Visual Terrain Classification for Selecting Energy Efficient Gaits of
a Hexapod Robot

Steffen Zenker', Eren Erdal Aksoy?, Dennis Goldschmidt?, Florentin Worgétter?, and Poramate Manoonpong

Abstract—Legged robots need to be able to classify and
recognize different terrains to adapt their gait accordingly.
Recent works in terrain classification use different types of
sensors (like stereovision, 3D laser range, and tactile sensors)
and their combination. However, such sensor systems require
more computing power, produce extra load to legged robots,
and/or might be difficult to install on a small size legged
robot. In this work, we present an online terrain classification
system. It uses only a monocular camera with a feature-based
terrain classification algorithm which is robust to changes in
illumination and view points. For this algorithm, we extract
local features of terrains using either Scale Invariant Feature
Transform (SIFT) or Speed Up Robust Feature (SURF). We
encode the features using the Bag of Words (BoW) technique,
and then classify the words using Support Vector Machines
(SVMs) with a radial basis function kernel. We compare this
feature-based approach with a color-based approach on the
Caltech-256 benchmark as well as eight different terrain image
sets (grass, gravel, pavement, sand, asphalt, floor, mud, and fine
gravel). For terrain images, we observe up to 90% accuracy
with the feature-based approach. Finally, this online terrain
classification system is successfully applied to our small hexapod
robot AMOS II. The output of the system providing terrain
information is used as an input to its neural locomotion control
to trigger an energy-efficient gait while traversing different
terrains.

I. INTRODUCTION

Terrain surfaces influence the locomotion of legged robots.
Therefore, recognition of different terrains is required to
control their gait for efficient energy consumption. Current
studies in terrain classification employ a combination of
passive and active sensors (like stereovision, 3D laser range,
and tactile sensors) [1], [2]. For example, Ascari et al.
[1] combined texture analysis of statistical vision content
(stereo camera and laser line scanner system) with tactile
information produced by a sensing system from the robot feet
to estimate terrain characteristics. Lu et al. [2] used a laser
stripe-based structured light sensor with a camera to extract
spatial relations between different gray levels for terrain
surface classification. While such combined sensor systems
show good performance, they require more computing power,
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Fig. 1: The hexapod robot AMOS II. A USB camera with
720p, 30fps, and auto-focus is attached to the front chassis
frame. The camera is connected to a mini-pc with a 2GHz
Intel Atom which is set on top of the back chassis. The
current sensor installed inside the body of AMOS II is used
to measure the energy consumption on different terrains.

produce extra load to legged robots, and/or might be difficult
to install on a small size legged robot.

In the domain of computer vision, terrain classification is
essentially considered as surface texture identification and
can be grouped into three different techniques based on
spectral [3], [4], color [5], [6], and feature [7], [8]. Spectral-
based methods focus on spatial frequencies of texture dis-
tributions. Unlike color-based methods, local features are
invariant to scale, rotation, brightness, and contrast and hence
became popular in image classification. A few studies [7], [8]
showed the success of scale invariant local features for terrain
classification and robot control with some restrictions due to
motion blur of the captured images. For example, Khan et
al. [7] used a wheeled mobile robot to obtain smooth motion
while Filitchkin [8] used a legged robot where the robot
must stop its locomotion while taking an image to prevent
camera blur effect. In both approaches, generalization of the
classifier on a different benchmark was also not justified.

The work described here continues in this tradition with
the extension of the use of visual information to trigger the
most energy-efficient gait at a reasonable frame rate while
our hexapod robot AMOS 1I (see Fig. 1) is continuously



traversing different terrains without the need of blur-free
images and stopping its motion as required for the sys-
tem shown in [8]. Our online terrain classification system
uses only a monocular camera with a feature-based terrain
classification algorithm. For our algorithm, we investigate
two popular local feature detection methods, Scale Invariant
Feature Transform (SIFT) [9] and Speed Up Robust Feature
(SURF) [10]. SIFT and SURF detectors generate various key
points (i.e., features) which are to some degree invariant to
scale, rotation, viewpoint, and illumination changes. These
key features are more descriptive and hence reliable color-
based visual cues. We represent the extracted key points
with visual words by using the k-means algorithm. The Bag
of Word (BoW) method then encodes frequency of each
visual word by a histogram. Classification of terrain images
is completed by applying Support Vector Machines (SVMs)
[11] that extract the maximum-margin hyperplane between
the histograms. The final output of the terrain classification
algorithm is then used as an input to neural locomotion
control for activating an energy-efficient gait. A current
sensor mounted on AMOS 1I (see Fig. 1) is used to measure
the energy consumption for different terrains.

