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When describing robot motion with dynamic movement primitives (DMPs), goal (trajectory endpoint),
shape and temporal scaling parameters are used. In reinforcement learning with DMPs, usually goals and
temporal scaling parameters are predefined and only the weights for shaping a DMP are learned. Many
tasks, however, exist where the best goal position is not a priori known, requiring to learn it. Thus, here we
specifically address the question of how to simultaneously combine goal and shape parameter learning.
This is a difficult problem because learning of both parameters could easily interfere in a destructive way.
We apply value function approximation techniques for goal learning and direct policy search methods
for shape learning. Specifically, we use “policy improvement with path integrals” and “natural actor
critic” for the policy search. We solve a learning-to-pour-liquid task in simulations as well as using
a Pa10 robot arm. Results for learning from scratch, learning initialized by human demonstration, as
well as for modifying the tool for the learned DMPs are presented. We observe that the combination
of goal and shape learning is stable and robust within large parameter regimes. Learning converges
quickly even in the presence of disturbances, which makes this combined method suitable for robotic

applications.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic movement primitives (DMPs) proposed by Ijspeert
et al. [1] have become one of the most widely used tools for the
generation of robot movements. Numerous applications can be
found in the literature [2-5]. The DMP formalism is employed for
describing goal-directed movements and includes second-order
dynamics toward an attractor point, called the goal point g of the
movement, as well as several adjustable parameters, which are
used to obtain the desired shape of the trajectory. In this study, we
will consider the questions of robot reinforcement learning using
dynamic movement primitives. Several efficient methods have
been proposed for DMP shape parameter learning. These include
the natural actor critic (NAC, [3]), policy improvement with path
integrals (PI?, [5]), and policy learning by weighting explorations
with the returns, (POWER, [4]). Using those methods, robots were
trained to acquire specific skills, for example jumping across a gap

* Corresponding author at: University Géttingen, Institute for Physics 3 -
Biophysics, Bernstein Center for Computational Neuroscience, Friedrich-Hund-
Platz 1,37077 Gottingen, Germany. Tel.: +49 370 687 37788; fax: +49 0551 397720.

E-mail addresses: m.tamosiunaite@if.vdu.lt (M. Tamosiunaite),
bojan.nemec@ijs.si (B. Nemec), ales.ude@ijs.si (A. Ude), worgott@physik3.gwdg.de
(F. Worgdotter).

0921-8890/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2011.07.004

by arobot dog [5], hitting a baseball with a robot arm [3], or playing
the ball-in-a-cup game using a humanoid robot [4].

Here we will consider the combination of DMP goal and shape
learning. DMP goal learning was not much considered in robot
experiments before [6,7] and the simultaneous combination of the
two learning regimes is novel. The reason for this is that in most
tasks considered so far the goal position is known well enough.
Thus, goal learning is not required. There are, however, many tasks
where this is not the case, which happen as soon as the goal has
a hard-to-predict effect on the outcome. One example, which is
also in the core of the current study, is pouring of a liquid. The
complex turbulent motion of the liquid taking place at the rim of
the container makes it very hard to predict at what position (=goal)
the container should be optimally placed for best pouring results.
The same is true for other dynamic tasks, like throwing objects to
hit a predefined target [7] or placing one object on top of the other
where the stable configuration of the two objects is not known
in advance. Similar problems will arise when working with tools,
e.g. hammering, where an arm would be stopped at some specific
position letting the weight of the hammer do the final hitting. Goal
and shape are also important when working with soft materials,
e.g. when putting a table cloth on the table, goal position as well as
shape of the swinging movement when unfolding the cloth will be
important.



M. Tamosiunaite et al. / Robotics and Autonomous Systems 59 (2011) 910-922 911

Some indications of learning improvement by introducing
task-level components (which might be compared to DMP goal
learning) are found in [8]. In [7] meta-parameter learning is
introduced where a function, mapping the target (e.g. height of a
dart hit) to the goal and duration parameters of a DMP producing
throwing movement has being developed, using Cost-regularized
Kernel Regression; but simultaneous goal and shape learning was
not addressed in this work.

We will use function approximation reinforcement learning
[9,10] for goal learning and PI?> or NAC for shape learning. A
value function approximation technique for goal learning is chosen
considering the structure of the reward landscape for the goal point
in pouring. On the reward landscape one finds big areas with zero
reward from where no liquid can be successfully poured and only a
limited patch where reward can be obtained. Value-function-based
procedures are known to be able to deal well with such reward
structures. PI? and NAC methods are on the other hand chosen for
shape learning as they have proven to be very successful for weight
learning in DMPs in reinforcement learning scenarios. It will be
shown how goal and weight learning processes can be combined in
the same learning experiment without mutually jeopardizing each
other’s convergence. The pouring task was chosen as it represents
an example of a generic set of learning tasks which often occur,
especially in service robotics. There one often finds “fuzzy” tasks
of a kind where many successful solutions exist and where highest
accuracy (such as that needed for industrial robots) is not required.

The paper is organized in the following way: in Section 2 the
setups and methods used in this study are presented. In Section 3
results obtained with the pouring simulator as well as those
obtained on the Mitsubishi Pa10 robot arm are provided. With the
pouring simulator a more detailed scan of the parameter space is
performed. With the real robot experiments both, learning from
scratch as well as starting to learn from a demonstrated human
trajectory, is shown. To demonstrate the potential of the applied
learning algorithm, two more complex (redundant) learning tasks
are also analyzed using the pouring simulator. In Section 4 the
advantages as well as shortcomings of the methods are analyzed,
and comparisons with alternative approaches are provided. In
Appendices A and B algorithms are described in more detail.
In Appendix C parameter values used in the experiments are
provided.

2. Methods
2.1. General setup

The task is to learn pouring liquid from one container into
another using a robot arm. We use the assumption that the robot
already has a full container in its hand and grasping the container
is not included in the task. However, the correct pouring position
is considered to be unknown. The pouring action should include
both, the approach to the target container as well as tilting of the
manipulated container to get the liquid out.

Statistical evaluation of the employed algorithms was per-
formed using a pouring simulation. The simulation algorithm is
provided in Appendix A.

