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Abstract—Robots are expected to operate autonomously in
unconstrained, real-world environments. Therefore, they cannot
rely on access to models of all objects in their environment,
in order to parameterize object-directed actions. The robot must
estimate the shape of objects in such environments, based on their
perception. How to estimate an object’s shape based on distal
sensors, such as color- or depth cameras, has been extensively
studied. Using haptic sensors for this purpose, however, has not
been considered in a comparable depth. Humans, to the contrary,
are able to improve object manipulation capabilities by using
tactile stimuli, acquired from an active haptic exploration of
an object. In this paper we introduce a neural-dynamic model
which allows to build an object shape representation based on
haptic exploration. Acquiring this representation during object
manipulation requires the robot to autonomously detect and
correct errors in the localization of tactile features with respect
to the object. We have implemented an architecture for haptic
exploration of an object’s shape on a physical robotic hand in a
simple exemplary scenario, in which the geometrical models of
two different n-gons are learned from tactile data while rotating
them with the robotic hand.

I. INTRODUCTION

Object manipulation capabilities are critical for robotic
systems which are designed to assist humans in their ev-
eryday environment. Manipulation of common objects is a
complex sensorimotor task, requiring coordination between
the motor system of the hand and the sensory feedback,
both proprioceptive and tactile. These coordination patterns
between sensory inputs and motor control variables depend
on the object manipulated by the robot and its particular
shape. In many real-world cases, it is infeasible to pre-compute
these coordination patterns or object shape models in advance.
This would require to consider every possible object which a
robot may encounter in an unconstrained human environment.
Therefore, an autonomous robot needs a capability to acquire
such models based on its own sensory information. Typically,
vision is used to estimate the object shape for grasping and
object manipulation (e.g., [16]). This estimation is often prone
to errors inherent in the process of visual object segmentation
(e.g. occlusions, distractors, complex background). Tactile
exploration of object shape could provide an additional source
of information about the geometric parameters of the object,
relevant for object manipulation.

The tactile feedback is often used in robotic systems to
determine contact with the object and to control the force of
the grasp [15]. Estimation of object shape based on haptic
feedback has been considered in robotics only in constrained
settings, using one of two simplifications in the haptic learning
process: (1) a rigidly mounted object is used for learning
its shape and geometry, e.g. [5], [12]; (2) haptics is used to
localize objects, the shape of which is assumed to be known
[3], [14].

In this paper, to the contrary, we study haptic learning of
object shape in a less constrained setting. Here, both shape
and pose of the object are initially unknown and have to be
estimated while the object is autonomously manipulated by
the robot. During haptic exploration in such an unconstrained
setting, there is a need to estimate and correct for the errors
in the localization of detected features with respect to the
object. The pose of the object changes during learning due
to the physical interaction between the hand and the object.
These changes in the object pose are only partly intentional, as
grasping and releasing of the object as well as slippage induce
unintended and uncontrolled object movements. Small errors
in the pose estimate accumulate over time, which calls for an
error correction mechanism to prevent drift in the subsequent
object shape estimate. Thus, the haptic learning problem be-
comes equivalent to the well-known simultaneous localization
and mapping (SLAM) problem in robotic navigation [2], [6].

There have been several biologically motivated approaches
to the SLAM problem, e.g. [4], [11], [13]. Several challenges
make most of the approaches to SLAM in navigation not ap-
plicable to the equivalent problem in haptic learning, however.
First, in tactile SLAM, the sensor information is only present
during periods of object contact in contrast to the typical
continuously available information of distance sensors (e.g.
sonar, infra-red, or laser). This leads to only very sparsely
distributed information in space and time, comparable to
solving SLAM in navigation by only using the bumpers of
a robot. Second, the tactile sensor data typically does not
have spatially distinct features. Surface curvature, edges, and
texture are often repetitive in space. Hence, the capabilities of
computing, detecting, matching and tracking unique or salient
features, which serve as landmarks, are very restricted [8].
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In this paper, we explore haptic learning in a simple robotic
scenario and suggest a neural-dynamic model, which realizes
a solution to the haptic SLAM problem. We derive inspiration
for our model from what is known about how humans and
primates use haptics to determine the pose and shape of objects
[10], [21]. In particular, in our model we use biologically
plausible tactile features and Dynamic Neural Fields – a
framework proposed for both, modeling human cognition [22]
and dynamics of neuronal populations [24]. This provides an
opportunity to use and refine the same model to account for
human behavioral data on haptic learning, when such data will
be available.