Although our approach makes use of traditional vision
approaches, the main novelty is coming with continuous
smooth walking while traversing different terrains and au-
tonomously switching to an energy efficient walking pattern
accordingly. This is a crucial step as the robot can adapt
its walking behaviour to the environment. Unlike the other
approach [8], with our system the robot does not have to
stop its locomotion between gait transitions. In addition,
we emphasize here the embeddedness of our system, i.e.,
a neural controller for gait generation and the online terrain
classification system for energy-efficient gait selection are
implemented on the mobile processor (mini-PC) of AMOS II
(see Fig. 1).

The structure of the paper is as follows. In Section II,
we introduce our online terrain classification system together
with its performance. In Section III, we briefly present our
hexapod robot AMOS II and its neural locomotion controller.
In Section IV, we show experimental results of using the
terrain classification system for energy efficient gait control
of AMOS II on different terrains. Finally, in Section VI we
provide conclusions and future works.

II. ONLINE TERRAIN CLASSIFICATION SYSTEM

Figure 2 illustrates the general overview of the online
terrain classification system. It uses a single USB-camera
(Creative Live! Cam Socialize HD with 720p, 30fps and
auto-focus) installed on AMOS 1I to acquire terrain images.
The camera is interfaced to a mini-PC CompulLab fit PC
2i with a 2GHz Intel Atom which is fitted on top of the
back chassis of AMOS II as shown in Fig. 1. The acquired
images are classified by a feature-based terrain classification
algorithm in a supervised manner. The algorithm has two
phases: Training and testing.

The training phase performs off-line where all images
are first stored in the memory. Data flow in this phase is

indicated by arrows as shown in the upper part of Fig. 2.
It is initiated by the extraction of local features. Here, we
apply two well known feature descriptors: Scale Invariant
Feature Transform (SIFT) [9] and Speed Up Robust Feature
(SUREF) [10], details of which are provided below. SIFT and
SURF detectors extract various features which are to some
degree invariant to scale, rotation, viewpoint, and illumi-
nation changes. However, due to differences in perspective
or occlusion the number of extracted features has a large
variance even for similar (terrain) images. Hence, we apply
the Bag of Words (BoW) method to generate vocabulary
from the extracted features. In this method, all features are
collected and clustered with the k-means algorithm which
yields a comprehensive BoW dictionary with a certain size.
The detected features of each image are encoded with the
closest visual words in the dictionary. Next, a corresponding
histogram which shows the frequency of each visual word
in images is computed. The training loop is completed by
Support Vector Machines (SVMs) [11] with radial basis
function kernel. The SVM method, details are provided
below, essentially maximizes the geometric margin between
the computed histograms.

The testing phase of terrain images includes the same
steps. Given a test image again, local features are detected,
encoded referring to the dictionary, and finally converted
into a histogram. As the last step, the histogram is used
to get a prediction from the previously computed classifier
as indicated in the lower part of Fig. 2. This testing phase
is implemented on the mini-PC of AMOS 1II and performs
online when a new terrain image is acquired directly by the
camera. Its output providing terrain information is further
sent to neural locomotion controller of AMOS 1II for con-
trolling its gait according to terrain as depicted in the lower
part of Fig. 2.

We compare the performances of feature-based image
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Fig. 2: Overview of the feature-based classification and gait
control algorithm. Upper and lower parts indicate the data
flow in the training and testing phases, respectively.



classifiers with that of color-based image classifiers. Since
SIFT and SURF feature descriptors do not consider color
cues, we compute the Hue histograms of the color variation
in each image and classify this separately with SVMs. In the
following subsections we provide a brief overview on the lo-
cal feature descriptors (SIFT, SURF) and the image classifier
(SVMs), respectively. Afterwards, we show the performance
of the feature-based terrain classification algorithm with a
comparison to a color-based classification algorithm.