As a platform for real robot experiments the 7DOF Mitsubishi
Pa10 robot arm was used. The arm was positioned so as to imitate
the position of a human arm (see Fig. 1). The whole pouring
procedure was performed in the following way: the robot arm
was brought to the start position where the container was filled
with water (approx 190 +10 g). Afterward, the pouring action was
executed. Pouring success was determined by the changing mass
of the lower container measured by a scale. The setup is such that
all spilled water immediately runs off the scale and is, thus, not
weighed.

Fig. 1. Robot setup: Mitsubishi Pa10 robot arm and the scale for measuring
correctly poured water. Spilled water runs off the scale. In panel A, the coordinate
system used to evaluate the wrist position is shown. Panel B provides a close to
planar view onto the (y, z) plain and the tilting angle ¢ is visualized in this plain.
Rotation is performed around the neck of the bottle.

2.2. DMP usage

Movements were generated using dynamic movement primi-
tives [11].

1
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where v and u represent velocity and position of the system, w
is the phase variable, which defines the time evolution of the
trajectory, t is the temporal scaling factor, C is the spring constant,
and D the damping.’

The non-linear part f(w) was defined using radial basis
functions [1]:

L
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where ; are Gaussian functions defined as ¥(w) = exp(—zki2
1

(w — ¢;)?). Parameters ¢; and «; define the center and the width
of the Ith basis function, while p; are the adjustable weights used
to obtain the desired shape of the trajectory. We use DMPs with
local generalization properties as global generalization [12] is not
required for our task.

1 Note a summary of the parameter values used in this study is provided in
Appendix C.
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In most experiments three DMPs were used: one for the
horizontal side displacement of the end effector, y(t); one for the
vertical displacement of the end effector, z(t), both in the robot-
based coordinates (see Fig. 1(A)), and the last one for the tilting
angle parallel to the frontal plane of the robot, ¢(t) (Fig. 1(B))
which corresponds to roll in tool coordinate frame. Tilting was
performed around the opening of the bottle. To simplify the
situation, the horizontal forward displacement of the end effector
was kept fixed and the tilting angle was constrained to a plane.
Learning of the goal parameters g of y(t) and z(t) was performed,
but for the tilting angle ¢(t) not the goal but the shape p;, | =
1,2,...,L was learned. Note, shapes of the horizontal and the
vertical displacement of the end effector y(t) and z(t) were kept
unchanged, using the initial trajectories of our second-order linear
system, in order to keep the setup non-redundant. The DMP
trajectory for the tilting angle ¢(t) was hard-limited between
zero and gn in the real robot implementation to avoid unrealistic
actions (negative tilt) and unreachable configurations for too big
tilt angles. In the simulation experiments the trajectory was hard-
limited between zero and 7. The aforementioned setup we will call
2 + 1 setup (as two goals and one weight set are being learned).

To show the potential of the learning methods used, we have
in addition implemented learning in several more complex setups.
In the first of those more complex setups, goal parameters as well
as shape parameters were learned for all three DMPs: y(t), z(t)
and ¢ (t). That is, six entities were learned: three goals and three
weight sets (3 + 3 setup). Even though a simpler formulation of the
pouring task as described before is better for the application on a
robot, as it is non-redundant, the more complex formulation can
show interactions of the employed learning algorithms better and
provide results more interesting from the theoretical point of view.
Finally, we performed several experiments for learning to pour in
5D, where (x, y, z) position (robot-based coordinates) and roll and
pitch for rotation (tool coordinate frame) were used (5 + 5 setup).

For DMPs we used parameters C = 36,D = 3,« = 0.1, and
T = lort = 2aswell as stepdt = 0.017 for the Euler integration.
In the real robot experiments we used T = 300 discretization
steps. This corresponds to pouring movements of 5 s duration
(sampling frequency 60 Hz). With the pouring model we used a
trajectory duration of T = 120. We used coarser trajectories in
the simulation experiments to reduce run time for obtaining larger
statistics for different parameters. We used L = 15 kernels in the
non-linear part of the DMP.

2.3. Reinforcement learning methods

Two different reinforcement learning approaches were used:
(1) value-function-based RL, where for each state the value of
being in the state is determined by learning [9] and (2) direct pol-
icy search methods, where one does not keep information about
values of states, but instead directly introduces action parametri-
zation [13]. Throughout learning the parameters are adjusted to
optimize the desired goal-directed behavior. We are combin-
ing both techniques, where the value function approximation
approach is used for goal learning, and the direct policy search
approach for shape learning.

One attempt to pour we will call a trial. The learning procedures
we will describe next are organized in “epochs”, where an epoch
is a set of trials. Note, for different methods the utility of an epoch
will be different.

2.3.1. Goal learning method
For value function approach we used a reinforcement learning
method with function approximation developed by us in an earlier

study [14] and modified as described next. The value function V(s)
is defined as follows

N N
Vis) =) 6 o) / Yok, (3)
k=1 k=1

where @ (s) is the activation function of the kth kernel in state s, 6%
are the weights associated with the kth kernel function, and N is
the overall number of kernels in the system. Let us further explain
the method using the example of goal learning in 2D coordinates
(¥, z) (2 + 1 setup). Every state s is defined as a pair of Cartesian
coordinates, thus all coordinates (y, z) denote possible goal points
of a DMP (parameter g in Eq. (1)). Weights 6 are adapted by
learning as described later. We used spherical Gaussian kernels,
uniformly distributed over the analyzed area of 30 x 30 cm in
simulation and 25 x 20 cm on a real robot (see Appendix C) with
oy = 2 cm. A value of N = 200 was used in the 2 4 1 setup,
N = 2000 was used in the 3 + 3 setup and N = 10000 was used
for the 5 + 5 setup.

The exploration actions were divided into epochs of seven trials
each. First, the algorithm was started with initial state (yg, z). For
a given epoch, to define a new exploratory action, the gradient of
the current estimate of the value function was calculated A =
grad V(s), and an action was performed taking the direction of the
gradient into account. Instead of using pure gradient ascent, the
update for the next state was calculated as a combination of the
current gradient and the previous action Aprevious:

1
Afinal = m(Acurrent + CAprevious)» (4)

where at the beginning of learning ¢ = 1.5 was used, while later ¢
was reduced by 0.1 in each epoch, ¢ > 0. This smoothing procedure
helps avoiding jerky exploratory movements in the beginning of
the learning process and also to some degree influences the process
of refinement in RL with function approximation. For the beginning
of a new epoch the state (y, z) that had produced the highest
reward in the previous epoch was used as starting point.