In the experimental setting, we use two fingers of a robotic
hand to rotate different n-gon objects and build the represen-
tation of the object shape online, in an incremental fashion.
The robot autonomously learns the shape of the object, while
simultaneously estimating errors in the moment-to-moment lo-
calization of tactile features on the object surface. In particular,
the system builds on a recently introduced model for haptic
learning which is able to correct errors in the orientation of
the localized object pose [23]. Here, this model is extended
to additionally enable the correction of shifts in the object
position, directed lateral to the grip.

II. OVERVIEW OF THE ARCHITECTURE

This section gives a brief overview of the developed ar-
chitecture for learning object shape representations based on
tactile inputs. The architecture (depicted in Fig. 1) has to
realize a combined mapping and localizing of the object from
self-generated motions. To this end, an Object Manipula-
tion Behavior drives an interactive exploration loop, which
constitutes a sequence of reactive behaviors controlling the
movements of the robot’s fingers. A Estimation Path (EP)
processes the generated tactile and proprioceptive data to
estimate the change of the object pose. Allocentric features
are extracted for the Mapping Path (MP) that maintains
the object model, and for the Localizing Path (LP) that
maintains the object pose. They both are controlled by the
Matching Module which constitutes the core element of our
architecture: it uses Dynamic Neural Fields (DNF, see Sec. III
below) to compare the sensed features with the current object
representation in order to decide whether an update of the pose
(LP) or the object shape (MP) is appropriate.

In the EP the location of the contact blob on the tactile
sensor is transformed to an allocentric frame of reference using
the Forward Kinematics and proprioception. Two consecutive
contact locations are then used in order to estimate the change
in the object pose, induced by the robot’s action. The estimated
pose changes are integrated into an Object Pose Estimate in
Fig. 1. The first grasp initializes the estimate of the object
position, assumed to be in the middle of the two contact points
of the fingers.

The MP extracts allocentric 3D Features from the tactile
pressure patterns, computed via the Forward Kinematics and
proprioception. These features are then Transformed into an
object-centered coordinate system using the current Object

Fig. 1. Overview of the general architecture: black lines with a dot at the
end indicate a parametrization relationship. Arrows pointing to boxes indicate
inputs for processing in the box, and arrows passing through boxes indicate
a parametrized transformation of the information through the box.

Pose Estimate. The Matching Module compares the current
features with previous ones, stored in the Object Represen-
tation in order to detect and compensate for drifts in the
representation. Finally, the corrected features are fused into
the accumulating Object Representation.

The LP uses the detected drifts of the the Matching Module
to correct the Object Pose Estimate in 3D external (robot-
centered) space, i.e. tracking the object.

The central part of this architecture is the Matching Module
in Fig. 1, which implements the error estimation based on
current tactile features and the object representation. Estimat-
ing the error requires to decide whether the current feature
corresponds to a new haptic “landmark” and should lead to
an adaptation of the object shape representation (i.e. map-
ping). Alternatively, the input may correspond to a previously
mapped, but incorrectly localized object feature, which would
require an adaptation of the pose estimate in order to reduce
the feature localization error. This is essential for ensuring a
consistent mapping and localization of the object, which is
the core problem to be addressed by SLAM, and can only
be solved to the degree of object ambiguity. The objects
used in the experiments, as well as many everyday objects,
are symmetric and repetitive in their appearance. Hence, the
localization of the object is necessarily ambiguous, i.e. the
same features may be detected for multiple object poses.

III. THE MODEL

In this Section, we describe the neural-dynamic model
implementing the combined matching module and object
representation (bottom of Fig. 1), which is crucial for the
localization and mapping of the object. First the extraction of
features serving as input to the model is described, followed
by a detailed description of the model itself. The model is
evaluated in robotic experiments, described in Section IV.

