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Abstract

The hippocampal place field system has been considered as one main structure
for reward based navigation learning in rodents. Reinforcement learning (RL) mech-
anisms have been used to model this, associating the states in an RL-algorithm to the
place-fields in a rat. Conventional RL usually makes a few simplifying assumptions,
most notably the state tiling must cover the space densely and in a non-overlapping
way, states must respond deterministically, and exploration must be unbiased. Vi-
olations of these requirements may impair learning. However, none of the above
requirements are valid for exploring rodents. Their place field system covers the
space in an overlapping way, neurons fire probabilistically and rats explore with a
directional bias favoring straight paths. We analyzed the path characteristics of rats
and implemented them in an RL-system based on simulated place fields. We ob-
served that under these conditions convergence strongly deteriorates. To mend this
situation two additional bio-psychologically motivated mechanisms - forgetting and
frustration - are implemented in our system. Forgetting amounts to a gradual drop
of the learned weights and frustration leads to a no-learning situation if the reward is
not found after some expected time. We are providing a detailed statistical analysis
about the properties of mixed strategies in simulated rodent navigation learning and
we show that with these two additional mechanisms convergence strongly improves
again.

Keywords: Reinforcement learning, SARSA, place field system, function approxima-
tion

Introduction

The learning of goal-directed navigation in rats and other rodents has often been seen as
one likely function of their hippocampal place field system. Several publications exist that
use variants of reinforcement learning algorithms from the machine learning literature to
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show that the place field system could indeed serve as a substrate for navigation learning
(Foster et al., 2000; Arleo and Gerstner, 2000; Arleo et al., 2004; Strösslin et al., 2005;
Krichmar et al., 2005). In general, reinforcement learning (RL) assumes that the space on
which learning takes place is tiled into states where certain actions can be taken from every
state to reach a goal (e.g. a reward location). Through exploration of the state space, an
agent will try out different actions at different states and in this way it can recursively find
the best possible route (the optimal policy) to a goal (for a review see Sutton and Barto
(1998)). In the most general case of a reinforcement learning system, all states in the state
space will have to be visited ”often enough” to try out the different actions necessary for
convergence. This can, however, lead to a problem because convergence is very slow if the
combined state-action space is large (the ”curse of dimensionality” problem). Thus, in big
state spaces, value function approximation versions of reinforcement learning algorithms
are used (Tesauro, 1995; Sutton and Barto, 1998). These cover the state space with large,
possibly overlapping kernels and run RL over this feature space, instead of iterating over
every individual state.

A second problem concerns the way RL algorithms usually choose exploration strate-
gies. In order to learn, the agent has to explore the state-action space. Proofs exist
that sufficiently dense, unbiased exploration will lead to convergence to the optimal so-
lution in the most common RL-algorithms. To this end, conventional RL methods use
random exploration, which in a navigation task leads to random walk patterns that appear
incompatible with biological paths. Animals typically produce more ballistic (straight)
exploration paths with only a limited degree of randomness, the length of which gradually
increases from a home-base into the unknown terrain. Their paths often follow walls and
landmarks, especially in daylight, e.g. see (Etienne et al., 1996; Eilam, 2004; Zadicario
et al., 2005). This, however, leads to an exploration bias that jeopardizes the convergence
of the RL methods.

In this study we will investigate the influence of the exploration pattern (paths) on
the place-fields based navigation learning of a simulated rat. The place representations
we use are abstract. Thus, our intention is not to produce a model of the hippocampus
and its function. Rather, this study will focus on the interaction between biological path
generation strategy and the convergence properties of learning.

Path generation is implemented as abstractions from actual rat paths, recorded and
analyzed for this study. We observe that convergence of RL is not generally assured when
using a realistic exploration pattern by our simulated rats. We will, however, show that our
system can be stabilized by two very typical strategies common to humans and animals
during learning: forgetting and frustration. Forgetting can be emulated by a gradual,
step-by-step drop of the learned weights and frustration sets when the agent does not find
the target in a timely manner, leading to a no-learning effect. This is compatible to the
”return to home-base” drive in real rats (Whishaw et al., 2001). Accounting for forgetting
and frustration in the model yields slower learning but better convergence. Without these
two strategies, the system often yields divergent, irrelevant paths.
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Methods

The study uses methods from reinforcement learning with function approximation to
achieve fast convergence. The description of these methods is quite technical. Hence
we decided to move all this into an appendix as it is not of central interest for the topics
of this study. Here it may suffice to explain that in this study we are using on-policy
SARSA1 learning (Sutton and Barto, 1998). This is motivated by recent findings in the
midbrain dopaminergic system (Morris et al., 2006). Alternatives would be Q-learning or
Actor-Critic Learning and we will in detail discuss the choice of SARSA-learning in the
Discussion section.

Model Environment

Our model animal performs a simple navigation towards a goal task in a homogeneous
environment similar to a Morris water maze task (Morris, 1984). In Fig. 1a a schematic
picture of the model environment is provided.

The modeling scenario includes the following issues:

• The model environment is discretized using a grid 10000× 10000 units;

• The model animal at each learning trial is placed at a predefined position (5000,1000);

• A reward of the size 1000×1000 is placed opposite to the start 1000 units away from
the upper border of the environment.

