
Semantic Pose using Deep Networks Trained on Synthetic RGB-D

Jeremie Papon and Markus Schoeler

Bernstein Center for Computational Neuroscience (BCCN)

III. Physikalisches Institut - Biophysik, Georg-August University of Göttingen

jpapon@gmail.com mschoeler@gwdg.de

Abstract

In this work we address the problem of indoor scene un-

derstanding from RGB-D images. Specifically, we propose

to find instances of common furniture classes, their spatial

extent, and their pose with respect to generalized class mod-

els. To accomplish this, we use a deep, wide, multi-output

convolutional neural network (CNN) that predicts class,

pose, and location of possible objects simultaneously. To

overcome the lack of large annotated RGB-D training sets

(especially those with pose), we use an on-the-fly render-

ing pipeline that generates realistic cluttered room scenes

in parallel to training. We then perform transfer learning on

the relatively small amount of publicly available annotated

RGB-D data, and find that our model is able to successfully

annotate even highly challenging real scenes. Importantly,

our trained network is able to understand noisy and sparse

observations of highly cluttered scenes with a remarkable

degree of accuracy, inferring class and pose from a very

limited set of cues. Additionally, our neural network is only

moderately deep and computes class, pose and position in

tandem, so the overall run-time is significantly faster than

existing methods, estimating all output parameters simulta-

neously in parallel.

1. Introduction

In order for autonomous systems to move out of the con-

trolled confines of labs, they must acquire the ability to

understand the cluttered indoor environments they will in-

evitably encounter. While many researchers have addressed

the problems of pose estimation, object detection, semantic

segmentation, and object classification separately, compre-

hensive understanding of scenes remains an elusive goal.

To this end, in this work we propose an architecture which

is able to perform all of the above tasks in concert using a

single artificial neural network.

Classification in cluttered indoor scenes can be ex-

tremely challenging, especially when trying to classify in-

stances of objects which have never been observed before.

Rotation 

Output

Class Output

Position 

Output

Multi-

Output

Deep 

CNN

 2x2 

Max Pool

FC Layer

SoftMax

Conv. 7x7

Conv. 3x3

 2x2 

Max Pool

Conv. 1x1Conv. 3x3Conv. 5x5

Conv. 1x1Conv. 1x1

DepthConcat

 2x2 

Max Pool

Conv. 1x1Conv. 3x3Conv. 5x5

Conv. 1x1Conv. 1x1

DepthConcat

FC Layer

FC Layer

FC Layer

FC Layer

FC Layer

ConcatConcat

Synthetic Input

Object Proposals

Estimated 

Semantic Pose

Estimated Semantic Occupancy
toilet

table

sofa

nightstand

monitor

dresser

desk

chair

bed

bathtub

none

Figure 1. Overview of our approach. Normals for a scene are effi-

ciently calculated using [7], proposals are generated using [8], and

then fed through our synthetically trained CNN. Outputs are then

consolidated using non-maximum suppression, leading to a scene

class & pose heat map and a scene rendered with generalized mod-

els.

Considering only 2D color information only compounds

this problem, as clutter can easily cause vast changes in the

visible signature of otherwise distinguishable items. 3D ge-

ometric features, on the other hand, tend to be less suscep-

tible to clutter and have (especially for furniture) geometric

features which generalize well across the class. As such,

in this work we use 3D geometric features in addition to

standard RGB channels.

Pose estimation in-the-wild is another difficult problem,

as it requires estimating pose for object instances which

have never been observed before. For example, consider

the task of helping a human to sit down in a chair - to be of

any help, one must be able to determine pose of the back-

1774



Figure 2. Example of estimated pose output (overlaid as a generic

orange model) for chairs from the test set. Pose here is shown

using a generic chair model. None of these test models were ob-

served in training.

rest, the seat area, and the supporting legs - even on types

of chairs that one has never seen before. In this work we

will show that just such a task is possible, to a surprising

degree of accuracy, using a wide, deep, multi-stage CNN

trained on synthetic models. In fact, it is possible to do so

even with wholly unobserved types of chairs - for example,

in Fig. 2, none of the chair models were seen in training.

Moreover, we shall demonstrate that it is possible to esti-

mate such poses even in complex cluttered scenes contain-

ing many classes of furniture (e.g. see Fig. 3).