A. Scale Invariant Feature Transform (SIFT)

SIFT [9] is a method that combines detection and descrip-
tion of interest points for further use for object recognition
and image registration tasks. SIFT creates a scale-space by
progressively applying different degrees of Gaussian blur to
the input image at various scales. The interesting keypoints
are detected by the Laplacian of Gaussian which is approx-
imated in a faster way by computing the difference between
Gaussians at two consecutive scales. To calculate keypoint
locations, SIFT detects the local extrema at these DoG im-
ages by comparing each pixel with all its neighbors including
those at consecutive scales. A further refinement step extracts
the most distinctive keypoints by rejecting points that lie on
edges or have little contrast. To achieve rotation invariance,
each keypoint is assigned a consistent orientation based on
local image properties. Gradient magnitudes and orientations
at a 4 x 4 subregion around each keypoint are calculated and
weighted by their distance to further form a histogram of
orientations with 8 bins. Hence, the SIFT descriptor becomes
a vector in 128 (4 x 4 x 8) dimensions.

B. Speed Up Robust Feature (SURF)

SURF [10] is based on similar concepts as SIFT, but is
faster. SURF creates a scale-space by applying box filters of
varying size to the input image. The scale space is analyzed
by up-scaling the filter size instead of iteratively reducing
the image size as implemented in the SIFT method. The
SURF detector essentially relies on the Hessian matrix. To
localize keypoints, SURF interpolates the local maxima of
the determinant of the Hessian matrix in scale-space. Instead
of gradients, a distribution of Haar-wavelet responses around
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the neighborhood of keypoints is used in SURF. As in the
case of SIFT, a dominant orientation is assigned to each
keypoint to achieve rotation invariance. The descriptor is
calculated at a 4 x4 subregion around keypoints. Within each
subregion, Haar-wavelet responses are computed. The feature
vector for the corresponding subregion is finally calculated
by considering the sum of Haar-wavelet responses with their
absolute values both in horizontal and vertical directions.
This leads to a feature vector with 64 dimensions.

C. Support Vector Machines (SVMs)

SVMs [11] are popular and powerful supervised clas-
sification techniques. SVMs construct a hyperplane with
the largest distances between training instances of different
classes. Closest instances to the separating hyperplane are
named as support vectors and the distance between those
support vectors is called margin. The hyperplane is described
by w-x +b = 0, where w is the vector normal to
the hyperplane, x is the training input vector, and b is a
scalar bias. Determination of the optimal hyperplane with
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Fig. 4: Accuracy of the feature and color-based classifiers
with the Caltech-256 image set. The SURF and SIFT feature
descriptors show higher accuracy among 20 classes com-
pared to the color-based classifier.
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Fig. 3: Sample images from the Caltech-256 image dataset [12]. We chose 20 different image classes (e.g. calculator,
chessboard, toaster, zebra, car, etc.) with at least 80 samples per category. Each image class has samples with cluttered

background and large variations in perspective, color, and size.
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Fig. 5: Sample images from the terrain image set with eight different classes: grass, asphalt, gravel, mud, pavement, sand,
floor, and fine gravel. Each terrain class has at least 80 samples taken under different lighting and weather conditions.

the maximum margin is calculated by minimizing ||w||
through quadratic programming optimization. The optimum
orientation of the separating hyperplane is then used to define
decision boundaries between instances of different classes.
To classify data points which are not linearly separable,
SVMs use a trick that maps those points from the input space
to a higher dimensional feature space. The mapping is based
on a kernel function, e.g. radial basis function kernel as used
in our experiments.

D. Classification with Benchmark Images

We empirically evaluated the performance of both, feature
and color-based, classification algorithms with a goal inde-
pendent benchmark: the Caltech-256 image dataset [12]. We
arbitrarily chose 20 different image classes (e.g. calculator,
chessboard, toaster, zebra, car, etc.) with at least 80 samples
per category. As depicted in Fig. 3 each image class has
samples with cluttered background and large variations in
perspective, color, and size.

Figure 4 depicts accuracy of the feature and color-based
classifiers with the Caltech-256 image set. Note that unless
otherwise stated, accuracy means the number of correctly
classified samples among all images. Here, 30 image samples
from each class are used for training and the rest is for
evaluation. It can be seen that in all cases the accuracy
decreases as the number of classes increases. However, SIFT
and SURF based classifiers exhibit similar behavior with
almost 60% accuracy among 20 classes. As expected, a color-
based classifier performs much worse than the others due
to high color variation between image samples even in the
same class. Consequently, these results show that feature-
based classifiers are more distinctive even with high number
of classes.