• The model animal travels in predefined steps (400 units ± a random component of
up to 100 units).

• After the model animal reaches the reward or does not reach the reward in a prede-
fined number of steps the animal is reset to the start position for the next trial.

The substrate for learning in our system are simulated place fields distributed within
an arena. We assume that a place cell i produces spikes with a Gaussian-shaped scaled
probability distribution:

p(δi) = A exp(δ2
i /σ

2) (1)

where δi is the distance from the i-th place field center to the sample point on the trajectory,
σ defines the width of the place field, and A is a scaling factor. In the areas where the
values of this scaled distribution are above 1, cells fire with a probability of 1.

Place cell centers are distributed in the model environment randomly, with a uniform
distribution. Experiments are performed with 20-2000 cells. Field width is defined by
σ = 200, 400, 600 or 800. A scaling factor of A = 2.5 (Eq. 1) has been applied to the
probability distributions of place cell firing, to make cell spiking more regular inside a
place field.

1SARSA stands for ”state-action-reward-state-action” referring to the transitions an agent goes through
when learning.
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Figure 1: Model environment: the start is shown as a circle, and the goal is a rectangu-
lar area of the size 1000 × 1000, located opposite to the start 1000 units away from the
upper border. Big circles schematically show place fields covering the arena. b) Neural
network of a model animal where motor activity is obtained as combination of learned di-
rection values (Q-values, ”Learned”) and path straightening components (”Random”). The
”stars” show examples how these components could look like. The two components are com-
bined summing learned and random components with appropriate coefficients direction-wise
(”Learned&Random”), and then choosing the prevailing direction for a motor action.

General Scheme for Navigation

We are investigating learning in a network composed of two layers of cells (see Fig. 1b. At
the lower layer of the network are the place cells. In the upper layer are motor cells, which
learn to perform the navigation task. To keep the setup simple, we do not model head
direction cells that are often also included in hippocampus-like navigation models (Brown
and Sharp, 1995; Arleo and Gerstner, 2000), but allow the motor cells to direct the model
animal movement towards eight directions: North, North-East, East, South-East, South,
South-West, West and North-West. The actual direction is obtained combining motor
cell outputs and path straightening components, used to obtain a realistic path forming
strategy (see below and also Fig. 1b).
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Path Generation and Exploration Strategies

Two path forming strategies are employed.
E-strategy is a usual RL strategy, with exploration and exploitation, where the path is

chosen according to the learned Q-values most times, (probability 1 − pe), and a random
move is made with probability pe, where 0.1 ≤ pe ≤ 0.2. For random moves all directions
are given equal probability. If not stated otherwise, we have set pe = 0.2. If the model
animal was not attaining the goal in 300 steps, it was reset to the start position for a new
trial. This also applies for other strategies to be introduced below.

S-strategy performs straightening of the paths, where probabilities p1, p2, ..., p8,
∑

i(pi) =
1, are used, depending on the direction of the previous step. We define p1 as the probability
to proceed along the same direction as before, p2 and p8 then correspond to 45◦ to the left
and right of this direction, p3, p7 reflect 90◦, etc. In most of our studies we exclude
backwards movement, setting p5 = 0, to prevent an animal from performing small forward-
backward cycles. When Q values are present, a weighted mixture of Q-based drives and
randomized path-straightening drives are used:

d1 = wqN
1 + (1− w)p1

d2 = ....
...
d8 = wqN

8 + (1− w)p8

(2)

where d1, ..., d8 are the final drives, qN
1 − qN

8 , the normalized Q-values of the eight possible
directions. Normalization is used to get

∑
i(q

N
i ) = 1, and to bring Q-values in correspon-

dence with the probabilities of the randomized drives. As default, we have used p1 = 0.5,
p2 = 0.156, p3 = 0.063, p4 = 0.031, p5 = 0, p6 = 0.031, p7 = 0.063, p8 = 0.156, w = 0.5.

We also investigated a mixture of strategies E and S, where Q-values with straightening
and some random exploration 0.1 ≤ pe ≤ 0.2 were used.

Forgetting and Frustration

Forgetting (F-strategy) is implemented as slow exponential decay of weights:

θ(t + 1) = cfθ(t) (3)

where cf is in the interval 1.0-0.99, and 1.0 represents no forgetting. When in use, this rule
is applied to all weights from sensor to motor layer in each step of a model animal. If not
stated otherwise we use cf = 0.9995 for the experiments. If weights fall below a threshold
tf due to decay, they are set to zero. We used tf = 0.000001.

Frustration (L-strategy) is implemented as a return to the start position if the reward
is not found within an expected number of steps. Initially we limit learning to 200 steps.
If the reward is found after k < 200 steps, we reset the limit kl for the expected number
of steps for the next trial, otherwise we increase the limit kl:

kl =

{
k +
√

k if first time exceeded
kl + jcl if j− th time exceeded.

(4)
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Hence, for every following trial where the reward is not found, kl is increased by some
constant cl. During unsuccessful trials nothing is learned. When the reward is again
found, we reset kl using Eq. 4. In this way, a process for expected time to reward is
obtained where failure leads to a no-learning situation. We use the abbreviation L for
trials with frustration (F is already used for forgetting), where L stands for limit.

