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Introduction

Vision, although widely accepted as the most powerful sensorial modality, faces the
problem of an extremely high degree of vagueness and uncertainty in its low level pro-
cesses such as edge detection, optic flow analysis and stereo estimation [1]. This arises
from a number of factors. Some of them are associated with image acquisition and in-
terpretation: owing to noise in the acquisition process along with the limited resolution
of cameras, only rough estimates of semantic information (e.g., orientation) are possi-
ble. The severeness of these problems increases for higher semantic information, such
as curvature or junction detection and interpretation. Furthermore, illumination varia-
tion heavily influences the measured grey level values and is hard to model analytically
(see, e.g., [9]). Extracting information across image frames, e.g., in stereo and optic
flow estimation, faces (in addition to the above mentioned problems) the correspon-
dence and aperture problem which interfere in a fundamental and especially awkward
way (see, e.g., [2, 10]).

However, by integrating information over context the human visual systems ac-
quires visual representations which allows for actions with high precision and certainty
within the 3D world even under rather uncontrolled conditions [16, 8]. The power of
modality fusion arises from the huge number of intrinsic relations in visual data. The
aim of the European project ECOVISION (see [4]) is to use such context knwoledge to
achieve robust and more complete descriptions of the visual scene.

In this paper, we address a specific context in which aspects of 2D and 3D feature
processing become combined. In human vision local visual entities become organised
into more complex entities. This processes is usually called grouping (see, e.g., [19]).
In computer vision such grouping processes are mostly treated within the image domain
[18, 3]. Also in this paper, we start with a grouping process in the 2D image domain.
However, this process becomes combined with stereo processing such that coherent 3D
groups emerge. The constraint on which this combination is based is the following (see
also figure 6):
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Figure 1: Stereo Collinearity Constraint

Stereo Collinearity Constraint: Primitives constituting a group in the left im-
age have stereo correspondences in one group in the right image.

In this paper, we use this constraint to improve stereo processing. Stereo is neces-
sarily ambiguous when based on local comparisons since the correspondence problem
leads to mismatches. Using multiple modalities (such as colour or optic flow) improves
but can not solve this problem (see [7, 12, 17]).

In this paper, we introduce an artificial visual system in which differerent processes
are realized that support each other:

2D Feature Extraction: We have developed an image representation in form
of 2D Primitives. These Primitives are multi-modal local descriptors that carry
information about visual aspects such as orientation, contrast transition, colour
and optic flow in a condensed way (see figure 2 and [13]).

2D Grouping: The 2D Primitives are local descriptors that become organised
into higher entities in form of collinear groups. In the grouping process a linking
structure is establised that makes use of a criterion that utilises collinearity as
well as similarity in colour and contrast transition.

3D Feature Extraction by Stereo: We use the 2D-Primitives to find stereo cor-
respondences. In this way we compute 3D Primitives from the 2D Primitives.
The 3D Primitives carry information about 3D position and 3D orientation in
addition to the information covered by the generating 2D Primitives.

Interaction of Stereo and Grouping: Finally, the group structures are used for
improving stereo leading to coherent groups in 3D using the Stereo Collinearity
Constraint.

The paper is structured as follows: In section 1 we briefly describe our processing
of multi-modal Primitives. A more detailed description can be found in e.g., in [13].
The 2D grouping process is described in section 2. The multi-modal stereo is described
in section 3 (further details can be found in [12, 17]) and the integration of grouping



Figure 2: Top left: Schematic representation of a basic feature vector. Position is
coded by (z,y), orientation by @ (or direction as d respectively), phase by ¢ (or p
when associated with a direction), and color by (c;,c,). Bottom left: Frame in an
image. Right: Extracted feature vectors.

and stereo is described in secction 4. Results on artificial and real scenes are given in
section 5.

1 Feature Processing

In this section we briefly describe the coding of information (orientation, phase and
color) in terms of multi-modal Primitives.