E. Classification of Terrain Images

Since there is no available terrain image benchmark, we
created a dataset with eight different terrain surfaces: grass,
asphalt, gravel, mud, pavement, sand, floor, and fine gravel.
Each terrain class has at least 80 samples captured on
different places. These sample images, having a resolution
of 640 x 360 pixels, were taken with the integrated USB-
camera under different lighting and weather conditions while
the robot was standing still. Figure 5 shows three different

images from each class to give an impression of differences
between samples.

We applied both feature and color-based classifiers to our
terrain image set. Figure 6 depicts the observed accuracy of
each classifier as the number of training samples increases.
The accuracy values of the SIFT and SURF feature descrip-
tors are quite similar and the maximum for accuracy eight
classes is almost 90% with both methods. The color-based
classifier exhibits less accurate performance due to color
differences between samples.

F. Computational Complexity

Not only the accuracy of a classifier but also the consumed
time for the classification task is an important value to be
considered. Despite of its limited accuracy, the color-based
classification is a computationally cheap method. It yields
frame rates up to 30 fps (independent of the image content
but limited by the camera) and has a fast training phase which
takes at most 10 seconds for the terrain image set.

The feature-based methods require more computational
power due to the feature extraction step. Figure 7 shows the
averaged number of key points detected in each terrain class.
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Fig. 6: Accuracy of the feature and color-based classifiers
with the terrain image set. The maximum accuracy among
eight classes is almost 90% and is observed with the SIFT
and SURF feature descriptors.
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Fig. 7: Average number of key points detected in each terrain
class.

The minimum number of key points is extracted from the
floor images due to little texture and strong light reflection
(see Fig. 5). Note that during the online terrain classification
less features can be detected due to blurry images or extreme
lighting conditions observed while the robot is walking.

The relation between the number of key points and re-
quired time for the SIFT and SURF methods is given in
Fig. 8. In the worst case the classification lasts 5 seconds
(observed with the SIFT method) and in the best case 0.2
seconds (observed with the SURF method) with the compact
hardware described in section II. Better hardware provides
up to 3-5 fps even with the SIFT method. As indicated in
Figs. 6, 7 and 8, the SURF feature descriptor outputs almost
the same accurate results as SIFT, but requires less time. The
SURF method yields frame rates up to 5 fps during the online
classification depending on the number of features detected
in the image. Figure 9 shows the final confusion matrix
calculated with the SIFT and SURF methods, respectively.
Here, 39 samples from each terrain class are used for training
and the rest is for evaluation. Although the SURF feature
descriptor shows fast classification, it has less true positive
rate for sand. In contrast, the SIFT detector is a more robust
against false classifications.

III. THE HEXAPOD ROBOT AMOS II AND ITS NEURAL
LocoMOTION CONTROL

AMOS 1II (see Fig. 1) is a biomechatronical hexapod
robot [14]. The robot body is inspired by the morphology
of cockroaches. Its six identical legs are connected to the
trunk which consists of two thoracic jointed segments. Body
flexibility is assured by an active backbone joint. The 19
active joints (three at each leg, one body joint) of AMOS
IT are driven by servomotors HSP-5990 TG HMI Digital
delivering a stall torque of 7 = 2.9Nm at 5V. In addition, the
body joint torque has been tripled by using a gear to achieve
a more powerful body joint motion. The thoracal-coxal (TC)
joint controls forward/backward motion of the leg, the coxal-
trochanteral (CTr) joint has the role of extension and flexion
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Fig. 8: The relation between the number of keypoints and
required time for the SIFT and SURF feature descriptors.
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SIFT (right) method.
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of the second limb and the motion of the third limb (up and
down) is driven by the femoral-tibial (FTi) joint. Besides
the motors, AMOS 1II has 19 embedded sensors perceiving
its environment: two ultrasonic sensors at the front body
part, six foot contact sensors in its legs, six infrared reflex
sensors at the front of its legs, three light dependent sensors
and one camera on the front body part, and one current
sensor inside the body (see Fig. 1). All these sensors and
motors are deployed for generating various behaviors (e.g.,
obstacle avoidance, climbing) [14], [15], [13], [16]. We use
a Multi-Servo I0Board (MBoard) installed inside the body
to digitize all sensory input signals and to generate a pulse-
width-modulated signal to control servomotor position. The
MBoard is here connected to a mini-PC via an RS232
interface. Electrical power supply for all servomotors, the
MBoard and all sensors is given by lithium polymer batteries
with a voltage regulator producing a stable 5 volt supply.