In the beginning of learning, the probability of random
exploration was set to 0.5. Exploration was reduced by 0.05 in each
epoch to increasingly better adhere to the learned components, but
was not allowed to become smaller than zero.

The change in the value of ¥ is performed as follows:

0F = 0% + pulr + wv(s) — 05 10x(s), (5)

where k is the number of the kernel to which the weight is
associated, r is the reward, © < 1 the learning rate, yy < 1 the
discount factor, V (s’) is the value of the next state, and q§,’f, (s) is the
normalized activity function for kernel k in state s

N
D) (5) = OX(5) / > k). (6)
k=1

The rule in Eq. (5) is called averaging function approximation
rule and is considered to perform more stably in function approx-
imation schemes [10,15] as compared to standard methods [9]. As
reward r we used the amount of liquid correctly poured into the
target container.

One has to note that reinforcement learning here was used in a
non-standard way, where the objective was to optimize the reward
function for parameter “g” using value function approximation.
However, the advantage of the technique to systematically deal

with “delayed reward” persists.

2.3.2. Shape learning methods
For shape learning as a primary means we have used the
recently developed PI> method [5], but also made a comparison to
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the natural actor critic (NAC) [3], which has been very influential
in the last years. We are giving a detailed description of those
algorithms in Appendix B and keep it brief in the main text. Note,
both algorithms are quite complex, thus readers are in addition
referred to the original papers of Theodorou et al. [5] and Peters
and Schaal [3].

Policy improvement with path integrals PI?: This method is
derived from the principles of stochastic optimal control. The
method is considering “cost” instead of “reward” and allows
adding noise (to emulate exploration) directly onto the weights of
the DMP. The procedure of learning is organized in epochs: first
for some trials exploration noise is added and the success of each
of those noisy trials is evaluated. Afterward, weights are updated
to reduce cost.

In the experiments with the pouring model for the immediate
cost function, which we will call g(t), we were using the amount of
spilled liquid per time step, where the amount of the spilled liquid
was multiplied by a factor of ten in those time steps, where nothing
was poured successfully as yet in the current trial:

t
10 aspill(t), if Z atarget(j) =0
Jj=0

q(t) = (7)

t
aspill(t)s if Z atarget(j) > 07
j=0

where agin(t) is an amount of spilled liquid in time step t and
Ararger (£) is the amount of correctly targeted liquid in time step
t. With the factor of 10 we were attempting to emphasize the
punishment for the mistargeted liquid in the beginning of pouring
which was more difficult to learn. As the terminal cost Gterminal
we were using the final amount of liquid remaining in the upper
container. In the real robot experiments, in order to simplify the
setup, we used only the terminal cost term:

T—1
(terminal = Zaspill(t)» (8)

t=0

where T is the length of the trajectory, while immediate costs were
considered zero.

Natural actor critic (NAC): This is a policy gradient method
where the gradient is transformed using the Fisher information
matrix and then a so called “natural gradient” is obtained, which
is better targeted to the optimum of the reward surface over
parameter space as compared to the regular gradient. We have
implemented the time-variant baseline version of the method
from [3], which takes into account immediate rewards. As
immediate rewards we used the correctly poured amount of liquid
in each discrete time step of the performed trajectory. Also, we
were annealing the exploration noise independently of the shape
parameters. We did not manage to stabilize the NAC algorithm
for our task without introducing probing for appropriate learning
rate after the natural gradient was determined. Consequently, we
added a learning rate probing block in our NAC implementation.

2.3.3. Combination of goal and shape learning

We have combined value function approximation for goal
parameter learning and direct policy search methods (policy
gradient or reward-weighted averaging) for weight learning into
a single procedure. A block diagram showing the principles of
interaction of the two learning methods (on an example where
the PI*> method is used for weight learning) is presented in Fig. 2.
For implementing the PI?> (and NAC) methods, several epochs of
experiments need to be performed. Let us say K trials compose
one epoch. In each of those K trials different noise is added
onto the weights and this results in differently shaped DMPs. For

each of those K trials the cost is calculated. Both, noise profile
and cost function, are memorized for each trial. After the epoch
is finished, the weights are updated according to the collected
noise-reward statistics. As we were combining two reinforcement
learning procedures, we were using the same K trials to also vary
the goal parameters. Updates of the function V (t) were made after
each trial, according to Eq. (5). Consequently, the two learning
processes were acting together.

3. Results
3.1. Learning in simulation experiments in 2 + 1 setup

Central goal of this part of the study is to tune parameters
preparing for the real robot task and to compare the PI? and NAC
methods employed for the shape parameter learning. In Fig. 3(A) an
example learning curve is shown obtained using the combination
of goal and shape learning, where the shape is learned using
the PI? algorithm in the 2 + 1 setup. We plot PI*-cost (Eq. (7))
against trial number. The figure shows how the cost varies and
becomes smaller with learning. The black curve shows the overall
learning process. Each learning epoch consists of eight trials. The
first seven represent exploration and the weights are disturbed
by the exploration noise in these trials. After these seven trials
the weight update is calculated. The eighth trial in an epoch is
performed noise-free to measure the current system performance
and is represented by a red dot in the plot. Nine such epochs are
performed. Goal and weight learning is performed for the first
six epochs (6 x 8 = 48 trials), later for the final three epochs
only weight learning is performed as the goal has by then already
become stable to the degree which the finite steps performed in
goal search procedure allow. One cannot make steps arbitrarily
small in goal learning, as the step size has to be matched to
the kernel size in the value function approximation approach. In
Fig. 3(B) the learned trajectories are shown. For y(t) and z(t) only
the goal parameter was learned. For the tilting trajectory ¢(t),
shape was learned and the goal parameter was kept fixed. One can
see that the tilt trajectory obtains a steeper slope in the middle of
the movement which then crosses the margin of 7 /2 after which
the actual running-out of the liquid starts in the employed pouring
model. The increase in slope has to synchronize with the wrist
movement to a position from which it is possible to successfully
pour the liquid into the lower container.

