “frame based” evaluation. In this case,
the spatial relations of the objects involved are computed for
each video frame. The frame, at which the prediction occurs,
is called “Prediction Frame”.This parameter for action αi is
displayed as F (αi). Similarly, prediction power for the frame
based prediction is defined as below:

PF (αi) =
(
1− F (αi)

L(αi)

)
∗ 100%, (2)

where L(αi) = lastframe(αi) − firstframe(αi), is the
total number of frames during execution of action αi and
denotes the length of the action. We assumed as the first
frame the one where the hand appears in the scene and the
frame where the hand leaves the scene is the last frame.

F. Method for Quantification against Baseline Method

To assess our method against the state of the art, we
compared our results with the performance of a state of the
art HMM-based baseline from [23] applied on the MANIAC
data set. For a fair comparison we selected this method,
because—like ours—it does not use object information, but,
instead, relies on hand trajectories.

We use the hand gesture recognition method from [23] for
detection of the hand motions and then extend recognition
to prediction. In [23] detection and segmentation of a hand
takes place using 3D depth maps and color information.
Then the hand trajectory is quantized based on an orientation
feature, which provides the direction of motion between con-
secutive trajectory points of the hand. This extracted feature
is clustered to generate discrete vectors, which are used as
input to the HMMs recognizer and then the gesture path is
classified using these discrete vectors. Evaluation, Decoding
and Training as the main problems of an HMM model are
solved by using Forward or Backward algorithm, Viterbi
algorithm and the Baum-Welch algorithm respectively as in
[23]. We adopted the same procedures here, too.

G. Methods for Human-Robot Interaction Experiments

The goal of this part of the work is to show that earlier
action prediction leads to a benefit in cooperation. To this
end, we have chosen two quite simple, but illustrative cases
for human-robot interaction: 1) push blocks together and 2)
put one block on top of the other block. In this study, we
are not interested in complex computer vision and, therefore,
we kept the scenario minimal. It just consists of a table
with three coloured blocks as shown in Fig. 1. The human
performs an action (push together or put on top); the robot
observes this and is supposed to engage in the same action
as soon as possible. Experiments were done comparing both
SEC and ESEC approaches. For this, we used a KUKA
LWR robotic-arm (see Fig. 1; in our experiments only one
of the arms was used) and an ASUS-Xtion RGB-D sensor
for getting the input data for the action prediction system.



Fig. 5. SEC vs. ESEC in theoretical prediction analysis (PE(αi)) on
MANIAC data set actions.

We used the Library of Manipulation Actions proposed by
[20] in order to generate motions and execute actions by the
robot.

V. RESULTS

We have compared the performance of action prediction
using the ESEC against SEC and HMM frameworks on three
different cases: 1) theoretical prediction of actions, 2) action
prediction using the MANIAC data set, and 3) real robot
experiments.

A. Prediction of Manipulation Actions

1) Theoretical Analysis of All Actions: For this com-
parison, we manually generated 32 ideal matrices for the
representation of manipulation actions (see Fig. 4 (a), small
print at the bottom) based on ESEC sequences, as explained
above.

First we show how action prediction evolves over time.
For this we build a decision tree (Fig. 4 (b)) as follows: At
the start of an action, all first columns of the 32 manipu-
lations α1

i , (1 ≤ i ≤ 32) are compared. Then, all actions
with the same first column are categorized into the same
set (S1, ..., Sn). Afterwards, the members of each set are
compared according to their second column α2

i . Again, those
actions with the same second column are categorized into
the same set and this process is continued until all actions
are categorized into a single-member set where there are no
more identical columns with any of the other actions or all
the columns of an action have been analysed.

The resulting tree uses the same color code as in Fig. 4 (a)
and shows that maximally seven columns in an ESEC are
needed until all actions are recognized. Note, the most com-
plex action (“pouring”) has in total 16 columns. Columns 1,
3, and 6 have no added discriminative value. Four actions are
found already in column 2, where the bulk is discriminated
in columns 4 and 5. Different action types (color code) are
distributed along the tree and no type clustering is observed.

To quantify this better, we used the Prediction Event
Column for each action and computed the prediction power
PE(αi) for all 32 actions for both SEC and ESEC. We ob-
tained an average prediction power of 18.10% (SD=16.3%)

Fig. 6. Results of the comparison of action prediction using SEC and
ESEC as well as the HMM methods on the MANIAC actions. (a) Event-
based prediction (PE(αi)). (b) Frame-based prediction (PF (αi)). The error
bars show standard deviations.

when using the SEC framework and 52.68% (SD=13.2%)
for ESEC. This means that we can predict actions using
ESECs much earlier (before half of the action has been
completed) than when using SECs. Moreover, all of those 32
manipulation actions were recognized correctly when using
ESEC, whereas only 20 actions out of 32 were recognized
correctly when using SEC.

2) Theoretical Analysis of MANIAC-Type Actions: A
comparison of the theoretical prediction power between SEC
and ESEC for only the actions contained in the MANIAC
data set is shown in Fig. 5. MANIAC-type action had for this
been re-created in a noise-free manner. The average of the
theoretical (best possible) prediction power for MANIAC-
type actions is 23.1% (SD=21.2%) for SEC and 59.8%
(SD=15.5%) for ESEC.