Forgetting and frustration are two quite realistic bio-psychological mechanisms that
can be implemented in the above described way in our model. As will be shown below,
these two mechanisms yield a notable improvement in the convergence properties of the
system.

Parameters of the model system are provided in a condensed way in Table 1.

Experimental Methods

A total of 5 male Lister hooded rats weighing between 300-400 g were used. In this and
the subsequent experiments, compliance was ensured with national (Animals [Scientific
Procedures] Act, 1986) and international (European Communities Council Directive of
24 November 1986 [86/609/EEC]) legislation governing the maintenance of laboratory
animals and their use in scientific experiments. The rats were equipped with chronic
recording electrodes, as described by Ainge et al. (2007), although the primary interest
of this experiment was the behavior of the rats in finding a goal location. Rat runs were
recorded in a square shaped arena of size 1.5x1.5x0.4 (length, width, height in meters) with
blue walls. Each wall was equipped with small (10 x 10 cm) black felt ”curtains”, spaced
equally from one another along the base of the wall. A small piece of food (a chocolate
cereal loop) was presented to the rat by the experimenter whenever the rat approached a
pre-specified curtain. Rats were initially unfamiliar with this arena, and 10-40 trials were
run with the rat being rewarded with food whenever it approached the ”correct” curtain.
The total number of trials depended on the rat’s motivation and learning performance.
Our measure of performance was the directness of the rats’ paths to the correct location.
After obtaining a reward, the rat was put back into a smaller opaque container (50x50cm)
for a short inter-trial interval. The position of the rat was monitored during the recording
session through a black and white camera mounted on the ceiling above the arena. Two
groups of ultra-bright LEDs were attached to the end of the recording cable, which in
turn was connected to the chronic electrode. The LEDs were tracked using a recording
system (Axona Ltd., St. Albans, UK), which detected the position of the two lights, thus
providing information regarding the rat’s location and the direction that the rat was facing
at a sampling rate of 50 Hz. Data from the LED coordinates were stored on the hard drive
of a PC.
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Figure 2: Statistical analysis of real and simulated rat runs. a) Example of a real rat run
in a rectangular arena. Walls of the arena are shown by the dashed box. Dots mark break
points between straight stretches. b) Simulated run. c, d) Distribution of turning angles for
a real (c) and a simulated (d) run. e-g) Distribution of straight stretches for real (e, f) and
simulated (g) runs scaled to their individual peak height as given in the diagrams. Panel
(e) shows the distribution of straight stretches for a single rat (all runs), inset in (e) shows
a single rat run as given in panel (a). Panel (f) contains all five experimental sessions with
real rats and (g) simulated run. Units of segment length are arbitrary and scaled relative to
the size of the arena. The simulated path was generated using ’SE’ strategy (see subsection
’Path Generation and Exploration Strategies’).

Results

Analysis of real rat paths

Fig. 2 shows examples of real (a) and simulated (b) rat runs and their statistical properties
analyzing how long rats run straight (Segment Length, e-g) and how often they turn
(Directional Change, c,d). Analysis has been scaled by us to unit step size relative to
the size of the real as well as simulated arena. Hence step lengths can be compared.
The simulated runs in (b) and (g) have been generated without learning. Dots (break-
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points) in (a) and (b) indicate division into straight segments. Straight segments have
been determined by standard linear regression moving along the path on a sliding window.
This window was extended along the signal until a threshold for the average residual of
r ≈ 1.25% was reached; corresponding to 2 cm in (a) or 120 place units in (b). For real
rats we were in addition resetting the analysis window with every stop of a rat. Choice
of the threshold will clearly influence the placing of the break-points, and local analysis
with a sliding window will not give optimal division of a path into longest possible straight
segments, but we are not concerned with an exhaustive analysis; we only have to make
sure that the generative algorithm used to create paths for the learning in the following
sections will produce statistical properties which are ’within reason’ similar enough to the
real rat runs. Hence using the same threshold relative to the environment size for real-
and simulated runs will allow for this comparison.

Already the example in (a) shows that rats have the tendency to continue on their path
at least for some time without much turning. In addition, they tend to keep along the walls
exploring from there on inwards. Smooth curves are rare; instead the animals turn rather
sharply. Accumulations of dots occur at locations where the rat had stopped (sniffing,
resting). This creates almost all contributions for the leftmost bins in the distributions (e,
f), where we have clipped the bin for segment length 1.0 because a huge number of such
mini-segments occur when a rat stops and just moves its head. Thus, in simulations, very
small segments occur very rarely (g). In general, distributions for single runs (inset in e),
all runs of one rat (e), and all runs of all rats (f) are similar getting smoother with more
data. The distribution of one simulated long run (g) is similar to (f). Averaging over more
simulated runs will lead to a smoother distribution (not shown), but does not otherwise
alter its shape as the same generative algorithm is always used.