Position, Orientation and Phase: We use a systematic mathematical description of
geometric and structural information of grey level images based on the monogenic sig-
nal [6]. The monogenic signal performs a split of identity, i.e., it orthogonally divides
the signal into energetic information (indicating the likelihood of the presence of a
structure), its orientation € and its structure (expressed in the phase ). Features are
extracted at energy maxima in local image patches where the position is parameterized
by x (see figure 2).

The phase can be used to interpret the kind of contrast transition at this maximum
[11], e.g., a phase of 7 corresponds to a dark—bright edge, while a phase of 0 corre-
sponds to a bright line on dark background. The continuum of contrast transition at an
intrinsic one-dimensional signal patch can be expressed by the continuum of phases.
Color: The distribution of phases in natural images has been investigated in [14]. There



exist clear peaks at ¢ = 7/2 and ¢ = —7/2 which show that edges (i.e., intrinsic 1-
dimensional signals with odd symmetry) are the dominant one-dimensional structure
in natural images while line structures (i.e., intrinsic 1-dimensional signals with even
symmetry) are less dominant. Our model for an intrinsically one—dimensional signal
patch (see figure 2) therefore describes edges. !

To integrate the modality color at intrinsically one—dimensional image structures
we perform an averaging in the RGB color space over the left and right part (’left’ and
‘right’ defined by the associated line segment) of the image patch (see figure 2).

We get two vectors ¢; = (ck,c},c}) and ¢, = (¢}, ¢}, cp), representing the red,
green and blue values of the left and right side of the edge.

Therefore, the basic feature vector represented by our Primitives has the form

€= (X)Ha(pa (clycr))'

2 Establishing Groups by a multi-modal Collinearity
Criterion

We want to define groups of locally consistent Primitives in the image. We are in-
terested in Primitives outlining major structures of the scenery, and subsequently of
the images processed. We assume that any structure of the scene having a projective
manifestation in the image has a representation involving a set of consistent Primitives
(in the following called group). From this assumption follows naturally that Primitives
showing inconsistency with their neighbourhood might be considered as ambigious in-
formation likely to be caused by erroneous feature extraction. In this section, we want
to define the meaning of this consistency in the multi-modal space of the features.

In this work, we consider Primitives defining local oriented structures (e.g., lines
and step edges). Therefore, we are looking for constellations defining global con-
tours. Consistency between two Primitives is defined by two criterions: Collinearity
and Modality Consistency (using the modalities colour and contrast transition). Incon-
sistency according to these two criterions indicates that the two Primitives are either
expressions of independent structures or caused by the erroneous feature extraction
process. In the following formulas we will consider a pair of Primitives ey, €2 such as
ey € N(ep), N being a large enough neighbourhood. We will consider the coordinate
system centered in e; and oriented so that (e;) = 0. We want to define relation-
ships between e; and e, defining possible structures for e; and we code them as links
I(e1,e2) between them. We associate a confidence c[l(ey,e2)] to a link which is an
estimate of the probability for the two primitives to be part of the same structure.

2.1 Collinearity Criterion

Our collinearity criterion is based on two factors: Proximity and good continuation.

1 Although there is significantly more edge like structures than line like structures in natural images we
can also make use of an extra line model to describe intrinsically one-dimensional image patches with phase
close to 0 or 7r. The introduction of this model makes only small difference for stereo matching (but is
important in other contexts). We neglect this issue here.



Proximity Criterion

Figure 3: Proximity Criterion: Surface plot of the proximity function with the position
of the second Primitive relative to the first

2.1.1 Proximity

Our proximity criterion take evaluate how given the position of the primitive ey rel-
atively to the primitive e; a link I(eq, e3) is likely to exist. The idea here is that the
closer the second primitive is to the first, the closer it has to be to the line defined by the
orientation of e;: parallel segments cannot be collinear for example. Also at this very
local level we only want to consider low curvatures between the two primitives. To
take these aspects into account we define a distance function between two Primitives
by

1 1
1 + eMe|-maa([y08)) 1 + eyl —07)

ey

Cposition (ela e2) =

with A = 30 being the steepness parameter. A distance of 1 in the axis means twice
the size of the patch generating the Primitives, and zero meaning the generating image
patches of the two Primitives are in contact or overlapping. Figure 3 displays the
distance function.