Parameters for value function approximation employed for
goal learning were taken from our previous studies [16] (for the
numerical values see Appendix C). We have done a series of twenty
experiments to discover the most appropriate noise level for the
PI? learning. The results are shown using histograms (Fig. 4). In the
first, second and third columns of the figure the cumulative cost
along the trajectory Q = ), q(t) attained after three, six and nine
learning epochs (first third, second third, and the end of learning)
are provided. As the initial amount of liquid in the model bottle
was normalized to one, the maximum cumulative cost was ten (see
Eq. (7)). Values slightly above ten arise because of discretization
effects. In Fig. 4, lower costs earlier in learning indicate better
performance. In the first four rows we provide histograms for four
different values of the noise variance op = 10, 30, 50 and 80 for the
2 + 1 setup. One can see that learning results are good in the range
of op = 30-50. Consequently, for further simulation experiments
we were using op = 30.

Next, we have performed an experiment with first goal, then
weight learning (row 5 in the histogram plot). In this case for the
first four epochs only the goal was learned, and weight learning
was introduced only after goal learning was stopped for epochs
five to nine (op = 30). One can observe, that goal and weight
learning performed together (Fig. 4, row 2) produced better results
as compared to first goal then weight learning (Fig. 4, row 5).
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Fig. 2. Block diagram of interaction between goal and weight learning.

We performed the same sets of experiments using NAC instead
of PI?. These experiments will not be shown in detail and only the
very best result from a large parameter investigation is included
in Fig. 4 row 6. To achieve this we had varied exploration noise
and learning rate. Also we were testing the choice whether to
include exploration noise into the scheme of the natural gradient
of not. The best results were obtained with oy = 10 and a learning
rate yy in the interval [0.1, 1], where the actual learning rate
was determined within this interval by the probing procedure
described in Appendix B. We did not include exploration noise
variance into the natural gradient evaluation procedure. This is
due to the fact that, when including variance, the learning rate
had to be significantly reduced to stabilize the NAC-procedure and
appropriate pouring could be no longer learned in a reasonable
number of trials. As the NAC epochs were longer because we had to
include additional trials for learning rate probing, in the histograms
we show the results after 2, 4, and 6 learning epochs. Even though
NAC shows a comparatively good performance in the beginning of
learning, we did not manage to gain the same stable convergence
toward very good pouring in the final epochs as compared to the
PI? method.

Consequently, for the real robot experiments we have chosen
PI? for shape learning. Goal and shape learning were combined, the
noise level was op = 30.

3.2. Learning in simulation experiments in higher dimensions

In order to better reveal the potential of our combined learning
algorithm we have performed learning trials where goal and
shape parameters were learned for all three DMPs: y(t), z(t) and
¢ (t) simultaneously. That is, six entities were learned: three goal
parameters and three weight sets leading to a redundant setup
(3 4 3 setup). For each DMP, L = 15 shape parameters were used.
The noise added on the DMP weights for y(t) and z(t) was ten times
smaller as compared to the noise added on the weights for ¢(t)
(op = 3 vs.op = 30), as those signals are approximately ten times
smaller in amplitude as compared to ¢ (t).

When combining goal and shape learning methods we were
simultaneously updating all three goal parameters and all three
sets of weights. Note, due to goal and weight update one gets
direct interference of the parameters at each individual DMP (Fig. 2,
box above gray box). The two learning procedures were, however,
also interfering with each other across DMPs (as in all previous
cases), due to the fact that all DMPs are executed by the robot at
the same time (Fig. 2, gray box). The shape parameters of each
DMP, on the other hand, were optimized independently from all
other DMPs’ shape parameters, as suggested by Schaal (personal
communication).

An example of a learning curve, as well as trajectories before
and after learning for this redundant learning task are provided in
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Fig. 3. (A) Cost decrease with the number of learning trials in 2 + 1 setup. Solid line—overall cost decrease, red dots—noise-free trials. Noise standard deviation op = 30.(B)
trajectories generated by DMPs at the beginning (red) and end of learning (black), solid line—y(t), dashed line—z(t), dotted line ¢ (t), learning applied for the goal parameters
of y(t) and z(t) and shape parameters of the ¢ (t). (C, D) analogous to (A, B), but for the 34 3 setup (i.e. three goal values and three sets of weights are learned). (E, F) analogous
to (A, B) for 5 + 5 setup. In addition x(t) is shown by the long-dashed line and the pitch of the bottle by the dash-dotted line. Note, several different tilting shapes can lead to
correct pouring, also variability is allowed in the height component z(t). Consequently, final trajectories in B, D and F are not identical. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3(C) and (D). One can observe that relatively good performance
is achieved already after the first epoch, but the final cost-drop
to zero happens later. Also in the redundant case toward the end
of learning there are many exploration trials which show bad
performance. This, though, does not affect the noise-free trials. If
one looks at the trajectories of the redundant setup (3 + 3) after
learning (Fig. 3(D)), one can observe that the displacement of the
wrist toward the glass y(t), which is crucial for correct pouring
(solid line), is shaped by the weights in such a way that it reaches
the correct pouring position slightly earlier (trajectory is curved
downwards), as compared to the non-redundant (2 + 1) case (see
Fig. 3(B)).

The results on performance statistics for the 3 + 3 setup are
summarized in row 7 in Fig. 4. One can see that learning is a fraction
slower as compared to the best non-redundant setup in row 2.
In the 3 + 3 setup only in one out of 20 trials learning was less
successful at the end, which is remarkable as dimensionality is

now much higher. Thus, the disruptive effect of the interference
between DMP parameters was small.

Finally, in Fig. 3(E) and (F) we show learning curves and
trajectory examples for the 5 4 5 setup. Additional trajectories on
the plot are plotted by along-dashed line (x coordinate) and a dash-
dotted line (pitch of the bottle). The cost histograms for the 5 + 5
setup are provided in the last row of Fig. 4. As more experiments
were required in higher dimensions, we provide results after four,
eight and 12 epochs in the histogram columns. One can observe
that learning is within 12 epochs successful in half of the cases.
In the rest of the cases more learning epochs are required. In
addition, in higher dimensions it would be advantageous to use
more trials in an epoch or reuse previous successful trials [4], as in
the higher-dimensional space at the end of learning it is hard to hit
on an improved behavior that reduces cost within the seven trials
per epoch used throughout this study. In spite of this, to remain
comparable, we did not change the trial number per epoch for
obtaining the histograms for the 5 + 5 setup.
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Fig.4. Cost value histograms showing our parameter investigation. First column—
result after the first third of learning, second column—after the second third, third
column—at the end of learning. First four rows show effects of exploration noise
increase (op = 10, 30, 50, 80) in 2 + 1 setup, row 5 - first goal (4 epochs), then
weight (the rest 5 epochs) learning (op = 30), 2 + 1 setup, row 6 - NAC method
for the 2 + 1 setup, row 7 - 3 + 3 setup, row 8 - 5 + 5 setup, op = 30 for ¢(t) and
op = 3 for the rest of the variables, for other parameters see Appendix C.