Our approach, outlined in Fig. 1, uses a relatively com-

plex CNN architecture to solve our three sub-tasks; class-,

pose-, and position-estimation of objects, concurrently. One

unusual aspect of our network is that it recombines class

output back into the network layers which calculate pose

and position, allowing the network to accurately determine

pose for multiple classes within a single architecture. Fur-

thermore, we are able to train this large network by using

synthetic rendered RGB-D scenes consisting of randomly

placed instances from a dataset of thousands of 3D object

models. Our training scenes are generated on the fly on

the CPU and a secondary GPU as we train on the primary

GPU, allowing us to have a training set of virtually unlim-

ited size at a completely hidden computational cost. Finally,

we use a small number of transfer learning iterations using

a small set of real annotated images to adapt our network to

the modality of real indoor RGB-D scenes.

To demonstrate the effectiveness of our approach, we

perform a variety of experiments on both synthetic and real

scenes. Our pose estimation and classification results out-

perform existing methods on a difficult real dataset. We also

present qualitative and quantitative results on both real and

synthetic data which demonstrate the capability of our sys-

tem to distill semantic understanding of scenes. Moreover,

we do these tasks jointly in a single forward pass through

our network, allowing us to produce results significantly

faster than existing methods.

1.1. Related Work

As we propose to solve multiple problems in tandem in

this work, there is a substantial body of work which could

be considered related. We will restrict ourselves to those re-

cent works which deal exclusively with RGB-D data and/or

use CNNs to accomplish one or more of our sub-tasks.

As a first step in a pipeline to parse full scenes, the image

is typically broken down into small “object proposals” to be

considered by other methods. For example, in Silberman et

al. [12] they perform an over-segmentation, and then itera-

tively merge regions using classifiers which predict whether

regions belong to the same object instance. These are then

classified using an ensemble of features with a logistic re-

gression classifier.

Couprie et al. [1] take a different approach, instead us-

ing a multi-scale CNN to classify the full image, and then

use superpixels to aggregate and smooth prediction outputs.

While this allows them to extract a per-pixel semantic seg-

mentation, they fail to achieve very high scores in impor-

tant classes, such as table and chair. Hariharan et al. [6]

also predict pixel-level class associations, but classify re-

gion proposals instead of the full image. They also use a

CNN as a feature extractor on these regions, before clas-

sifying into categories with an SVM and aggregating onto

a coarse mask. They then use a second classifier stage on

this coarse mask projected on to superpixels to extract a de-

tailed segmentation. While these results are interesting, we

question the overall utility of such a fine grained segmenta-

tion, as it does not provide pose with respect to a class-level

representation.

Song and Xiao [14] use renderings of 3D models from

many viewpoints to obtain synthetic depth maps for training

an ensemble of Exemplar-SVM classifiers. They use a 3D

sliding window to obtain proposals during testing and per-

form non-maximum suppression to obtain bounding boxes.

While this 3D sliding window approach is able to handle oc-

clusions and cluttered scenes well, it is very expensive (tens

of minutes per image), requiring testing of many windows

on many separate detector classifiers.

Guo and Hoiem [3] predict support surfaces (such as ta-

bles and desks) in single view RGB-D images using a bot-

tom up approach which aggregates low-level features (e.g.

edges, voxel occupancy). These features are used to pro-

775



pose planar surfaces, which are then classified using a lin-

ear SVM. While they provide object-class pose annotations

for the NYUv2 set which we use in this paper, they do not

classify objects or their pose themselves.

Object detection in RGB-D is addressed directly by

Gupta et al. [5] using a CNN which classifies bounding-

box proposals in a room-centric embedding. As with other

approaches, they use superpixels to aggregate their clas-

sifier results in order to get class instance segmentations.

Lin et al. [10] use candidate cuboids, rather than bound-

ing boxes, and classify them using a CRF approach. While

they achieve good overall classification performance, they

merge similar classes (such as table and desk), and while

their cuboids give them spatial extent of objects, they do

not give pose.

In contrast to the above methods, we do not need ex-

pensive and difficult to obtain annotated ground truth data

for training. Instead, we use synthetic renderings of scenes

containing 3D models pulled from the Internet. While these

models need to be aligned to a common pose, this is a rel-

atively inexpensive operation which has already been per-

formed in the ModelNet10 database [16].