Basic walking behavior including omnidirectional walking
is driven by neural control (shown in Fig. 10) implemented
on the mini-PC. The controller consists of three main mod-
ules:

« a Central Pattern Generator (CPG) including a postpro-
cessing unit,
« a Phase Switching Network (PSN),
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Fig. 10: Neural locomotion control of AMOS II consisting of three main modules (CPG, PSN, and VRNs). There are also
input neurons (/o 2) for controlling walking directions and pre-motor neurons (I'R, TL, CR, CL, FR, FL, BJ) which
directly command the position of the servomotors of the leg and backbone joints of AMOS II. BJ = backbone joint, TR(L)
= TC-joints of right (left) legs, CR(L) = CTr-joints of right (left) legs, FR(L) = FTi-joints of right (left) legs. All connection
strengths together with bias terms are indicated by numbers except those of the VRNs given by A = 1.7246, B = —2.48285,
C = —1.7246. Note that postprocessing of the CPG outputs provides a triangle function which creates a smoother and more
natural movement of the legs (see [13] for more details). Note that here the pre-motor neuron BJ controlling the backbone
joint is not activated by neural control; i.e., the backbone joint is kept fixed. However, it can be controlled by a reactive

backbone joint control module for climbing [14].

o two Velocity Regulation Networks (VRNs) working in
parallel.

This neural control has been presented in [15], [13], [16].
Thus, here, we only briefly discuss these modules. All neu-
rons used in the modules are modelled as standard additive
non-spiking neurons. Their activity develops according to
ai(t+1) =37 ) wijo(a;(t)) +O;i=1,...,n, where n
denotes the number of units, ©; represents a fixed internal
bias term together with a stationary input to neuron ¢, and
w;; the synaptic strength of the connection from neuron j
to neuron ¢. The output of the neurons is given by the hy-
perbolic tangent (tanh) transfer function o(a;) = tanh(a;).
Note that the update frequency of the neural controller is
approximately 26 Hz.

The first module of the controller, the CPG, is a recurrent
two-neuron network (see Fig. 10). Recurrent weights wog 11
are set to 1.4 while weights between both neurons are
determined by wg; = 0.18 + ¢ = —wyp. ¢ is a control input
which is used to generate different walking patterns. Here we
use the signal from the terrain classification system described
above to set the control input value, thereby activating a
predefined energy efficient gait with respect to the terrain.

The next module PSN is a generic feed-forward network,
which reverses the phase of the periodic signals driving the
CTr- and FTi-joints. As a consequence, these periodic signals

can be switched to lead or lag behind each other by /2 in
phase in accordance with the given input 5. The PSN has
been implemented to allow for sideways walking, e.g., for
obstacle avoidance (see [15] for more details on parameters
and specific experiments on sensor-driven sideways walking).

The last two VRN modules are also simple feed-forward
networks (see [15]). Each VRN controls the three ipsilateral
TC-joints on one side. Because the VRNs behave qualita-
tively like a multiplication function [15], they have capability
to increase or decrease the amplitude of the periodic signals
by the magnitude of the inputs I; ». Consequently, the walk-
ing velocity of the machine will be regulated, i.e., the higher
the amplitude of the signal the faster it walks. Furthermore
they can be used to achieve more walking directions, like
forward and backward movement (sign inversion of the
multiplication) or turning left or right where the directions
are driven by the preprocessed infra-red and light dependent
resistor sensor signals through I .

At pre-motor neurons, we introduce 7 = 0.8 s and 7, =
2.4 s which are given delays between the outputs of the
neural control and pre-motor neurons. This setup leads to
biologically motivated leg coordination. In summary, while
the CPG sets the rhythmic movements of the legs leading
to different gaits, the PSN and the VRNs provide a certain
steering capability. As a consequence, this neural controller



enables AMOS II to move in different gaits as well as in any
direction.