2.1.2 Good Continuation Criterion

If we consider the two modalities e; and es, the continuity in terms of orientation can
be defined as a minimal curve joining e; and ey. This curve ideally joins the positions
A and B and is tangent to the orientation of e; and es in those points.

In the following we consider the coordinate system O, u, v (see also figure 4) such
as:



Figure 4: Good Continuation criterion: here we see that we can define an unique circle
from the positions of e; and ey and the orientation of e;. This circle gives us an
estimate for the orientation of es



e (O being the location of the first Primitive e,
e 1y the vector from e to e;
e v normal to u

The axis are normalized so that a distance of 1 is the distance between e; and es in the
image.

Consequently, the position of e; is defined by the vector p(0) = (0,0) and ez by
p(1) = (1,0) We can define a unique circle from the positions of e; and ey and the
orientation €; of e;. This circle gives us an estimate for the orientation of ey (see
figure 4). Actually it mus hold 82 = —6;. An estimation of the likelihood of the
curve defined by the two Primitives is then defined using the difference between this
estimated orientation and the measured one (see figre 4).

p'(1) = -p'(0) = —tan(61) 2
Coll(ey, ez) = |tan(bz) + tan(6,)] 3)

2.2 Modality Continuity Criterion

The consistency over the color and phase modalities is calculated using the similarity
functions for phase simg(e1,e2) and colour simc (e, e2) already used in [12, 17].
Here we assume that modalities are continuous over a given 3D feature. Consequently,
they should be continuous over their manifestation in the image. We say that a link
I(e1,e2) exists when the similarities in the modalities are high enough. Consequently
we define an estimate for the consistency of the pair c[l(e1, e3)] by

c[l(e1,e2)] = Coll(eq, es) - (simy(e1,e2) + sime(er, es)) . 4)

An example of the links confidences for our test sequences can be seen in figure 5.

3 Multi-modal stereo

To create 3D information from the 2D Primitives by stereo we need to match Primitives
in the left and right image. In [12, 17] we have derived a matching function makes use
of information in all modalities. A pair or Prmitives (e!, s(e')) represents a Primitive
in the left image and its correspondent in the right image (s(e!) being the matched
Primitive in the right image). From such a correspondence we can compute a 3D
Primitive E by a reconstruction function R (see, e.g., [5]):

E = R(e!, s(eh)) )]

Moreover, every Primitive has a list of potential stereo-correspondences containing
all Primitives of the second image intersecting the epipolar line drawn from the first
Primitive. The i-th entry of the list is denoted by s;(e!). In [12, 17] only the best cor-
respondence is used to generate the 3D-entity. The decision between several potential



Figure 5: The potential links between the primitives are shown by the orange lines.
The darker the line, the higher the confidence in the link.

matches is made comparing similarities in local modality measurements of both primi-
tives. We will call this estimation of the quality of a match the internal confidence and
note it ¢[s(e)]: it is all that can be estimated using the locally available information of
the Primitive.

Stereo Matching based on the internal confidence is naturally ambiguous, for exam-
ple repetitive structures may occur in a scene leading to similar Primitives for distinct
scene elements. Also due to projective distortion between both images the actual sim-
ilarity might be misleading: for example differences in orientation and colour can be
expected in both images according to the different perspective views of the left and
right image. This difference of course cannot be anticipated in a local way leading to
sub-optimal similarity estimation. Consequently, the internal confidence on its own is
a naturally inaccurate and ambiguous measure.