A. Computing Features from Tactile Inputs

The proposed model is inspired by neural processing of
shape by haptic pathways in monkeys and humans, which are
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highly interleaved with visual processing pathways [9], [21].
Prominent features in both systems are zero-, 1st, and 2nd
order moments, which correspond to position, orientation, and
curvature of the tactile contact, respectively. These features are
therefore used as inputs to our model. Note, that the normal
of the object surface does not necessarily coincide with the
normal of the sensor surface, due to the rigid fingers. Cur-
vature is modeled by the eigenvectors and eigenvalues of the
covariance of the tactile “pressure blobs”, along with the angle
of the first eigenvector. All these features are associated with
their location in a 3D external coordinate system, computed
using the forward kinematics. In the current setup, the induced
object motion is restricted to one degree of freedom: rotation
along it’s z-axis. Nevertheless, there is an initial error in the
estimate of the object’s position which the model needs to
compensate for.

Further, the perceived tactile features are transformed from
external into an object-centered reference frame by shifting
and rotating the features’ spatial representation according to
the current estimation of the object’s pose. These features with
their locations in an object-centered reference frame are used
as inputs to the model, implemented using DNFs.

B. Dynamic Neural Fields (DNFs)

The basic dynamical components in our model are Dynamic
Neural Fields (DNFs), see [1], [24] for a neural derivation and
the analysis of dynamics. DNFs have been used in cognitive
science to model dynamics and development of cognitive
processes, such as, e.g., memory formation, decision making,
or categorization [20], as well as to integrate the low-level
sensory inputs and motor dynamics into cognitive architec-
tures, e.g., for scene representation, sequence generation, and
grounded language [18].

The DNFs used in our model are described by Eq. (1),
which defines the rate of change in activation u(x, t) of the
field:

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +∫
f
(
u(x′, t)

)
ω(|x− x′|)dx′. (1)

In Eq. (1), u(x, t) is the activation of the DNF at time
step t and position x. The position x describes a behavioral
variable, such as a perceptual feature, location in space, or
motor control variable and may be multi-dimensional: ~x ∈ Rn.
The activation u(x, t) can be interpreted as the confidence of
value x for this behavioral variable in the current state.

The term −u(x, t) stabilizes an attractor for the activation
function at values, defined by the last three terms in the
equation. The time constant τ determines how fast activation
u(x, t) relaxes to the attractor. The negative resting level h
ensures that the DNF produces no output in a deactivated
state and S(x, t) is an external input, driving the DNF.
The convolution term models lateral interactions between
sites of an active DNF, shaped by the interaction kernel,
ω(|x − x′|) = cexc exp

[
− (x−x′)2

2σ2
exc

]
− cinh exp

[
− (x−x′)2

2σ2
inh

]
,

with a short-range excitation (strength cexc, width σexc) and a
long-range inhibition (strength cinh, width σinh). A sigmoidal
non-linearity, f

(
u(x, t)

)
= 1

1+exp[−βu(x,t)] defines the output
of the DNF with which the DNF impacts on other dynamics in
the model, as well as on its own dynamics through the lateral
interactions.

The lateral interactions of DNFs stabilize a localized peak-
attractor for the activation function, i.e. even for a noisy and
varying input, the DNF “stabilizes a decision” for the most
active peak position, leading to discretization of continuous
sensory and motor spaces.

To build a long-term memory of the object’s shape, we use
memory trace dynamics, Eq. (2), [17]:

τlṖ (x, t) = λbuild
(
− P (x, t) + f(u(x, t))

)
f(u(x, t))−

λdecayP (x, t)
(
1− f(u(x, t))

)
. (2)

Here, P (x, t) is the strength of the memory trace at site x of
the DNF with activity u(x, t) and output f

(
u(x, t)

)
, λbuild

and λdecay are the rates of build-up and decay of the memory
trace. The build-up of the memory trace is active on sites with
a high positive output f

(
u(x, t)

)
, the decay is active on the

sites with a low output.
DNFs are used in our model for the following functions:

to represent the currently perceived haptic features; to match
these features to the accumulated long-term memory of the
object shape (implemented by memory traces); and to compute
errors in the pose estimation, thus stabilizing the object-
centered shape representation.

C. Stabilization of the shape representation

Here the networks of DNFs in the proposed model are
described, which implement the matching module combined
with the object representation for mapping and localizing of
the object. To stabilize the object shape representation against
drift during the object manipulation, three dynamic networks
process in parallel the input features described in III A, shown
in Fig. 2. One network stabilizes the rotation estimate using
the contact normal information of both fingers, shown on the
left side of the figure. Additionally, for each finger a separate
network stabilizes the translation by using the contact position
information of the corresponding finger. The networks for
the translation stabilization of each finger are identical and
therefore only one of them is shown on the right side of Fig. 2.