3.3. Learning in a real robot experiment

For real robot experiments any learning algorithm must con-
verge quickly because real-world trials are in general expensive.
Furthermore, learning should be robust against fine-tuning of
parameters, against measurement errors, as well as against exter-
nal, uncontrollable noise. We performed real robot pouring exper-
iments for the 2 4 1 setup. In our experiments, the reward had a
margin of error of about 10 g, which corresponds to an accuracy
of about £5% of the total liquid. Furthermore, the readings from the

scale in some experiments were on purpose occasionally wrong (in
one out of 20 trials there was a false reading of zero as if pouring
was totally unsuccessful).

First we performed an experiment with only shape learning
using the PI? algorithm. This experiment is designed to test
whether in the analyzed setup the shape of the tilting trajectory
matters and if pouring results can be improved with learning of the
tilting shape alone. Then goal and shape learning are performed to
evaluate success of the combined learning procedure. Then an ex-
periment with tool change is performed, in order to check if pre-
viously learned parameters can be usefully applied after change of
the tool (the bottle from which the water is poured in our case). Fi-
nally, an experiment is performed, showing that information from
human demonstration can be included into the learning procedure.

3.3.1. Learning the shape

Let us assume that the robot “knows” a good enough final
position of the wrist (goal parameter of the DMPs for y(t) and z(t))
and that only the weights of the tilting DMP ¢ (t) are being learned.
The learning curve obtained in this case with the Pa10 robot arm is
shown in Fig. 5(A), plotting cost of a pouring attempt against trial
number. The cost is measured in grams of liquid spilled. The black
curve shows the overall learning process including exploration
trials and the red dots show the noise-free trials performed to
evaluate the learning process. The final trajectories of the three
curves (¢(t) as learned and y(t), z(t) fixed) are shown in Fig. 5(B).
The solid line denotes y(t), the dashed line z(t), and the dotted line
the tilting trajectory ¢ (t). In this experiment the goal position was
set on purpose a bit in front of the glass and the learning process
had, thus, to tune the tilting trajectory for a shallow tilt. This way
the DMP weights obtained negative values and the learned pouring
trajectory was shallower as compared to the original trajectory
that was obtained with zero weights of the DMP (shown in red dots
in the figure).

One can observe that in the learning curve (Fig. 5(A)) a behavior
close to optimum (almost all the poured liquid is correctly poured
into the lower container) is attained after one learning epoch, but
then the weight update is unsuccessful and the correct pouring
shape is stably attained only after three learning epochs (first 24
trials). The instability in the update arises due to complex patterns
of water running out of the bottle and because of measurement
imprecisions (imprecisions in filling of the glass and imprecisions
of water running off the scale).

3.3.2. Combined learning of goal and shape

If one drops the assumption that the goal position for the
DMPs is known, then both, goal and shape, need to be learned.
The results of four experiments with the Pal0 robot arm are
shown in Fig. 6. In panels A and B one can see two experiments
where simulated measurement errors were not introduced. The
exploration noise provided some jumps in cost also at the end of
learning, but much less jumps occurred for the noise-free trials
(red dots). Update No. 6 in Fig. 6(A) was unsuccessful due to small
measurement imprecisions (imprecisions in glass filling and small
amounts of water not completely running of the scale) but in the
next epoch this upward deviation was corrected. Variability of the
remaining red dots at the end is within the precision limit for these
experiments.

In Fig. 6(C) and (D) learning curves obtained in the case
where measurement errors were introduced are shown. The false
readings are shown as gaps in the curves. We observe that even
with relatively frequent false readings (gaps in the curve) the
proposed combined goal and shape learning algorithm was stable
and convergent.

For all experiments in Fig. 6, trajectories with too small tilt
were rejected, as with small tilt it is impossible to pour any water
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Fig. 5. (A) Cost decrease with the number of learning trials for shape only learning in real robot experiments. Solid line—overall cost decrease, red dots—noise-free trials;
op = 30.(B) Trajectories generated by DMPs: red—before learning, black—after learning, y(t) is shown as solid line, z(t) as dashed line, ¢ (t) as dotted line. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Cost decrease with the number of learning trials for combined goal and shape learning. Solid line—overall cost decrease, red dots—noise-free trials. (A, B) without
simulated measurement errors, (C, D) with simulated measurement errors denoted by breaks in the curves. Parameter op = 30; op is multiplied by a factor of 0.85 after
each epoch starting with epoch No. 3. The new noise is added and trajectory is recalculated if the last third of the trajectory has an average less than %n. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

out of the bottle. In our setup the liquid could not be poured
out of the bottle using tilt angles less than approx. %n, judged at
the end of tilting. On failure to pass this value, a new trajectory
was generated. Also the exploration noise starting from the epoch
No. 3 was reduced with progression of learning. The noise was
reduced to the extent that at the end of a learning experiment it
was approximately twice lower than in the beginning.

3.3.3. Relearning after change of bottle

In Fig. 7(A) the results for the relearning experiment using
a different bottle are presented. First the pouring movement
was learned with the regular bottle, then a bottle with a wider
opening was given to the robot and the pouring movement was
relearned. Good pouring results were obtained already after the
first relearning epoch. Following preliminary learning less trials
are required after changing the tool, as compared to learning
from scratch. This suggests that reinforcement learning may be

successfully used for modifying a learned trajectory with respect
to small changes in the configuration of the task.