TABLE II
COMPARISON OF PREDICTION POWER FOR SEC AND ESEC OBTAINED

FROM THEORETICAL ANALYSIS (MANIAC-TYPE ACTIONS), AND SEC,
ESEC AND HMM ON MANIAC DATA SET. AVERAGE AND STANDARD

DEVIATION IS SHOWN.

Theory MANIAC
PE PE PF

SEC 23.1%±21.2% 24.7%±19.1% 32.3±19.3%
ESEC 59.8%±15.5% 60.7±15.5% 51.3%±17.9%
HMM n/a n/a 21.6%±18.5%



B. Action Prediction on MANIAC Data Set

To see how well theory matches to reality, we performed
the same analysis now using the real MANIAC movies [2].
We have randomly selected three versions of each of the
existing eight actions, thus, here we used 24 actions in total.
We have calculated and compared both prediction power
measures, i.e., “Event based” (PE(αi)) and “Frame based”
(PF (αi)).

Results for the comparisons between prediction powers
of MANIAC manipulations between SEC and ESEC frame-
works and an HMM-based method as a baseline method
are presented in Fig. 6. Here, panel (a) shows Event-based
prediction and panel (b) denotes frame-based prediction.
Values in Fig. 6 (a) slightly differ from Fig. 5 because
of some inaccuracies in computations of spatial relations
and presence of noise in real data. In most of the cases
ESECs predict faster than SECs and the HMM-based method
in all cases. This is confirmed by Table II, which shows
the average prediction power for all eight manipulations
of the MANIAC data set for both event- and frame-based
evaluations. ESECs are on average 36% better than SECs
in event-based and 19% better in frame-based real data
analysis. Moreover, ESECs are totally 29.7% better than
HMM-based method in frame-based prediction of MANIAC
manipulation actions. Furthermore, the ESEC method is of
lower algorithmic complexity than the HMM-based one.

In general, comparing all panels show that all different
(theoretical and real-data) analyses lead to consistent results.

C. Action Prediction in Robot Experiments

One of the most promising applications of the proposed
prediction method concerns human-robot or a robot-robot
interaction. By using our prediction method, a robot can
anticipate a human’s or another robot’s action before the
action has ended and engage in collaboration as soon as
the action is predicted. To demonstrate this, as explained
above we designed and performed two robot experiments:
“Push together” and “Put on top”. Here, the task for the
robot was to observe the human action and then engage in a
collaboration by performing the same action as soon as the
action is recognized.

Using ESECs, a put on top action is predicted when
the hand and the main object (green block) are getting
close to the secondary object (blue block), whereas with
SECs, this action is predicted only after the hand places
the main object (green block) on the secondary object (blue
block) and releases it (an un-touch event is detected; see
also supplementary video). For the push together action, the
ESEC predicts the action at the moment when the hand
starts moving together with the main object (green block),
whereas when using a SEC, the action is predicted only after
the hand pushes the main object (green block) toward the
secondary object (blue block) and releases the main object.
For these two manipulation actions, when using SECs a
correct prediction is made very much at the end of these
actions (prediction power of 15.4% for push together action
and 9.1% for put on top action), whereas when using

ESECs, predictions can be made much earlier (45.5% and
23.8%, respectively).

We show selected frames from these robot experiments in
Fig. 7, where we can observe differences between prediction
times (the frame when the robot predicted the action and
started executing that action) for the push together and put
on top actions when using the ESEC and SEC approaches. In
case of the push together action, using SECs, the robot starts
approaching the red block when the hand leaves the scene,
whereas when using ESECs the robot has already completed
the push together action and is moving back to the initial
position (see elliptic marks on the frames). Similarly, in case
of predicting a put on top action using SECs, the robot starts
moving towards the red object when the action is already
finished by the person and the hand leaves the scene, whereas
in case of ESECs, the robot has by then already grasped
the red object and lifted it up. Thus, as expected from the
other analyses, in real robot experiments ESECs performed
faster than SECs with a 30.1% and 14.7% improvement with
ESEC in comparison to SEC for push together and put on
top actions, respectively.

VI. CONCLUSION

In this paper, we proposed an approach to manipulation
action prediction based on the ESEC framework and com-
pared it with SEC and an ”object-free” HMM-based method.
We showed that on overage the ESEC framework outper-
forms both SEC and HMM-based methods. One possible
strength of ESEC (and SEC) is that is does not rely on
time-continuous information, which—in all likelihood—is
far more prone to variability (and noise) than the quasi-
symbolic representations used by ESEC (and SEC). Indeed,
when watching some of the examples in the MANIAC
data set one sees that time continuous information will not
improve prediction much, because the only aspect added by
this is the action dynamics. Dynamics do not influence the
action class but will play a role in the way how an action
is executed (e.g. fast versus slow, etc.). This, however, is
irrelevant for manipulation action-class prediction. Further-
more, our prediction approach as opposed to [14][15][16]
does not need any action trajectories, shape features or
action reconstruction and performs prediction only by using
semantic representation and spatial relations in a simple way.
This has low complexity, can perform in real time scenarios
and is strongly linked to the way human language describes
an action.
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