In all networks, tactile features are processed in separate
mapping and localization pathways: the localization pathway
holds current information of the perceived haptic features and
the mapping pathway with slower dynamics accumulates a
long-term memory of past inputs. The latter serves as the
object shape representation and is used for matching with the
current features of the localization pathway, in order to correct
for errors in the pose estimate (i.e. object localization).

a) The mapping pathways: The mapping pathways, de-
picted by the gray-shaded area in Fig. 2, operate with slow
time constants. In the rotational network, a short time-
window of recent contact normals of both fingers serves as
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Fig. 2. Overview of the Model - Left: Orientation of the surface normal is the input for a mapping (dark-green arrows) and a localization (dark-blue arrows)
pathway, consisting of multiple DNFs. Mapping in the gray underlaid DNF and MT corresponds to the object representation and operates with a slower time
constant. Localization utilizes the memory and outputs a correction term for the estimated object rotation. 1D plots show input (green) and activation (blue)
of the DNFs, thresholds are marked by dashed red lines. 2D plots only show the DNF output. Right: contact position is represented in 2D DNFs with polar
coordinate encoding on the axis. Just like in the rotational case (left), there is a localization and a mapping pathway with memory, which are compared to
determine the drift in translation.

input to a 1D orientation selective field. As the finger surface is
curved, flat object surfaces lead to more normals with the same
orientation, while object edges lead to a continuous change in
the orientation of the normals. Therefore, the distribution of
contact normal orientations is broad and weak for contacts
with an object edge and is sharp and strong for contacts
with flat surfaces. Hence, the orientation selective Surface
Detection DNF generates a stabilized peak for a detected
surface, which is used as input to the Memory Trace dynamics.
The memory trace (Eq. (2)) is an exponentially fading memory
of past peaks, i.e. stores the orientations of previously detected
surfaces. The exponential fading of the memory is crucial for
overcoming incorrectly matched features which have previ-
ously been fused into the object shape memory.

Analogously, in the translational network a short time-
window of recent contact positions of the corresponding finger
is transformed into polar coordinates. These are then weighted
with the ratio of the larger to the smaller eigenvalue of the co-
variance of the contact pressure pattern. Object edges generate
long and thin pressure patterns in contrast to surfaces, which
generate more round “blobs”. Contacts, which correspond to
edges are thus boosted by such weighting and induce peaks in
the 2D Edge Detection field, which represent tactile features
for translation estimation. These peaks are then passed into
the Memory Trace for storing the positions of the recently
detected edges in an object-centered reference frame.

b) The localization pathways: In the localization path-
ways, the input processing is identical with the mapping
pathways, except for the faster timescale. The detected edges
/ surfaces are passed as inputs to a Matching field, which also

receives the corresponding (edge or surface) Memory Trace
as input. The lateral interactions in the matching DNF have
two main effects: first, that peaks of the localization pathway
are “pulled” towards previously detected peaks stored in the
memory trace, if they are sufficiently close. The radius of
this correction-effect can be tuned by the kernel-width of the
matching field and determines the maximal spatial resolution
of detectable features.

With a small temporal delay a second effect emerges: as the
current feature position in the mapping pathway is propagated
to the memory trace, the peak in the matching field gets
stabilized in its position. Thus if the input features have a drift
over time, the low-pass filtered memory trace counteracts it.

c) Correcting the pose estimate: The dynamics in the lo-
calization pathways result in a corrected feature representation,
requiring a mechanism to extract the according correction term
for the pose estimate. For correction of the object rotation
estimate, the matched activation peak in the Matching DNF
(which represents the corrected orientation) is compared to the
original activation peak in the Surface Detection DNF. This
comparison is performed in a 2D DNF (Rotational Drift in
Fig. 2): each 1D field is projected along one of the dimensions
of the 2D field, where these two projections sum up. A
diagonal readout of this 2D DNF, i.e. a projection to a 1D
Drift Readout DNF (Fig. 2), creates a representation of the
two inputs in relation to each other. This mechanism is inspired
by a neural implementation of reference frame transformations
described in [19] and provides information of the peak shift
due to the matching. The activation in the readout DNF is
suppressed at locations far from the center to give close by
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Fig. 3. Effects of errors in the position estimate. The gray object in the
middle is the true position of the object. The plots in the bottom row show
the object shape representation in object-centered reference frame from finger
II when the estimated object position is either to the left (blue), coincides with
the estimated (gray) or is to the right (red). The color-coding of the object
shape representation corresponds to the computed eigenvalue-ratio, low values
(black) indicate an edge and high values (yellow) a surface.

matches a higher weighting (magenta dots in Drift Readout
plots, Fig. 2).