3.3.4. Learning using data from human demonstration

Fig. 7(B) and (C) shows results for an experiment where the
movement was initialized with weights obtained from human
demonstration. Weights were provided for the tilting DMP and
were obtained using regression techniques [17]. We assumed that
the goal position for y(t) and z(t) cannot be extracted with good
enough precision from such a demonstration. Instead, we assigned
an arbitrary initial goal position close to target. Goal for y(t) and
z(t) and shape for ¢ (t), were allowed to change by reinforcement
learning. Relatively good pouring in this experiment was obtained
already after two learning epochs. The correct tilting trajectory as-
signed at the beginning helped to successfully accomplish learn-
ing. Some properties of the initial shape of the trajectory persisted
through learning, while performance was substantially improved.
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legend, the reader is referred to the web version of this article.)
4. Discussion

Two different reinforcement learning techniques, value func-
tion approximation-based learning and direct policy search (pol-
icy gradient or reward-weighted averaging), were joined together
into one procedure for learning to pour. Value function approxima-
tion was used for DMP goal learning, while the direct policy search
approach was used for the DMP shape learning. The recently de-
veloped PI> method was employed and compared to the natural
actor critic. Learning to pour liquid into a glass was achieved in
8-32 trials, which is a good score for a robotic application includ-
ing complex learning. Relearning (of a different bottle) or recalibra-
tion after human demonstration took 8 and 16 trials, respectively.
In real experiments, despite the presence of relatively large mea-
surement noise and outliers, we observed excellent robustness of
the PI? algorithm in combination with value function approxima-
tion for goal learning.

4.1. Motivating our approach

Combination of DMP goal and shape learning is a novel
approach, where other authors have also pointed out that such a
combination should be investigated [6] and only very few related
studies are existing [8,7]. We used two different methods for the
learning of the two components (shape and goal), instead of doing
the whole learning using the same procedure, to avoid mutual
interference (working against each other) of the two entities. Using
goal and weight (at the end of DMP) as free parameters makes
the shape of the DMP over-determined. One can change the final
position of the trajectory either by changing the goal or the weights
at the end of the DMP. Our previous experiments with the natural
actor critic [3] have shown that learning both goals and weights in
the same procedure lead to goal and weights working against each
other. Excessively high weights were obtained to compensate for
small goal values or vice versa. Thus we have chosen to use two
entirely different procedures to reduce this interference.

The rationale for making a combination of value function
approximation with direct policy search methods was to use value
function approximation for a small yet important subtask inside
a bigger problem, and direct policy search for the rest of the
task. Though value function approximation cannot handle very
high dimensions well, it provides quick and reliable learning for
constrained problems [14].

4.2. Stability and robustness

The general problem when combining learning methods is that
destructive interference could occur, where both methods - as
they are essentially independent - work against each other. This

has not been observed with the here pursued mix of goal and
weight learning even though the same learning trials were used to
provide information for the two learning procedures at the same
time.

We found that PI? is a very efficient procedure and is able to
extract information from a very small number of successful trials.
Also, it mainly ignores the information of the unsuccessful trials.
This adds to the success of the combined algorithm. If “good”
weights were accidentally combined with “bad” goals, those
experiences could not disrupt learning due to the design of the
PI> method. On the other hand, the value function approximation
procedure employed in this study proved to be stable in spite of
the occasional combination of a potentially good goal position with
improper weights.

In addition, we performed simulation experiments with a
redundant setup, where goals and weights were interfering with
each other on a single DMP as well as across DMPs during
execution. Learning in the redundant setups (3 4+ 3 and 5 + 5) has
also proven that the here introduced combination of algorithms
can deal with tasks of relatively high dimensionality. In this case
up to ten entities were learned in parallel, up to five goals and up
to five sets of 15 weights each.

When the goal is set a priori, and only the weights are changed
by learning, as in previous studies [3,4], intrinsic interference
does not happen. When both quantities are allowed to change
in the process of learning, specific requirements for the learning
algorithm emerge, where it is important that goal and weights do
not start counter-acting each other (big positive goals counteract
the big negative weights, or vice versa). On the other hand, finding
direct path to optimum in the higher dimension can be easier. The
interference of goal and weight was not the case with the combined
value function approximation and PI? and the combination proved
favorable in this study.

One could argue that using value function approximation for
goal learning does not generalize to much higher dimensions. Our
prior work has demonstrated that good convergence is obtained
for up to six and possibly even more dimensions as long as
the total learning space remains restricted [14]. This is often
the case for tasks where general targeting can be learned by
supervised methods (e.g. learning from demonstration) or can be
achieved by (visual) servoing [ 14] and only the final tuning requires
RL methods. Many such tasks exist. Thus, our value function
approximation method can be advantageously used for such tasks.

Still the question remains to what degree such a combination
would be robust against parameter changes. We have checked
all methods in a wide parameter range, changing exploration
noise for the PI? and exploration noise and learning rate for the
NAC. Even though the convergence rate proved to be different
with different parameters, convergence of the combined learning
algorithm persisted.
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We have also specifically checked the stability of the proposed
algorithm with respect to occasional incorrect feedback. Our scale
sometimes returned bad readings. The algorithm managed to
ignore those and they did not influence convergence. This proved
the capability of the algorithm to tolerate incorrect feedback
information, which is important for experimental robotics. One
would expect occasional incorrect measurements or incorrect
interpretations of the environment in the operation of future
home robots. Consequently, when developing adaptive (learning)
algorithms for those robots one needs to make them robust against
such errors.

4.3. Comparison of methods and alternative approaches

While we were performing this study, new methods have
emerged for direct policy search. One of those is the PoOWER
method [4]. This method is based on the idea of expectation
maximization. Even though different methods for direct policy
search are derived from different principles (e.g. stochastic optimal
control for PI?> and expectation maximization for POWER), to
our experience, the main difference that really matters between
methods like PI? and PoWER, as compared to NAC, is how
exploration noise is being introduced. The efficient way is to put
noise on weights (like in PI*> and POWER), but not on acceleration
like suggested for NAC. When putting noise directly on the weights,
the correspondence between weight values and rewards is more
straightforward and this brings more reliable convergence of the
learning methods. A similar conclusion is derived by Kober and
Peters [18]. To our observation, modifications of the details of
the PI? algorithms do not lead to big changes in the final result.?
Although, one would have to check if those conclusions still hold
in extremely high-dimensional tasks, which was not investigated
in our study. Our observations on direct policy search being non-
sensitive to details are also supported by those of Kolter and
Ng [19], who found that quite a coarse algorithm can perform
very well in direct policy learning. They simplified the policy
gradient search by replacing the Jacobian terms with a signed
derivative approximation (+1, —1 or 0) and obtain good results
in complicated system control (robot-dog climbing stairs). Also
more traditional gradient approaches have shown good results in
complex robot control tasks [20,21].