The only other work to address pose directly, that of

Gupta et al. [4], suffers from using unrealistic training data

- training instances are single objects rendered in empty

space. In contrast, our synthetic data is cluttered and

contains realistic noise, as we use a camera model which

closely replicates Kinect-like sensors. Because of this, our

trained networks are far more effective on real data - we

test on the full NYU dataset, while they must leave out in-

stances that have many (>50%) missing depth pixels. Ad-

ditionally, since we work with full scenes rather than single

object instances, our model is trained on and can thus han-

dle inter-object occlusions, rather than only self-occlusions.

Moreover, their network contains separate top-level layers

for each object class, while we only need a single output

network for pose for all classes. Their method is also com-

putationally demanding, requiring about a minute per image

per class, while ours runs in a few seconds for all classes.

2. Synthetic RGB-D Scenes

One of the main obstacles to using deep CNNs on RGB-

D data is the lack of large annotated datasets. This is es-

pecially true for pose data, where annotation of a set of the

size required for training a deep network is simply not fea-

sible. Synthetic data, on the other hand, provides labeled

segmentations and exact pose for free, but has yet to find

widespread use, likely owning to the difficulty of rendering

photo-realistic scenes. Fortunately, RGB-D data lends itself

to the use of synthetic data due to the simplicity with which

depth data can be rendered realistically. One only needs

to simulate the active model of the sensor, and can largely

ignore lighting, textures, and surface composition.

A.

B.

C.

D.

Figure 3. Example of a randomly generated synthetic scene using

our rendering pipeline (left) and a scene from the NYUv2 dataset.

The rows show A. Ground truth labels, B. RGB Channel, C. Depth

Channel, D. Normals calculated using [7]. The left column shows

our synthetic data, and the right an image from NYUv2 [12].

Our synthetic scenes are produced by sequentially plac-

ing objects models at random in a virtual room. As each

object is placed, we ensure that its mesh does not intersect

with other objects or the room surfaces. Additionally, we

use context cues to increase the realism of our scenes - large

furniture (e.g. sofas or beds) is biased to occur near walls,

chairs are biased to occur near tables and desks, and mon-

itors are always placed on top of desks. We also randomly

place a light source on the ceiling in the room to simulate

shadow effects in the rendered intensity images. An exam-

ple random scene is shown in Fig. 3. The dataset used in

this work will be made available for use by the community,

along with code for generating more random scenes on the

fly at training time.

2.1. Rendering & Camera Model

We build upon the BlenSor sensor simulation toolbox

[2] to generate realistic RGB-D renderings of our randomly

776



generated scenes. The ray-tracing used allows us to repro-

duce the real geometry of the Kinect sensor, faithfully sim-

ulating the projection of an IR pattern onto the scene and

observation of the returns. As Kinect-type sensors will gen-

erally fail when reflections are present, we can safely limit

our ray-tracing to a single hop. Additionally, we simulate

the 9x9 correlation window required by the Kinect to pro-

duce depth measurements [13] and add Perlin noise to the

disparity measurements. We also use a standard Blender

pipeline to render accompanying RGB images, though these

are not photo-realistic due to a lack of textures on the object

models and a simplified lighting model. As we only use the

intensity channel, we found this simple RGB rendering to

be sufficient, especially given that we use transfer learning

to adapt to real sensor images.

2.2. Models

Our models must be aligned to a reference pose, pre-

venting us from simply pulling CAD models from the In-

ternet. Fortunately, the Princeton ModelNet10 dataset [16]

provides a varied set of pose-aligned models for ten ob-

ject categories: bathtub, bed, chair, desk, dresser, moni-

tor, nightstand, sofa, table, and toilet. We use the stan-

dard training/testing split provided. As the models are not

scale-normalized, we choose a reasonable range of values

per class, and rescale models randomly to fall within these

ranges. Models are inserted on the floor or a supporting

surface of our synthetic rooms at random locations with ran-

dom rotations around the axis perpendicular to the floor.

3. Network Architecture

We tested several different network configurations, all of

which involved at least two Krizhevsky-style [9] (i.e. Conv-

ReLU-Pooling) convolutional layers at the input. Our most

successful model, shown in Fig. 5, then uses a succession

of Network-in-Network (NiN) layers [11], in a configura-

tion similar to the recent “Inception” architecture [15]. We

then use separate multilayer perceptrons with two hidden

layers to classify. Additionally, we connect our class output

back into the second hidden layer of our pose and position

classifiers.

3.1. Input Preprocessing

The input to our network is a 96x96 real-valued image

consisting of five layers - an intensity layer, a depth layer,

and three layers representing the surface normal vector (e.g.