The deviation of the peak position from the center of the
rotational Drift Readout DNF is the estimated error and is
subsequently used to correct the current object rotation esti-
mate. Thus, for consecutive time steps, the perceived feature
is mapped to the corrected location in the object-centered
reference frame.

While a wrong estimate of the object orientation leads to a
corresponding rotational error in the object shape representa-
tion (see Fig. 5), a wrong estimate of the object position leads
to distortions of the object shape representation, as shown in
Fig. 3.

For a translation along this proximal-distal axis, the features
are rotated with respect to a wrong rotation center, since the
object is fixed such that rotations are only possible along the
axis at the object center. For an object which is more distal
than estimated, this leads to an inward drift of the feature
(edges) location in the object shape representation for one
finger and an outward drift of the edges in the other finger.
Accordingly, the edges in the object shape representation drift
into the opposite directions for a more proximal object than
estimated, as visualized in Fig. 3.

In the current setup, only detection and correction of
translations along the distal-proximal axis is implemented.
Translations towards one of the fingers lead to a different
pattern of distortions and will be subject of future research.

In order to compare the location of the currently perceived
feature (Edge Detection) with the location of the matched
feature (Matching), a coordinate frame transformation is per-
formed. The outputs of the two 2D DNFs, which represent
these locations, are summed over the orientation dimension
to receive 1D activation functions. This may be done, as the
translation correction is only dependent on the feature drift
in the amplitude (radius of the polar representation) and not
its orientation. Finally, the current and the matched amplitude

Fig. 4. Left: sketch of the rotation behavior; Right: picture of our
experimental setup

of the estimated drift are projected into the two dimensions
of the 2D Translation Drift field. The distance of the peak
from the diagonal of this DNF is proportional to the estimated
correction, i.e. how much the peak, induced by the new
input, is “pulled back” by the memory representation. This
is computed by the Drift Readout field, which is then used to
correct the estimated object position accordingly.

IV. EXPERIMENTS

In our experimental setup a Shunk Dexterous Hand 2 is
used and configured such that only two of the three fingers
are used, each having two degrees of freedom (i.e. controlled
joints). The two phalanges of the fingers are each equipped
with a tactile sensor. These each consist of an array of 6× 13
tactile elements (texels) on the distal phalanges, whereas the
width decreases to 4 texels at the fingertips. Figure 4 shows
the robotic setup, used for evaluation of the model, as well as
the manipulation behavior used in our experiments.

A. The Setup

Rotation experiments were performed with two different
aluminum objects (n-gons): an 8-sided and a 6-sided cylinder
which had the same medium diameter (4.0 cm) and object
height (7.0 cm). The objects had a hole in the bottom, by
which they were attached to a steel axis to prevent translations
of the object.

The robot hand performed an object rotation behavior as
sketched in Fig. 4-left while recording the haptic data. First,
the fingers are moved towards each other until tactile feedback
signals sufficient contact with the object. This event triggers
a movement parallel to the object’s surface (i.e. rotating the
object) while controlling the contact force with the object.
When the contact blob reaches the edge of a tactile sensor
array, the fingers are moved apart from each other, the parallel
movement is reversed and the cycle begins anew.

Due to only having two joints per finger, there are not only
forces orthogonal to the object surface, but also tangential
components. These lead to an uncontrolled movement when
the object is released, which cannot be detected nor prevented
in the proposed setup. In general, this unintended movement
should be systematic and indeed, there is a strong tendency
of systematically underestimating the object rotation. Errors
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Fig. 5. Raw, uncorrected data of the last two full rotations for a 6-Sided
object. The position and orientation of the tactile contacts in the object
coordinate system is shown. The color-code shows the temporal order from
start (teal) to end (pink) of the two rotations, the object rotation direction is
indicated by the arrows.

in the translation estimation are due to not perfectly centered
objects during the initial grasps. This leads to a static offset
between the true position and the initial estimate, as the object
has only minor translations during the manipulation.