Distributions (c) and (d) represent the number of turns and their degree for a given
path. We move along the path (real and artificial) in predefined steps, such that the step
length takes the same proportion of the arena both in real and artificial example, and
evaluate the angle between each two successive steps. We then bin angles into 8 categories:
zero degrees turn, ±45 degrees turn, ±90 degrees turn, ±135 degrees turn, and 180 degrees
turn. Note, the zero-bin is 10 times larger than shown in the histograms. Both distributions
are similar, and somewhat skewed to the left as the actual rat runs used were dominated
by a leftward running tendency (see a,b). The 180 deg bin is empty in the simulated runs,
because we did not allow the rat to directly run back. For the real rat some entries in this
bin are probably due to switchbacks that occurred while stopping.

Artificially generated path shapes with and without learning

The previous section gives confidence that the path generation algorithm produces realistic
paths, at least before learning. Fig. 3 displays several more artificially generated paths
to the reward. Examples are shown from early (panels a-d) as well as late (panels e-
h) learning. If paths are generated in the ’traditional’ way by mixing exploration and
exploitation (strategy E), as necessary to assure convergence of Q- or SARSA-learning,
(panels a and b) they are ’wiggly’ and do not resemble those of real animals. Statistical
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analysis of these paths has not been performed, because their difference to real rat paths
is obvious. Similar to Fig. 2, the straightened mode of exploration (strategy S) provides
more realistic paths (Fig. 3 c,d) when learning starts.
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Figure 3: Examples of paths obtained with SARSA learning under different exploration-
exploitation strategies: a, b - traditional exploration-exploitation, initial learning stages, c,
d - straightened exploration-exploitation, initial learning stages, e - learned path in tradi-
tional exploration-exploitation case, f- zigzagging learned path in straightened exploration-
exploitation case, g, h - divergent paths for straightened exploration-exploitation case, inset
in h - divergence pattern when direction ”back” is not forbidden. Default parameters (Ta-
ble 1) were used. Small numbers at the bottom refer to the trial number from which the
examples were taken.

Fig. 3e shows two optimal paths after learning. Using path-straightening strategy (S)
only (or in conjunction with forgetting and frustration), straight paths were often learned.
If an exploration component was added (mixing strategies E and S) a few off-path moves
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occur (inset in panel e). The learned components, however, assure that in these cases
the rat gets back on track immediately. When using the strategy S, we find that SARSA
learning frequently produces zigzagging paths at the end of learning2 (Fig. 3f). Those paths
are normally not fully constant but zigzags will change often to a small degree trial by trial
due to the random component in place cell firing which, as a consequence, also leads to
some oscillations of the Q-values. When adding random exploration, mixing strategies S
and E, zigzagging gets much reduced and - if convergent - paths are essentially stable in the
end (inset in panel f). Panels (g) and (h) show divergent paths, which frequently develop
when using strategy S. The inset in Fig. 3 h shows a divergent pattern when the direction
”back” was not forbidden, which for divergence cases often leads to very fast switchbacks.

When looking qualitatively at many runs at this stage, the following early summary
observations could be made (and will be supported by statistics later): with random ex-
ploration E paths are unrealistic early during learning, but often optimally convergent3.
Path straightening S, on the other hand, leads to realistic paths when learning starts, but
many times strange, zigzagging or even divergent paths develop. In the next section we
substantiate these statements and try to provide a solution to these conflicting demands.

2Note: When using Q-learning, such zigzagging does only occur in very rare cases, and curved paths
occur instead. However, the off-policy strategy performed during Q-learning does not seem to be compat-
ible with reinforcement learning in animals and Q-learning will therefore not be discussed any further in
the context of this study.

3Note: For a plain Q- or SARSA-learner, hence without function approximation, paths would always
be converging to optimal ones in these cases.
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Figure 4: Patterns of convergence for different path generation and learning strategies as
given above each panel (S, E, EL, SF). ”opt” denotes that an optimal (straight) path had
been learned, ”non-opt” that the finally learned path was non-optimal (e.g. zigzagging).The
small dots in panel (d) indicate trials where the rat had not found the reward within its
limited learning horizon (strategy EL). Abbreviations: conv.=convergence, div.=divergence,
interm.=intermediate. Default parameters (Table 1) were used.

Convergence Patterns

First we consider the convergence patterns for different combinations of path generation
strategies (Fig. 4, number of steps to goal is shown). In the top row convergent cases for
different path strategies are shown. In the bottom row cases where convergence was less
clear are displayed. In panel (a) quick convergence to an optimal path is shown for a case
of path straightening S. Note, the randomness in the spiking of the place fields leads to
path lengths which vary minimally. In (b) quick convergence using traditional exploration-
exploitation E is presented. One can see that here the path length fluctuates more due
to occasional off-path steps (compare with inset in panel f of Fig. 3). In panel (c) a case
is shown where the path straightening strategy S converges to a non-optimal (zigzagging)
path-type and in panel (d) we give an example for convergence with limited path length
L combined with exploration E. The dots indicate trials where the reward has not been
found, which leads to a gradually growing path length limit. At the end of these learning
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trials convergence to an optimal path is reached.
In cases (e-h) we show examples of convergence patterns for cases where we used

straightened paths S with forgetting F. A longer time to convergence is a typical fea-
ture here and cases exist (e, g) where the behavior intermittently diverges. If forgetting is
too strong, convergence is bad and even cases that begin to converge will at the end not
find a good path (h).