(normalx, normaly, normalz)). Depth values are used di-

rectly (in meters) and intensity values are computed from

RGB using CIE 1931 linear luminance coefficients. While

hue information is likely useful, our synthetic models are

not colored, so we chose not to use it. We exploit the struc-

tured nature of RGB-D data to efficiently compute surface

normals using the method of Holzer et al. [7]. All channels

Bed

Table

Bathtub

None

TableNone

Chair

Sofa

Figure 4. Example of bounding box proposals on synthetic data

(top) and the NYUv2 Dataset[12] (bottom).

are zero centered using mean values computed on a random

sample of proposed bounding boxes from our training set.

3.2. Proposal Generation

Bounding box proposals are generated using the

Geodesic Object Proposals (GOP) of Krhenbhl and Koltun

[8]. The method identifies level sets in geodesic distance

transforms for seed points which are placed using classifiers

optimized for object discovery. The method produces accu-

rate and consistent bounding boxes at a low computational

cost (approx. 1 second per image). Examples of proposed

bounding boxes on our synthetic rendered images as well as

on the NYUv2 images are shown in Fig. 4. We do not con-

sider depth when generating our proposals, as we did not

find it to be helpful in practice - a result supported by other

researchers [12].

3.3. Network Layers

We tested four models in total: two “standard”

Krizhevsky-style CNNs, and two larger neworks with

“inception”-style layers. The first, baseline, model is a stan-

dard CNN network closely resembling the successful model

of Krizhevsky et al. [9] - it consisted of five Conv-ReLU-

Pooling layers, followed by two fully-connected (FC) clas-

sification layers for each output layer. The second model

777



Conv. 7x7 [64]

Conv. 1x1 [64] Conv. 3x3 [128] Conv. 5x5 [32]

n_x n_y n_z
depth

intensity

Conv. 3x3 [128]

Conv. 1x1Red. 1x1 [64] Conv. 1x1Red. 1x1 [16]

 2x2 Max Pool

 2x2 Max Pool

Depth Concat.

Conv. 1x1 [128] Conv. 3x3 [256] Conv. 5x5 [48]

Conv. 1x1Red. 1x1 [128] Conv. 1x1Red. 1x1 [16]

 2x2 Max Pool

Depth Concat.

FC Layer [300] FC Layer [300] FC Layer [300]

FC Layer [100]

SoftMax

Class Out [11] Concatenation Concatenation

FC Layer [150]

SoftMax

Rot. Out [30]

FC Layer [150]

SoftMax

Pos. Out [30]

Figure 5. Network architecture of our most successful model.

Numbers in brackets are either number of filters (conv. layers) or

nodes (FC layers). The input consists of 96x96 5 channel images

with normals, intensity, and depth.

takes the class output and reconnects it back into the fully

connected layers for pose and depth estimation. The third

model expands the network by replacing the top convo-

lutional layers with two inception-style[15] network-in-

network layers. Lastly, the largest model increases the num-

ber of nodes even further by adding another inception layer,

as well as an additional FC multi-layer network branching

off from the first inception layer and reconnecting as an ad-

ditional input to the classification FC layers. Dropout was

used on the convolutional layers as well as the fully con-

nected (FC) layers of the perceptrons in all models to limit

over-fitting. Our most successful model is shown in Fig.5.

4. Training

We train our networks to predict three outputs: a class

label, a rotation around the floor normal axis, and a distance

from the camera. Combined with a bounding box in the

image plane, these allow us to generate a full description

of the pose of furniture with respect to the set of standard

reference models used by Guo and Hoeim [3]. We chose to

predict binned rotation and depth values rather than perform

a regression as we found that, in practice, the training was

much more stable for classification, even with the relatively

large number of bins (n = 30, i.e. 12 degrees per bin) used.