4 Combining Grouping and Stereo

In this paper, we want to improve the decision based of local information by taking
into account the consistency over the Primitive’s neighbourhood utilising the grouping
process defined in section 2. The core idea is to compare how similar neighbourhood
of the potential matches are to the neighbourhood of the original Primitive to define
an external confidence in the match (written c.;¢[s(e)]). The neighbourhood is here
considered as the network of links associated to the Primitive.
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Figure 6: The BSCE criterion: Given a stereo correspondence s;(e;), the BSCE can
be calculated for a primitive e, in the neighbourhood, depending on I(e1, e2), s;(e2),
and !'(s;(e1), s;j(e2)). The bold line represent the event we want to confirm, and the
dashed lines the external events which, in conjonction, confirms it.

4.1 Stereo-Consistency Element

We considered that consistency in Primitives was not incidental but a consequence
of the scene structure and therefore this consistency should be conserved by stereo
(except, of course in case of occlusion). We want to define a stereo correspondence
mechanism handling this external confidence based on the following principles:

Postponement of early hard Decision: Differing from (5) we want postpone
the decision of a succesful match and allow for multiple correspondences leading
to mutiple potential 3D matches. The final decision is done after the grouping
process considering the Stereo Collinearity Constraint.

Uniqueness leads to Competition: As stereo correspondences are mutually ex-
clusive competition needs to be included in any correction/adaptation process.

Weighting according to Group Consistency: Over one Primitive neighbour-
hood, the relative weight of the stereo correspondence of a neighbour is propor-
tional to the consistency of the Primitive with this neighbour (i.e. to the link
confidence).

Weighting according to Stereo Consistency: The influence of a Primitive over
its neighbours is proportional to the confidence in its stereo-correspondences
(consequently a Primitive with only poor stereo correspondences will do little to
help stereo decisions).

We now define the minimal stereo event involving a primitive neighbourhood:
Given two Primitives el and el in the left frame such as a link I(eF, el) can be
defined between them, if we consider the hypothesis that s;(eF) is the correct stereo-

correspondence for e in the right image:
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Figure 7: Since one Primitive can have multiple matches it can be verified by multiple
BSCEs. The dotted and bold structures each represent one BSCE.

if there exists a link /(s;(el), s(el)) between this stereo-correspondence and the

public stereo-correspondence s(eX) of the second primitive eZ

then the hypothesis s(el) is confirmed

else this hypothesis is contradicted.

We call this the Basic Stereo Consistency Event (BSCE) (see figure 6).

4.2 BSCE confidence

We want to associate a confidence to the BSCE event. Here we are not working with
certainties, but with potential links and stereo-correspondences. Consequently we want
a continuous formulation of the BSCE, giving us a confidence in its realization. We
propose in this section to draw this from the previous confidences of the basic events
involved.
First, we define a set of function that are used at different places:

f9(ar,...,an) = (ar-...-ap)= Geometric Mean

fi(ay,...,ap) = Sfedtn Arithmetic Mean

The geometric mean represents a harder connection between events than the arith-
metic mean. The multiplication works like a “logical and” (A) while the arithmetic
mean is a softer connection. We apply the arithmetic mean when different cues co-
operate “democratically” while the geometric mean is used when the non-occurence of
one event supresses all others.

Now the confidence associated to a BSCE can be estimated from the known confi-
dences as follows:

c[BSCE;(er,e3)] = f¢ (cll(er, e3)], c[s(e5)] cll(si(e1),5(e3))])  (©)

where f9 represents the geometric mean.
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4.3 Neighbourhood Consistency Confidence

Equation (6) gives us how a Primitive stereo correspondence is consistent with our
beliefs on another Primitive stereo properties. We now want to estimate how this cor-
respondence is consistent with the whole neighbourhood of the Primitive. Now if we
consider a primitive el and an associated stereo-correspondence s;(el), we can inte-
grate this BSCE confidence over the neighbourhood of the primitive (IV, elL). We call
this confidence the external confidence in the stereo-correspondence:

1
Cezt[si(ef)] =T~
| e{‘l

Z c[BSCE;(el, ef)] @)

L
ey ENef

This gives us a confidence on how consistent is a stereo-correspondence with the
stereo of the Primitive neighbourhood. Note that equation 7 represents a non—local
stereo similarity!