Note, time to convergence (hence, the number of trials to find an optimal path to the
reward) cannot easily be compared to real animals, because this depends again on the
relative size of reward and arena. When being trained to find food, real rats found good
paths in about 10 to 30 trials, which roughly compares to the simulation results shown
here. Many times, however, after having learned, real animals would ”get distracted” and
kept on exploring, eventually going towards the reward much later. Furthermore, real
animals are also using other cues (like odor) for navigation (Save et al., 2000), which have
not been modeled. We have also observed that real animals sometimes show very strong
inter-individual differences probably driven by more general states of, e.g., motivation,
intention, fright, etc. Trying to model of this would go beyond the scope of this study.
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Figure 5: Statistical analysis of mixed strategies for path generation and learning as given
inside each panel for 100 experiments each. Arrows indicate how properties get inherited
from each other. Gray panels are the ones containing an S component. Three histograms
are shown in each panel: convergence to an optimal path (left histogram), to a non-optimal
path (middle histogram) and divergence cases (right single-bin). Note, panels (j) and (l)
are identical. Default parameters (Table 1) were used.

Statistical analysis of mixed strategies

In Fig. 5 a summary of the influence of the different mechanism is presented. For each
diagram 100 experiments were analyzed. Arrows indicate how histograms inherit properties
from top to bottom. The two top diagrams (a) and (b) show the basic cases of pure
exploration E and pure path straightening S respectively. Below, cases with frustration L
are shown (mostly) in the left and middle part of the diagram, cases with forgetting F are
found right and middle. Towards the bottom more and more strategies are mixed and the
left-right separation in the diagram vanishes.
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Histograms in the figure show three groups of bins. In the leftmost group the optimal
path has been found, the middle group shows cases were a sub-optimal path was found
(e.g. zigzag) and the rightmost group, which consists of a single bin, shows the number of
divergent cases. Bins in the groups are ordered to show cases of convergence in less than
50 steps (leftmost bin) up to less than 300 steps (rightmost bin).

Gray shading indicates those cases where the paths are realistic, because they contain
an S component. Cases without shading produce unrealistic paths.

As expected, pure exploration (a) often leads to convergence, but a few cases are ob-
served where the system diverges. While biologically more realistic, the type of place
field-like function approximation used here does not belong to the few known classes of
function approximation algorithms for which convergence has been proved. Path straight-
ening (b) makes the situation better and worse at the same time: The convergent cases
converge faster, but there are many more divergent runs now. Mixing cases S and E (c)
produces a result ”in between” the pure S and E cases.

Limiting the learning horizon (frustration, L, panel d) or adding forgetting (F, panel
g) efficiently eliminates divergence from the pure exploration case (compare to a). As
expected learning is now a fraction slower though. If not concerned with realistic paths,
strategies EL and EF would be the best choice for fast and robust convergence. Doing the
same with straight paths (panels e, f) also leads to substantial improvement as compared
to (b).

Panels (j) and (l) represent the case (note, j and l are identical!) where ”the other” (F
or L) component has been added to cases EL and EF, respectively. Now learning becomes
again slower because L and F, both limit the memory of the learning system.

Mixing path straightening with a bit of exploration in general seems to be a good
strategy (panels c, h, i, k, m), by which convergence is most of the time assured together
with realistic looking paths. Case SEF (panel i) leads to fast and robust convergence. Many
cases were found where convergence happened within 10 to 30 trials, similar to real rats.
For case SEL (panel h) convergence was slower and this also holds true when mixing both
limiting strategies L and F in cases SLF (k) and SELF (m). In our simulation, convergence
times now became unrealistically long.

In summary, straight paths together with forgetting and/or frustration will not lead to
good performance (panels: e,f,k; representing cases SL, SF, SLF). Adding exploration (SE,
c) will immediately improve on this, while still leaving the path shape realistic, but many
divergent cases remain. This can be mended by adding forgetting (SEF, i), which represents
the most realistic case concerning path shapes and convergence times. Frustration is also
a powerful mechanism to eliminate divergence, but in these simulations convergence times
became now rather long (h). Mixing too many strategies will also lead to performance
deterioration, because they all work in the same way, reducing the memory of the system.
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Figure 6: Number of diverging cases for different degrees of forgetting using strategy SF.

Furthermore, we investigated how sensitive the system reacts to parameters L and F,
because, clearly, too much forgetting or frustration is also harmful. In Fig. 6 we show
how the number of divergent cases depends on the rate of forgetting for the SF case. It
shows a rather wide flat minimum, and any forgetting rate between approximately 0.999
and 0.99999 may be advantageously used. We also used frustration regimes for SL with
constants c = 2, c = 3, c = 5, and = 7, and found that with c = 2 the process converges
slower, whereas with c = 7 more divergent cases remain, similar to the pure S case. Cases
between c = 3 and c = 5 performed similarly, successfully diminishing the number of
divergent cases. Exploration has similar effects for a wide range of values, from pe = 0.05
to around 0.5. With increasing exploration learning is mostly successful, but the paths get
more disordered because of frequent, off-path exploratory steps.