We use a standard SoftMax cross-entropy loss for the class

output, but adopt a soft-binning scheme for the pose and

depth outputs. This takes a weighted (by γ) average of the

local bins around the ground truth in the loss function, in

order to help with poses which lie near bin boundaries:

Li = − log

(

∑1

k=−1
γke

fyi+k

∑

j e
fj

)

:
1
∑

k=−1

γk = 1. (1)

4.1. Synthetic Data

While we can generate unlimited data at training time,

for comparison purposes we trained on a fixed set of 7000

randomly generated scenes, consisting of a total of 59784

instances from our set of 2842 pose-aligned models from

the ModelNet10 dataset [16]. There is no constraint on

the number of synthetic scenes possible - we only limited

ourselves due to time constraints and in order to compare

models. Our validation set was generated randomly during

training. Additionally, we generated a test set of 1000 ran-

dom scenes, using a separate set of 812 models from the

same dataset. For training, we extracted bounding boxes

using GOP and selected those that had 70% overlap with

the ground truth, leading to a total of 300,000 training in-

stances. We scale bounding box proposals to fit our input

size by fitting the larger dimension to our window size and

zero padding the other.

Additionally, we randomly selected an equal number of

“none”-class instances for training from the set of proposals

containing less than 30% of an object ground-truth box. To

avoid biasing our networks, we assign uniformly distributed

random poses to these, and assign depths as the centroid

of points in the window. Over the course of training, pro-

portion of “none” exemplars used was gradually reduced to

help with pose and depth estimation performance for the

other classes. Additionally, we experimented with training

using a loss function specific to only one task (class, pose

or depth) after training on the full combined task, but found

no benefit to doing so - the specialized loss function (and

gradients computed from it) did not allow the models to in-

crease their performance in the selected task in a significant

way.

Training times ranged from approximately 12 hours for

the simpler models to up to 48 hours for the most complex

model on a Titan X GPU. For the largest model we were

constrained by memory (12Gb) to using a relatively small

batch size - we would expect better performance with larger

batches.

778



toilet

table

sofa

nightstand

monitor

dresser

desk

chair

bed

bathtub

none

Figure 6. Qualitative pose and classification results from our synthetic test set. The top row shows our estimated semantic heatmap, while

the bottom row shows pose and classification using generic models. The models in the test set are distinct from those used in training - this

means that poses here are general class-based pose, rather than specific model-based.

4.2. Transfer to Real Data

In order to improve performance on the NYUv2 dataset

[12], we use transfer learning to adapt our synthetically

trained networks to the new, more difficult, domain. We

experimented with three strategies for adaptation: 1. Only

allow the high-level layers in the network to adapt, keep-

ing the two lowest-level layers fixed as a “feature-extractor”

(we choose two layers based on [17]), 2. Allow all levels of

the network to adapt, and 3. Alternate training iterations be-

tween full-adaptation iterations and iterations on synthetic

data, with the proportion of synthetic data being reduced

over the course of training. To avoid over-fitting as well

as to allow adaptation of the none-class, we use bounding

box proposals for training (in addition to the ground truth

boxes).

5. Experimental Evaluation

In this section we evaluate the performance of our trained

models on each sub-task independently. We show results for

both our synthetic test set as well as on the NYUv2 dataset

of Silberman et al. [12]. When possible, we compare to the

state of the art, and show how our method both outperforms

and is subject to fewer constraints - primarily because we

train directly on cluttered noisy data. We also evaluate our

different network architectures on our own synthetic test set.

Finally, we present qualitative results which show the ability

of our method to provide semantic understanding and pose

for full scenes.

5.1. Architectures

We first compare results from our four different network

architectures of increasing complexity. In Fig.7 we give per-

category and averaged results for all four models on all three

sub-tasks. As can be seen, the difference between the mod-

els is not very substantial - leading us to believe that we

were actually limited by the size of our training set. This

seems to be confirmed by the fact that the larger two net-

works began over-fitting towards the end of their training

runs.