B. Generated Datasets

With each of the objects, five datasets were recorded, each
consisting of an estimated rotation of four times 360 degrees.
Hence, 10 datasets were collected, in which the tactile patterns
and joint angles were sampled with approximately 2-3 Hz and
the according features were computed and stored.

An exemplary subset of two rotations is visualized in Fig. 5
from the first dataset of the six-sided object, where finger I
corresponds to the upper finger of the sketch in Fig. 4.

It is clearly visible that there is a drift in the object rotation
estimate as the data points do not align for consecutive full
rotations of the object (note the temporal color-coding in
Fig. 5). Furthermore the impact of the error in the position
estimate is visible in the “bump-like” shifts between two
consecutive surfaces.

V. RESULTS

The benefits of the proposed neural-dynamic model are
evaluated first for the rotation and then for the translation cor-
rection, as these rely on independent features and mechanisms.
To evaluate the rotation correction, three different estimators
of object shape, i.e. the number of detected surfaces during
manipulation, are used:

First, the accumulated histogram of all past contact normal
orientations is computed. This approach operates directly on
the accumulated raw inputs. Second, the memory trace of
the proposed model is used for evaluation, however without
any correction in the pose estimates. In this case, the model
performs a discretization with a fading memory. Third, the
memory trace of the model with error correction is used for
correction, as depicted in Fig. 2.

Each estimator was analyzed to determine the number of
detected surfaces in order to demonstrate how the process of

Fig. 6. The mean and standard deviation of the number of estimated object
surfaces, evolving over time (i.e. object rotations). For each of the two objects
(subplots) five datasets were used for computing the graphs with three different
methods, respectively. Blue: based on an accumulated histogram. Green: the
proposed model with deactivated error feedback. Red: the proposed model
with error correction.

memory formation and correction of drifts improves perfor-
mance. For this the activation of the estimator is smoothed
and the number of peaks above a threshold is determined.

Figure 6 shows the mean and standard deviation of the
number of estimated surfaces using the three estimators. The
number of surfaces detected is shown for each measurement
step, computed by averaging all datasets for each object.

In general, the simple accumulated histogram (first es-
timator) and the uncorrected model (second estimator) are
incapable of building a consistent representation of the object
shape, as the errors in the pose estimate accumulate and lead
to a constant drift over time (see Fig. 6, blue and green lines).
Only the memory trace with error correction (full model)
converges to a correct estimate of the number of surfaces of
the objects (red line in the two plots in Fig. 6).

As the memory is empty in the beginning and only incre-
mentally builds up, every new surface is “corrected” into the
direction of the previously seen surface and has no counterpart
on the other side yet. This leads to a systematic overestimation
of the number of surfaces during the first 360 degrees of the
rotation. However, during further exploration of the object the
model shifts and merges the orientations of surfaces in the
memory and finally converges to a stable representation, as
can be seen in Fig. 6, red lines. Hence the model is capable
of coping with errors in the object shape memory due to
previously incorrect matches.

In Fig. 7, the time-courses of the histogram, the uncorrected
memory, and the corrected memory are shown as the rota-
tion behavior is performed for the eight-sided object. In the
histogram approach, each column (i.e. every rotation step) is
normalized for an increased visibility. The memory is implic-
itly normalized, as given by Eq. 2. Note the clear increase in
alignment of the detected surfaces during the rotation when the
model performs corrections in the pose estimate (“Corrected
MT” in Fig. 7). Initially incorrectly mapped features are fused
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Fig. 8. Temporal development of the mean and standard deviation (across
all datasets of an object) of the position estimate standard deviation (across
five different initial translation estimates). Blue: the 8-Sided object; Green:
the 6-Sided object.

with others or washed out as the memory trace converges to
a stable representation.

Corresponding to finding the right number of surfaces, the
model also finds an appropriate correction for the orientation
estimate of the object. The shown data in Fig. 9 are the last two
full rotations of each dataset in the object centered coordinate
system for the raw data (top row), the rotation corrected
data (middle row) and the combined rotation and translation
corrected data (bottom row). Note that the amount of drift in
rotation of the raw data was not controlled for and varies from
hardly any (edge on successive edge) to the maximum possible
(edge on successive surface).