Potentially, one can also learn goals as policy parameters,
because these methods tolerate multiple dimensions better as
compared to value function approximation techniques. This
question has to be investigated in the future as gradient procedures
have been observed to have certain drawbacks in searching the
goal point for the pouring task. As the reward landscape for the
goal point has big areas of zeros, and only in limited area non-zero
values are obtained, when sampling for gradient one obtains a very
sparse structure (all zeros or e.g. just one or two non-zero points).
Thus e.g. a finite difference gradient [22,23] estimate cannot be
performed reliably.

In this paper we showed a successful combination of goal and
weight learning using different frameworks. This combination also
performed well for trajectory modification after having initially
learned a movement from demonstration. This is important
because learning from demonstration remains possibly the most
efficient movement learning framework in many complex robotic

2 This notion is much supported by our own experimental observations. Namely,
for this study we performed a big set of additional experiments (data not shown)
where we made different modifications to the algorithms. For example, we did
some experiments with PI?, by introducing a discount factor, as well as using only
the best trials of the epoch for weight update in step 4, see the section “Parameter
update rule for PI>” in Appendix B, etc., etc. Most of these modification did not
significantly change learning success.
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Fig. A.8. Pouring model setup.

applications like service robotics [24-26]. Similarly only a short
episode of reinforcement learning needs to be applied for
recalibration when changing the tool (e.g. changing the bottle in
our experiment). Thus, we believe that the here demonstrated
combination can be successfully applied also to other robotic tasks.
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Appendix A. Simulation of the pouring process

To pre-tune the algorithm, as well as to gather statistics for
comparing different learning methods, we were using a pouring
model. Note, no attempts were made to make this model fully
accurate, which is very difficult, due to having to model turbulent
flow. According to the Bernoulli equation, the exit velocity of the
liquid equals

v, = {\/ (2ghl), h[ >0

0, h<o0, (A1)

where g is the gravitational acceleration and h; is the liquid level
according to Fig. A.8. The direction of the v is determined by the
bottle pouring angle ¢. Hence, the liquid velocity components, vy
and v,, are

vy = Vg Sin(e) (A.2)

v, = Vg cos(p) + gt,
where t denotes time.

The predicted displacement of the liquid flow with respect to
the bottle neck in y direction is thus

Ya =yt (A3)
_ —v cos() + y/vo cos(¢)? + 2gh
B g

and the liquid flow is

¢ = Av, (A4)

where A is the cross sectional area of the liquid at the bottle neck.
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Appendix B. Direct policy search algorithms

This appendix will describe the implementation of PI*> and
NAC using consistent notation, allowing readers to implement
it without having to heavily consult the original papers [3,5].
Algorithmic “peculiarities” and specific alteration, which we found
useful are being commented.

B.1. Definitions

1. DMPs are used as given in Eq. (1) (see main text) and integrated
using the Euler method, where time steps are numbered t =
0,1,2,...,T—1.

2. Kernels in the non-linear part of the DMP are indexed with
I=1,2,...,L, where L is the overall number of Gaussian
kernels.

3. One attempt to pour we call a trial.

4. Learning epochs are sets of trials, consisting of the exploration
stage (K trials), the learning rate probing stage (used only in
NAC with M trials), and the testing stage (used only for PI?, one
trial). Thus, one learning epoch includes K + 1 trials for the PI?
and K+M trials for the NAC. In the exploration stage of an epoch

trials are indexed k = 1, 2, ..., K. In the learning rate probing
stage trials are indexedm = 1,2, ..., M.
B.2. PI?

Here we will describe the algorithmic procedure for imple-
menting PI?, which consists of the learning procedure as such and
the pseudo-code of the PI? parameter update rule.

Learning procedure for PI?

1. Initialize algorithm with kernel weights p;, [ = 1,2, ..., L, the

weight vector we will notate by p.

2. Repeat for several learning epochs (or until convergence of cost

measure Q):

(a) Repeat for trials k = 1, 2, ..., K in the exploration stage of
an epoch:

i. Generate noise values ¢ ; from & (0, op), and consider
those as K x T vectors € ; of length L, save in memory.

ii. Add noise to weight vector p and obtain weight vectors
Py (or add noise only on the leading kernel).?

iii. Generate trajectory uy(t) with noisy weights. Among
the components required to obtain u(t) are kernel
activation vectors ¥, ., save those vectors in memory.?

iv. Execute trajectory u(t) on a robot or simulator.

v. Measure/obtain cost function qi(t) and terminal cost
term qeerm, Save in memory.

(b) Modify weights p according to PI?, using memorized noise
vectors €, kernel activation vectors ¥, ,, and cost func-
tions qi(t) (see Pseudo-Code in the subsection “Parameter
update rule for the PI*”).

(c) Execute one trial in the testing stage of the epoch:.

i. Generate trajectory u(t) with noise-free weights p.

ii. Execute trajectory u(t).

3 While the core algorithm would allow adding noise to all kernels, Theodorou
et al. [5] suggested to only add noise to the kernel with the biggest activation level
(leading kernel), as well as to add the same noise value over the extension where
that kernel is remaining the leading kernel. This way one would be dealing with K
noise vectors (instead of K x T) €, as only one noise vector per trial is required.
Our own tests in doing this or adding noise to all kernels showed indeed delayed
convergence in the latter case. Hence we - like Theodorou et al. [5] - used noise on
the leading kernel only.

4 For the sake of more intuitive notation we will use notation f(t) (e.g. up(t)),
where we talk about the entire function (trajectory) in time, and f; where we talk
about the specific value of the function in time.

iii. Measure/obtain cost function q(t) and terminal cost

qterm-
iv. Evaluate overall cost measure Q = Gierm + ZIT;J q(t).

Parameter update rule for the PI?

Ril'/’k,t'//l‘[

————=%L ‘where R is the
'/’};[R71'/’k,[

1. For each k, t compute matrix My ; =

control penalty matrix.
2. For each k,t compute cost including control penalty term:

T—1 T—1
Skt = Gterm + Zj:t qrj + 0.5 Zj:t+1(p + Mk,tek,t)TR(p +
M €.t).