5.2. Classification

To evaluate classification performance, we classify the

ground truth bounding boxes from our synthetic test set and

the NYUv2 dataset. Fig. 7 gives per class accuracy on both

datasets. As an overall measurement for the classification

we use accuracy (ACC) being the fraction of correctly clas-

sified samples across all classes. Per class performance is

measured using the F1-score as the harmonic mean of recall

and precision. Unfortunately, while we would like to com-

pare to other works, each recent work has reported classi-

fication accuracy slightly differently. Lin et al. [10] merge

779



S
y

n
th

et
ic

Task Model ACC bathtub bed chair desk dresser monitor nightstand sofa table
C

la
ss

if
ic

a
ti

o
n

Standard CNN 76.07 30.49 68.90 88.55 56.29 71.87 80.30 57.24 69.94 80.47

77.63 23.63 71.69 90.67 57.80 73.96 85.30 50.46 71.35 82.43

78.33 41.82 71.24 90.70 54.56 70.81 81.70 57.51 74.94 82.18

76.42 45.02 69.82 87.63 53.58 72.48 78.95 52.22 75.44 81.30

Mean AUC bathtub bed chair desk dresser monitor nightstand sofa table

P
o
se

E
st

im
a

ti
o
n Standard CNN 40.30 19.25 40.83 41.40 33.32 29.95 41.29 22.83 53.32 38.92

40.13 23.94 38.49 41.88 33.15 30.66 39.63 23.35 54.27 36.31

39.68 19.65 43.29 40.52 32.47 31.90 42.75 24.55 53.68 35.06

39.70 20.93 43.03 39.70 37.87 35.13 44.65 22.95 55.79 33.84

N
Y

U
v

2

Task Model ACC bathtub bed chair desk dresser monitor nightstand sofa table

C
la

ss
if

ic
a

ti
o
n

51.04 30.30 52.71 70.98 26.76 33.64 19.05 39.32 58.21 39.54

51.44 14.29 55.05 70.93 18.05 34.59 27.45 51.13 55.88 40.68

Mean AUC bed chair desk sofa table

P
o
se

E
st

.

29.66 31.14 27.58 23.30 39.77 29.68

31.87 35.05 28.20 28.73 47.28 32.21

Standard CNN +
Recomb.

Incept. CNN +
Recomb.

Large Incept. 
CNN + Recomb.

Standard CNN +
Recomb.

Incept. CNN +
Recomb.

Large Incept. 
CNN + Recomb.

Incept. CNN +
Recomb.

Large Incept. 
CNN + Recomb.

Incept. CNN +
Recomb.

Large Incept. 
CNN + Recomb.

Figure 7. Performance of the four CNN architectures on synthetic (top) and NYUv2 (bottom) datasets for classification and pose estimation.

Per class classification results show the F1-score, per class pose estimation results show the normalized AUC measure. See Secs. 5.2 and

5.3 for details. All numbers are in percent.

similar classes (e.g. table and desk), and only report an over-

all number. Couprie et al. [1] only report pixel-wise accu-

racy, which we do not compute, as we do not need such a

fine-grained segmentation. Gupta et al. [4] do not evaluate

their classification independently and instead give detector

average precision (AP).

5.3. Pose

To measure absolute pose estimation performance, we

evaluate the estimated pose per class against ground truth

poses. As all objects are located on the floor plane (or in

the case of monitors, a horizontal supporting surface), we

need only estimate a rotation around the floor normal. For

our synthetic set we compare against the ground truth poses

used to render the data, while for the NYUv2 dataset we use

the annotations of Guo and Hoeiem [3]. We only include

results for the 5 of our trained classes for which Guo and

Hoeiem provided annotation (bed, chair, desk, sofa, and ta-

ble). For both synthetic and real datasets, we use the ground

truth boxes as our input to isolate pose estimation perfor-

mance.

To compute a real valued pose and depth we extract the

value of the maximum bin and its two neighbors, and com-

pute a weighted sum using the bin centers, i.e.

θ =

∑1

i=−1
θhist(κ+ i) ∗ θκ+i

∑1

i=−1
θhist(κ+ i)

: κ = argmax
k

θhist(k),

(2)

where θκ is the angle at the center of bin κ, and θhist(κ)
is the soft-maxed value of bin κ. We only consider the lo-

cal distribution around the max bin so that our estimates

are not corrupted by multi-peaked histogram distributions

(which occur due to rotational symmetries). We should also

note that 90 degree rotational symmetries are an unavoid-

able source of error for some of our classes, especially ta-

bles and night stands. To evaluate pose error, we adopt the

measure of [4], which plots the accuracy vs increasing al-

lowed angular error δθ. To retrieve a scalar performance

measure for the pose estimation we use a normalized Area-

Under-Curve (AUC) for threshold values up to 15 degrees.

For overall performance we average the values weighted

by number of instances per class. As seen in Fig. 8, we

strongly outperform the state of the art [4] in two classes,

with slightly poorer performance in the other.

5.4. Qualitative Results

To combine our classifier results, we first use non-

maximum suppression (NMS) to disentangle and remove

multiple detections with an allowed overlap of 20%. Then

we combine all bounding box activations using a per-pixel

max-pooling scheme. Figure 9 shows an example of the se-

mantic heatmaps generated this way, which give a rough

class-wise labeling of the scene. Additionally, we show

placed generic 3D models for each detected object to show

results of pose estimation.