Place Fields Size and Density

Finally we will address the question of how the obtained results depend on place cell
radius and density. Hippocampus place fields are rather wide, with single cells spiking
in a substantial region of the arena (Wilson and McNaughton, 1993). Little is known
about place field density, because from standard recordings in a single animal, density is
not straightforward to evaluate. Some authors find over-representations of places that are
more important for an animal or are more densely explored (Hollup et al., 2001).

To investigate the influence of place field size and density we performed an exhaustive
analysis over size/density pairings adjusted to lead to a similar coverage for the whole
arena. Coverage values of 0.8, 2.4 and 4.5 were investigated. Depending on their size,
different numbers of cells were required for this, as given in the central part of Table 2.

Note, as coverage is not uniform, a certain part of the surface will always on average
remain uncovered. For an average coverage of 4.5 we have about 1%, for 2.4 about 6% and
for 0.8 about 45% of the surface area of the arena uncovered.

16



Convergence of paths was evaluated through path-length histograms for 100 trials each
(Fig. 7). A mixed, generic strategy for path generation and learning (SELF) has been
employed with default parameters. The shortest path found in these experiments contained
16 steps, and path length was limited to 300 steps maximally; a new trial was started if this
number was exceeded (see x-axis labeling in panel d). Hence, in a given bin, we plot how
many times the rat had found the reward within the number of steps with which that bin
is labeled from 100 experiments performed. Clearly, early in learning, paths are longer and
later they are, if convergent, shorter. To show this, histograms are color coded. Starting
phase of learning is shown in blue (leftmost color in each bin), and ending phase in red
(rightmost color in each bin). Middle stages are shown by the other colors. For each field
size/density pair a separate histogram is provided in the figure. Histograms are given in
the same order as in Table 2; they are normalized to 100.

Each trial was started with a path length of 200 steps, and correspondingly there is a
large thin blue column in all histograms for the 200-bin showing that early during learning
all 200 steps usually are needed to search for a reward. We allowed the path to grow
beyond the starting length (due to the L-component), up to 300 steps in badly convergent
cases. Hence, there are some instances of paths longer than 200 in the histograms, and
those allow well convergent cases to be distinguished from badly convergent cases.

At first we note that the peak of all blue contributions (early during learning) is, as
expected, in all cases shifted to the right with respect to the red contributions (late during
learning). Trivially, learning makes the paths shorter.

Looking in more detail at the red contributions (after learning), one can see that the
shortest paths were found on average for panel (b), where the red peak falls in the 10-30
bin. Panel (b) corresponds to σ = 400, n = 500 and this combination has, therefore, been
used for all experiments reported above. With smaller place fields σ = 200 (column one,
a,e,i) convergence is much slower. The red peak is here found in the 30-50 or 50-70 bin and
the finally learned paths, even with high coverage, are frequently twice as long as those in
panel (b). Bigger place fields (right two columns) produce poorer convergence, introducing
many red contributions into the higher order bins, pointing to long, final path lengths.
Small coverage (last row), independent of the field width, produced poor convergence.

Discussion

In this study we analyzed how path formation strategies interact with reinforcement learn-
ing in a place-field like system for action value function approximation. We have shown
that our model-based paths corresponded well to actual rat paths and we have tried to
provide evidence that biologically plausible mechanisms (forgetting, frustration) improve
the learning in such a system.
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Figure 7: Path length distributions for different combinations of place field size σ and
number of cells n, leading to different degrees of coverage as shown on the left side. Colors
encode the stage of learning (blue=beginning of learning, red=end). For further explanation
see text.

Relevance and Influence of the Chosen Learning Algorithm

In this study we have chosen SARSA learning for our experiments. This choice is motivated
by several reasons. In the first place, SARSA is on-policy learning. Hence an agent updates
(synaptic) weights by the outcome of the actually performed action, different from the
(more commonly used) Q-learning algorithm, where weights are being updated by the best
possible action outcome, even if the agent has actually chosen a different performed action.
Q-learning would thus require some kind or reasoning along the lines: ”I know the best
possible outcome and update my learning with this even though I am trying out something
else (exploration).” It has been shown that such human-like ”reasoning” does not seem to
be represented in the midbrain dopaminergic system, which is the structure mostly held
responsible for the implementation of reward based learning in the brain (Schultz, 2002,
2007). At the level of monkeys it seems that SARSA learning prevails (Morris et al., 2006)
as discussed by Niv et al. (2006). We would, thus, believe that it is unlikely that the
complexity of a Q-learning off-policy update would be represented in rats. In spite of this
we have also performed quite an exhaustive analysis of Q-learning (not shown) and reach
the same basic conclusions. Paths will differ though. For example zigzagging in badly
convergent SARSA is much less pronounced and will now be replaced by long curved paths
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in badly convergent Q-learning cases4. Another alternative would be to employ Actor-Critic
modules (Barto et al., 1983; Barto, 1995; Sutton and Barto, 1998), for example using a
temporal-difference (TD, Sutton (1988)) based critic to decided about possible actions.
Such a choice would be justifiable by the suggested relation of Actor-Critic architectures
to the interfacing between basal ganglia and the motor system (Barto, 1995; Houk et al.,
1995). It is, however, known that convergence of Actor-Critics is often quite difficult
to achieve and there a many ways to construct such an architecture (Sutton and Barto,
1998), which leaves the choice too unconstrained in conjunction with this investigation.
Furthermore, little is known about the behavior of Actor-Critics together with function
approximation. As the possible relations of this different RL-algorithms to brain function is
still a matter of debate (Wörgötter and Porr, 2005, 2007), SARSA seems to be a justifiable
choice.