3. For each k,t compute relative goodness for each trajectory
point (as compared to the same point on the other trajectories

_1g
inanepoch) P, = Kekiklts where Theodorou et al. [5] sug-
_pe Akt
p s ~ Sk, —min Sk
geSt to appl‘oxlmate e ikt = exp <_Cm
¢ = 10, which we also did. «

4. For each time point compute an update term 8p, = Y ,_, Py,
M, ;€. See note.’

5. Using cumulative sums, summarize updates along the trajec-

. . T 1(r-0)s
tory into one weight update value 80, = M
i T—OY1¢

) with

6. Update weights p < p + 8p.

B.3. NAC

Here we will describe the algorithmic procedure for imple-
menting NAC, of the learning procedure as such and the pseudo-
code of the NAC parameter update rule.

Learning procedure for NAC

1. Analytically derive expression for log-policy derivatives § =
Vy.on 108 IT(0(t, p), on) according to parameters o, | = 1, 2,
..., L and oy (see note®), where the policy IT(0(t, p), oy) is
defined by distribution of acceleration values v(t) ~ N (v(t),
oy) and the expression for v(t) is obtained from the right hand
side of Eq. (1).

2. Initialize algorithm with weights p;, | =
exploration noise value oy.

3. Repeat for several learning epochs (or until convergence of

1,2,...,L and

return R):
(a) Repeat for trials k = 1, 2, ..., K in the exploration stage of
an epoch:
i. Generate noise values & ; from (0, oy) and save in
memory.

ii. Use weights p as they appear (without noise).

iii. Add noise &, to acceleration v in all time steps of the
DMP integration.

iv. Generate trajectory u(t) using noisy acceleration, save
in memory kernel activation vectors ¥, , and trajectory
wy (t) from DMP equation for w(t) (Eq. (1)).

v. Execute trajectory u(t) on a robot or simulator.

vi. Measure/obtain reward function r,(t) and save in
memory.

Calculate natural gradients gyc according to NAC, using

memorized noise values &, kernel activation vectors ¥, ,,

trajectories wy(t), and reward functions r(t) (see Pseudo-

Code in the subsection “Parameter update rule for the

NAC”).

—
o
~

5 Here the method multiplies “goodness” by noise values used to obtain that
score and introduces correlations in updates for kernels activated in a correlated
way by multiplication by matrix M.

6 oy might be either included in the framework of the NAC learning, or annealed
independently.
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(c) Decrease exploration noise oy.

(d) Repeat for m = 1,2,...,M trials in the learning rate
probing stage of the epoch”:

i. Generate new learning rate value y,, and save in

memory.

ii. Modify weights p with the learning rate y;, and obtain
temporary weights p.., = 0 + Ym8nc-

iii. Generate trajectory up, &) with the temporary weights
ptemp'

iv. Execute trajectory up,(t).

v. Measure/obtain reward function rp, (t).

vi. Evaluate the return R, = [1;01 rm(t) and save in
memory.

(e) Find the optimum y;, according to saved R, values, let us
call it yy, and permanently modify the weights p = p +
VYNENG-

(f) Choose the return of the optimum trial from the learning
rate probing procedure as the overall return of the current
learning epoch R = maxR,,.

Parameter update rule for the NAC
We used the episodic NAC version with time-variant baseline
from [3].

1. For each [, k, t evaluate log-policy derivatives, let us assume
they are kept as K x T vectors & of length L 4+ 1, where L + 1
denotes the number of adjustable weights L plus one additional
component for the variance oy.

2. Calculate Fisher matrices for each trial F, = th_ol (Z;zo Sk,j)
T
6!{,[‘
3. Calculate the average over k trials F = % 5521 Fy.
4, Calculate gradient for each trial g, = th_Ol (Z;ZO 8k,j) o Ty,

where «; is weighting factor introducing discount.

5. Calculate the average over K trials g = % Z'k(:l 8.

6. Calculate cumulative log-policy derivative values 5, , = Z;zo
Sk,t-

7. Calculate the average over K trials 5, = 25:1 N> let us join
the vectors 5, into matrix H.

8. Obtain weighted reward vector # = [¥g, V1, ..., O7_1]",
where % = 1 3 it
9. Calculate matrix Q = K~'(I + H" (KF — HH")~'H).
10. Calculate time variable baseline b = Q (¢ — H'F~g).
11. Calculate natural gradient gy = F~!(g — Hb).
Appendix C. Parameters used in this study
Parameter type ~ Parameter name Simulation Real robot
Robot Wrist forward [0.5,0.8] n.a.
workspace displacement x(t)
Wrist side displacement [—0.4, —0.1] [—0.35, —0.1]
y(®
Wrist height z(t) [—0.15, 0.15] [—0.1,0.1]
Tilting angle ¢ (t)/roll [0, 7] [0, 1]
Pitch [-m/4,7/4] na.
DMP C 36 36
D 3 3
o 0.1 0.1
T 1 2
No of kernels L 15 15
Kernel width « 0.005 0.005
Integration step dt 0.017 s 0.017 s
Trajectory length T 120 300

7 This probing for the value of the learning rate was not included in the original
procedure [3], but we found it necessary in order to stabilize learning in our pouring
task.

Value function No of trials in an epoch 7 7
approximation
No of epochs performed 6 6
No of kernels N in 2D 200 200
No of kernels N in 3D 2000 n.a.
No of kernels N in 5D 10000 na.
Kernel width oy 2cm 2cm
Learning rate u 0.7 0.7
Discount factor yy 0.7 0.7
Initial straightening ¢ 15 15
¢ reduce per epoch 0.1 0.1
Initial exploration p 0.5 0.5
p reduce per epoch 0.05 0.05
Step length 22cm 22cm
Step decay per epoch 0.85 0.85

(starting after 2 epochs)

PI? procedure No of trials in an epoch 8 8
No of epochs performed 9 9
No of trials in 7 7
exploration K
No of trials in testing 1 1
Noise variance op 10 30

30

50

80
Control penalty R 107° 107°
(diagonal element)

NAC procedure No of trials in an epoch 17 na.
No of epochs performed 6 na.
No of trials in 7 na.
exploration K
No of trials in probing 10 na.
for yy
Initial variance oy 10 n.a.
oy decay factor per 0.85 n.a.
epoch
Interval of yy [0.1,1] na.
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