4.4 Outlier Removal Process

In the outlier removal process we are after the reliable matches (i.e., we want to elim-
inate possibly false matches). The outlier removal process can be used where a small
number of reliable features is used to compute the motion between frames (in this case
we need reliable 3D-2D matches).

Our actual system rank the potential correspondences of a Primitive depending on
their similarity (over all modalities) with this primitive, and the best one (or public
one) is assumed to be the correct correspondence. We propose here to threshold the
external confidence of those potential correspondences in order to remove those in
contradiction with their neighbourhood current assumptions (i.e. neighbours public
correspondences). We expect this way to remove wrong correspondences, otherwise
impossible to discern from correct ones using local modalities. Figures 8 and 9 show
the result of the outlier removal process.

5 Results

We have applied this outlier removal process to two stereo sequences. The first one
(fig. 8) is a simple artificial scene generated using openGL. The second scene has been
recorded near Lippstadt (Germany) from a pair of calibrated cameras fixed to a car
(with the cooperation of HELLA). This second scene (fig. 9) represent more accu-
rately the standard conditions in which a natural system has to operate (low saturation,
highly textured surfaces, etc...). Both figures show the left and right images on the
top row. On the middle row, the images show the primitives extracted. The red lines
reach to the position of their current public correspondence in the right image. Those
pairs (from the public correspondences of each primitive) are used to reconstruct 3D
entities. The lower figure show a reprojection of those 3D entities on the horizontal
plane (the horizontal axis is the Z axis, and the vertical axis is the X axis here). The
left two pictures show the original public correspondences and reconstruction using
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Figure 8: We apply our external confidence thresholding to this artificial scene. The left
two images represent the results without thresholding, and the right ones with thresh-
olding. In both case, the middle image show the primitives extracted by our program,
and the lines reach to the position of their current public correspondence in the right
image. The lower one show a orthographic reprojection of the reconstructed 3D entities
(from those public stereo pairs). This shows the XZ (horizontal) plane.
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Figure 9: This figure show the same results as 8 with a natural stereo scene this time.
The middle images show here a zoom in of the primitives. Here the correspondences
of the primitives created by the texture are being removed, while consistent lines are
being preserved.
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only internal confidence. The two pictures on the right of the figures show the public
correspondences and the resulting 3D reconstructed entities after a thresholding of the
correspondences over their external confidence (the threshold is of 0.075 in both cases).

On the figure 8 most of the wrong correspondences are being removed through
this process. More interestingly on the figure 9, showing the difficult natural scene, a
considerable amount of noise is being removed. In the magnified view of the corre-
spondences, we can see that most random correspondences from primitives extracted
from texture artifact are being removed, while consistent correspondences are pre-
served. Note that in both case this improvement is gained only by thresholding the
external confidence, and without any additional thresholding on the actual similarity of
the Primitives.

6 Summary and Outlook

In this paper we have introduced a non-local stereo similarity function that makes use
of a grouping process. We could show that a good matching could be achieved using
a non-loacl criterion. We coild further show that a large number of outliers could be
removed by using the contextual information coded in the grouping process.

The combination of grouping processes processes in the 3D and time domain has
been recognised as a field which has only been addressed by a few scientists. on (see,
e,g., [18]). However, we think that grouping can have a significant impact on the mod-
elling of processes such as stereo, structure from motion and motion estimation. We
see the combination of grouping processes with low—level feature processing (such as
stereo) as we as higher cognitive functions such as object categorisation as an emergent
field that can overcome weaknesses of today’s artificial visual sysems (for an overview
see [15]).
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