Relation to Biological Behavioral Mechanisms

Path straightening (S) makes not only the paths more realistic, but also makes finding of the
reward easier during the initial stages of an experiment. However, we have found final con-
vergence to be more problematic with path straightening. The number of divergent cases
with path straightening increased two-fold compared to traditional exploration-exploitation
strategies.

Paths with long straight stretches have been observed for rodents in open field exper-
iments (Etienne et al., 1996; Eilam, 2004; Zadicario et al., 2005). There are differences
between daylight and night behavior, where in daylight animals tend to run along walls or
hide in the corner, while at night some more exploration in the center of the field happens
(Eilam, 2004; Zadicario et al., 2005). Our path generation algorithms did not include all
the complexity (loops, stopping) observed in actual rodent paths, but nevertheless our path
geometry, and path statistics resemble real rat paths.

We have shown that convergence can be improved if forgetting (F), frustration (L), or
a little bit of exploration (E) are added to the path straightening setup. In real rats the
mixing of different strategies is a common observation. Different forms of forgetting are
common in animals and humans. The ”frustration” mechanism used here can be linked
to the return-to-home-base drive in real rats. It is known that rats return to their home
location in an open arena exploration process and investigate the environment in loops
of increasing length (Zadicario et al., 2005). Furthermore there are behavioral differences
during daylight as compared to the night, where homing is less prevalent because animals
are less frightened (Eilam, 2004; Zadicario et al., 2005).

Our model makes relatively few assumptions about the determinants of behavior. We
have not accounted for motivational state, thigmotaxic tendencies, arousal, and fatigue, to
name but a few factors that likely influence path learning. To capture the full complexity of
real animals, additional mechanisms would have to be considered. However, a strength of

4Note, to be more specific, we have used SARSA(λ = 0). There would also be the choice of using
SARSA or Q with λ 6= 0. Speed of convergence in conventional RL can change as a consequence of λ.
There are, however, in general no predictions possible for which value the fastest convergence is obtained.

19



the current model is that with just a few assumptions we can produce a good approximation
of actual rat navigation.

Relations to Hippocampus Modeling

Concerning the links of our study to hippocampus investigations, it was not our objective
to create a general hippocampus model (Kali and Dayan, 2000; Becker, 2005). We do
not distinguish between regions of hippocampus (dentate gyrus, CA1, CA3), nor do we
model its inputs or the process of place cell development (Samsonovich and McNaughton,
1997; Tsodyks, 1999; Hartley et al., 2000). Instead we focused on the interaction between
behavioral constituents (paths) with reinforcement learning in a place-field like function
approximation system.

In the field of hippocampus-based navigation our model has similar properties to models
by Arleo and Gerstner (2000); Krichmar et al. (2005); Strösslin et al. (2005). Those models
try to incorporate many known details about the included brain structures and types of
cells present, thus attempting to study hippocampal function. No special attention has
been devoted in these studies to path formation and its influence on the learning. The
question, however, arises to what degree the conclusions in the older studies might be
influenced by our findings.

Relations to Machine Learning

We have emulated navigational learning by ways of reinforcement learning with function
approximation, based on hippocampus-like place field representation. We used the SARSA
algorithm, to stay closer to biological learning mechanisms, though Q-learning can be
implemented in the same framework, as discussed above. The algorithm is similar to the
one proposed by Reynolds (2002). However, we do not normalize the learning equation and
our learning rates are, thus, independent of the number of activated features (activated
place fields). In spite of this, the current algorithm produces convergent weights as well as
convergent behavior in a conventional exploration-exploitation setup. On many occasions
it produces optimal paths to reward. As our place field system spikes probabilistically, it is
difficult, if not impossible, to provide a rigorous convergence proof. In general such proofs
are notoriously hard to obtain for any function approximation system even under more
relaxed conditions (Szepesvari and Smart, 2004). While of possible theoretical interest,
these machine learning related issues may not relate directly to our more biologically-
inspired model.

Concerning forgetting we observe that in machine learning, weight decay is known from
the general purpose neural network learning literature as means to prevent weights from
saturation (Werbos, 1988). In a reinforcement learning framework, weight decay has been
used in several isolated studies, usually to produce agents who can adapt to changing
environments (Yen and Hickey, 2004). Here we show how learning in a static environment
can also benefit from forgetting mechanisms in preventing divergence.
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Frustration in our setup is implemented as return to the home base if the reward was
not reached in predefined number of simulation steps. Path-to-goal limiting is a natural
option for any simulation of reinforcement learning; it is reasonable to stop a trial after
some steps if the reward is not found (e.g. Glaubius and Smart (2004)). Here we used an
even more complex path limiting process, where the allowed number of steps depends of
the path-to-goal length in the previous epoch. In robotics applications with reinforcement
learning, frustration is often included to switch the pattern of behavior when the goal is
not reached (e.g. Okhawa et al. (1998)), which is not of relevance, though, for our system.