IV. REAL ROBOT EXPERIMENTS

In order to observe energy-efficient gaits for different ter-
rains, we first categorize the eight terrain surfaces (described
above, see Fig. 5) into four different groups:

o stiff ground = { floor, pavement, asphalt },

o loose ground = { fine gravel, sand, mud },

e rough ground = { gravel },

o vegetated ground = { grass }.

For each of these terrain groups, we let AMOS II walk
from slow to fast gaits by increasing the control input value
and we also calculate the electric energy consumption of
each walking pattern as:

E=1Vt, (1)

where I is average electric current in amperes used by the
motors during walking one meter. It is measured using the
Zap 25 current sensor. V' is electric potential in volts (here
five volts). ¢ is time in seconds for the travel distance (here
one meter) and is used for task competition time for different
gaits. Figure 11 shows the energy consumptions measured in
these four terrain groups.

Each terrain group has a specific gait which leads to
the lowest energy consumption. Figures 11a and b suggest
using the control input value of 0.19 which produces a fast
tripod gait on stiff and vegetated surfaces. Figures 11c and d
suggest using the control input values of 0.06 and 0.04 which
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generate a tetrapod gait and a slow wave gait on rough and
loose grounds, respectively.

This allows mapping the four terrain groups to an energy
efficient gait. For online terrain classification experiments,
we use the SIFT method which can handle blurry images,
hence the robot does not need to stop its motion. Although
the SURF method is faster and yields equal accuracy in
previous tests (see Figs. 4 and 6), real experiments have
shown that the occurrence of false classifications increases
dramatically due to motion blur especially for the SURF de-
tector [17] while the robot is walking. Once the classification
method responds to a new terrain image acquired directly
by the camera, its output provides terrain information used
to set the control input of the CPG, thereby triggering the
corresponding pre-mapped energy efficient gait. These exper-
imental results are shown in Fig. 12. We recommend readers
to also see supplementary movies of these experiments at
http://www.manoonpong.com/AIM2013/VTC.mp4 .

V. CONCLUSIONS

In this paper, we have analyzed local feature and color-
based terrain surface classifiers using a single USB camera.
SIFT and SURF feature descriptors as well as color his-
tograms were compared on both the Caltech-256 benchmark
with 20 classes and a terrain image set with eight classes. We
observed up to 90% accuracy for the feature based classifiers.
We also measured the energy consumption of AMOS II
on different terrains while walking with different gaits. The
most efficient gaits were mapped to the corresponding terrain
surfaces. Finally, AMOS II used the SIFT method for online
terrain classification to autonomously change its gait at a
reasonable frame rate while traversing different terrains. This
method is very robust to motion blur which allows the
robot to continuously walk without any interruption in the
walking performance unlike the other approach [8], thereby
maintaining smooth forward locomotion. The here presented
framework can easily be adapted to or implemented on
any other walking robot for visually driven gait control to
effectively walk on different terrains as well as to avoid
dangerous areas like waters and icy or slippery surfaces. This
approach can also be used for robots walking on textured
surfaces, e.g. carpets with certain patterns since the detector
needs only descriptive key features.
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Fig. 12: Real-time data of the experiments of online terrain classification for energy efficient gait control. a) The output of
the online terrain classification where AMOS 1I walked from fine gravel (loose ground) to gravel (rough ground) to floor
(stiff ground). b) The TC-joint angle of the right front leg of AMOS II when the control input of the CPG was first set to
0.04 then 0.06 and finally 0.19 by the visual signal. It oscillated from very low to very high frequencies. c¢) Gait diagram
(black boxes indicate the swing phase of a leg) showing that AMOS II used wave, tetrapod and tripod gaits during walking
on the fine gravel, gravel and floor, respectively. d) The output of online terrain classification where AMOS II walked from
gravel (rough ground) to grass (vegetated ground). e) The TC-joint angle when the control input was first set to 0.06 and
then 0.19 by the visual signal. It oscillated from low to very high frequencies. f) Gait diagram showing that AMOS II used
tetrapod and tripod gaits during walking on the gravel and the grass, respectively. Above pictures show snap shots from the
camera used for the terrain classification while AMOS II walked on the different terrains. Below pictures show a series of
photos of the locomotion of AMOS II during the experiments. R1, R2, R3, L1, L2, L3 mean right front, right middle, right
hind, left front, left middle, and left hind legs, respectively (cf. Fig. 1).
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