The plots in Fig. 9 show for different datasets, that the
neural-dynamic model for haptic learning is capable to com-
pensate drifts in the rotation estimate as well as wrong initial
estimates of the object position.

In order to evaluate the translation correction, the initial
estimate of the object position was systematically varied
from -1.0 cm to +1.0 cm for each of the 10 datasets. This
corresponds to an translational error of up to ±25% of the
object diameter (4.0 cm). Figure 8 shows that for all datasets
the object position estimate converges (although not always
to the same value, which is not visible in the figure). Hence,
the system is able to create a self-consistent representation
of the object, despite the false estimation of its initial pose
and a drift of the pose estimate during manipulation (bottom
row in Fig. 9). However, the absolute location of the object
in external, allocentric coordinates, cannot be extracted from
this representation.

VI. DISCUSSION

In this paper, we proposed a neural-dynamic model capable
of autonomously learning a representation of the shape of
an object from purely haptic data during manipulations in
a closed-loop. This study revealed a principled problem in
autonomous learning of shape from haptics – the haptic SLAM
problem: simultaneously tracking the object pose (localiza-
tion) by using a representation of the object, while building
this object representation and maintaining its consistency as
perceived features are continuously fused into it (mapping).
We have evaluated the model in a simple, proof-of-concept
robotic set-up, using two n-gon objects, which were rotated by
two fingers of a robotic hand. We have demonstrated that the
proposed model leads to a self-consistent object representation
by correcting drifts in rotations and errors in the translation
estimates. This includes mechanisms implementing a (1) work-
ing memory representation of the latest tactile stimuli; (2)
long-term memory, which integrates tactile features over the
whole interaction with the object; (3) correction of the location
of a current tactile feature on the object towards a matched
feature, stored in the long-term memory; (4) comparison of the
corrected location representation with the working memory of
the initial location for derivation of the according corrective
term for the pose estimate of the object; (5) correction of the
pose estimate. Using neural-dynamics allows to extract and
correct the shape representation in an online fashion, since
the lateral interaction in DNFs match transient representations
and operate on multiple time scales, thereby implementing
memory.

Surely, our setup was simplified and we envision several
directions of extensions of the model. First, in order to build
representations of more complex, every-day objects, combina-
tions of features to higher order features will be investigated
in future research. These could be a composition of surfaces,
curvature and edges as well as the angle of an edge, i.e.
distance between the surface-peaks in the memory trace of
the model. For this composition into higher order features,
an investigation of the dynamics of tactile patterns during
interaction with the object surface will be necessary. Here,
a higher resolution of the sensing array (both in space and in
response amplitude) would be of benefit.

Second, for demonstrating that object shape can be learned
purely from haptics during manipulations, it is necessary to
go towards fully-fledged 3D haptic SLAM, i.e. localizing the
rotation and position in 2D space. To accomplish this, the
translation estimate in the remaining dimension (along the
line between the fingers) needs to be corrected. A promising
solution may be to use asymmetries between the data of the
two fingers, which are currently neglected.

Finally, linking the haptics-derived representations with
vision is another possible direction of future research. Haptic
learning as implemented in our model, leads to representa-
tions compatible with vision-based representations previously
developed in the DNF framework [7].

Eventually, the object shape representation is meant to be
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Fig. 9. Tactile measurements in the object coordinate system for the last two full rotations of all datasets of the 8-Sided (left) and 6-Sided (right) objects.
The top row shows the uncorrected data of finger II; the second row shows the corresponding dataset with rotation correction and the third row with the
combined rotation and translation correction. The dataset with the red surrounding box is shown in Fig. 5.

used for predicting tactile input while manipulating the object.
This prediction could be used to detect changes in the inter-
action with an object, caused by unpredictable perturbations,
which are inherent in real-world manipulation behavior. The
tactile input prediction can also be used to optimize the
manipulation behavior with respect to a grasp dependent cost
function, e.g. falling on flat surfaces only. The system then
could learn to perform faster and with higher precision in such
tasks and produce behavioral predictions for equivalent human
experiments. Learning in the closed behavioral loop of both the
object representation and the control of motor actions, based
on this representation, is the final goal of this project.
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