It is worth noting that pure exploration-exploitation strategies might in some cases
be incompatible with the compliance requirements of machines. Especially in multi-joint
robot arms the very jerky, wiggly movements obtained by random exploration might not
be permissive as they might even damage such a machine (T. Asfour, personal communica-
tion). Hence, straighter exploration ”paths” should be employed for reinforcement learning
problems in these domains. The improved convergence found in our study could therefore
help to better adapt RL-methods to such problems.
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Tables

Table 1: Default parameters used for modeling experiments in a standard setup. *Note,
additional justification for these default parameters is given in section ’Place field size and
density’.

Parameter type Parameter name Value
SARSA-learning (see Appendix) learning rate α 0.7

discount factor γ 0.7
Environment/steps size 10000 × 10000

step size 400
noise on the step size ± 100
reward size 1000 × 1000

Place fields* number 500
width, through σ 400
scaling factor A 2.5

Learning strategies exploration probability pe in E 0.2
probabilities for S
p1 0.5
p2 0.156
p3 0.063
p4 0.031
p5 0
p6 0.031
p7 0.063
p8 0.156
weighting factor w in S 0.5
forgetting factor cf in F 0.9995
zero weight threshold tf in F 10−6

starting path length in steps in L 200
path increase step in L, cl 5
path limit in steps for any strategy 300
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Table 2: Number of cells required to achieve a certain coverage given the field width σ.
Value of σ = 400, n = 500 have been used for most other experiments. Labels (a-l) refer
to the panels in Fig. 7.

Field Width (σ)
Coverage 200 400 600 800

4.5 2000 (a) 500 (b) 230 (c) 140 (d)
2.4 1100 (e) 300 (f) 130 (g) 80 (h)
0.8 350 (i) 100 (j) 80 (k) 25 (l)

Appendix: Reinforcement learning with function ap-

proximation

Reinforcement learning is a procedure where a value function V (s) over states s develops as an
agent acts in its environment and attains goals. In RL with delayed reward, the function shows
a gradient towards a goal. In the Q and SARSA learning approaches (Watkins and Dayan, 1992;
Kaelbling et al., 1996), instead of the state value function, the state-action value function Q(s, a)
(short: action value function) is developed, where s denotes a state and a an action. Action-value
functions describe values of concurrent actions in every state, and can be directly used for making
a decision on which action to perform.

Q-learning is described by the following equation:

Q(st, at)← Q(st, at) + α(rt+1 + γ max
a

Q(st+1, a)−Q(st, at)) (5)

Where Q(st, at) is the action value function at time step t, rt+1 is a reward obtained with action
at, α is the learning rate and γ a discount factor. SARSA learning differs by a single aspect that
the current action value is updated according to the value of the next actual action, but not by
the best possible next action, as in Q learning:

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at)) (6)

Hence, SARSA is designed to work on-policy, which means that learning takes place as an agent
moves in the state space according to the path that was actually performed. Evidence exists that
animals follow an on-policy, rather than an off-policy, learning strategy (Morris et al. (2006), see
also commentary by Niv et al. (2006)). Hence in this study we are investigating the SARSA
algorithm and only sometimes comment on Q-learning.

For big and/or continuous state spaces, function approximation methods need to be used,
where the action value function is a function of more abstract and wider-embracing entities
commonly called features in the RL-literature. We define normalized Q-values by:

Q(st, at) =
∑

i

θi,atΦi(st)/
∑

i

Φi(st) (7)
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where Φi(st) are the features over the state space, and θi,at are the adaptable weights binding
features to actions (Reynolds, 2002).

We assume that a place cell i produces spikes with a scaled Gaussian-shaped probability
distribution:

p(δi) = A exp(δ2
i /σ2) (8)

where δi is the distance from the i-th place field center to the sample point (x, y) on the trajectory,
σ defines the width of the place field, and A is a scaling factor. In the areas where the values of
this scaled distribution are above 1, cells fire with a probability of 1.

We then use the actual place field spiking to determine the values for features Φi, i = 1, .., n,
which take the value of 1, if place cell i spikes at the given moment on the given point of the
trajectory of the model animal, otherwise it is zero:

Φi(st) =

{
1 if place cell i spikes at st
0 else.

(9)

SARSA learning then can be described by:

θi,at ← θi,at + α(rt+1 + γQ(st+1, at+1)− θi,at)Φi(st) (10)

where θi,a is the weight from the i-th place cell to action(-cell) a, and state s is defined by (x, y),
which are the actual coordinates of the model animal in the field.

We sum over all features, but in each place only a specific subset of cells will fire rendering
their corresponding features non-zero. Note that function Φi(s) has a probabilistic nature in our
approach, differently from usual features used for function approximation in RL. The update
rule (Eq. 10) we use has a straightforward biological interpretation: the weight of a particular
action is increased at the given place if this weight leads either to a reward, or if it leads on
to pieces of an already known rewarding path. In the latter case this results from the non-zero
Q(st+1, at+1)-values in the next state.
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