780



HHA ft [real] HHA no ft [real] HHA shallow [real] NNN shallow [real] NNN shallow [syn]NiNNiN large

sofachairbed desktable

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0 10 20 30 40

Figure 8. Pose estimation performance five classes in the NYUv2 [12] test set. We plot accuracy versus allowed angular error δθ . Our

methods (NiN and NiN large - solid lines) outperform the state of the art results of Gupta et al. [4].

Figure 9. Qualitative pose and classification results on the NYUv2 dataset. Within each pair: Top: Original Scene; Bottom: Point-cloud

with generic pose-aligned models inserted. Note that classification and pose-estimation are model independent. For visualization we used

a random model per class.

6. Conclusions

We have presented a method for generating realistic syn-

thetic RGB-D scenes for training vision algorithms to seg-

ment, classify, and estimate pose and position of common

furniture classes. We then showed that these scenes can be

used to train deep CNNs to recognize and estimate pose for

objects of the classes trained on, even if the object mod-

els tested on were not part of the training set; that is, the

networks can be used to solve class-based pose estimation,

rather than specific model-based pose as has been the pre-

vailing standard.

Furthermore, we have also demonstrated with several ex-

periments that networks trained on synthetic RGB-D scenes

can be adapted easily to work on the most challenging real

data available, even if the amount of annotated real data

available is relatively small. Moreover, we have accom-

plished all three tasks within a single network, allowing

understanding of full scenes in a matter of seconds on a

modern GPU. Furthermore, with our pipeline the amount of

training data available is practically limitless, as we gener-

ate the next batch while the current scenes are trained on -

the only limitation is the number and types of models. Fu-

ture work will expand the pose-aligned classes to include

the full ModelNet40 dataset and should add further cues

to generate even more realistic procedural scenes. We ex-

pect this to allow future researchers to extend even further

the complexity and performance of machine learning tech-

niques on RGB-D data.

References

[1] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. Indoor

semantic segmentation using depth information. In First In-

ternational Conference on Learning Representations (ICLR),

2013. 2, 7

781



[2] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree. BlenSor:

Blender Sensor Simulation Toolbox Advances in Visual

Computing. volume 6939 of Lecture Notes in Computer Sci-

ence, chapter 20, pages 199–208. Springer Berlin / Heidel-

berg, Berlin, Heidelberg, 2011. 3

[3] R. Guo and D. Hoiem. Support surface prediction in indoor

scenes. In Computer Vision (ICCV), 2013 IEEE Interna-

tional Conference on, pages 2144–2151. IEEE, 2013. 2, 5,

7

[4] S. Gupta, P. A. Arbeláez, R. B. Girshick, and J. Malik. Align-

ing 3d models to rgb-d images of cluttered scenes. In Com-

puter Vision and Pattern Recognition (CVPR), 2015 IEEE

Conference on. IEEE, 2015. 3, 7, 8

[5] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learn-

ing rich features from rgb-d images for object detection and

segmentation. In European Conference on Computer Vision

(ECCV), pages 345–360. Springer, 2014. 3

[6] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-

taneous detection and segmentation. In European Confer-

ence on Computer Vision (ECCV), pages 297–312. Springer,

2014. 2

[7] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab.

Adaptive neighborhood selection for real-time surface nor-

mal estimation from organized point cloud data using inte-

gral images. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pages 2684–2689.

IEEE, 2012. 1, 3, 4

[8] P. Krähenbühl and V. Koltun. Geodesic object proposals.

In European Conference on Computer Vision (ECCV), pages

725–739. Springer, 2014. 1, 4

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 4

[10] D. Lin, S. Fidler, and R. Urtasun. Holistic scene under-

standing for 3d object detection with rgbd cameras. In Com-

puter Vision (ICCV), 2013 IEEE International Conference

on, pages 1417–1424. IEEE, 2013. 3, 6

[11] M. Lin, Q. Chen, and S. Yan. Network in network. In

First International Conference on Learning Representations

(ICLR), 2013. 4

[12] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

European Conference on Computer Vision (ECCV), pages

746–760. Springer, 2012. 2, 3, 4, 6, 8

[13] J. Smisek, M. Jancosek, and T. Pajdla. 3d with kinect. In

Consumer Depth Cameras for Computer Vision, pages 3–25.

Springer, 2013. 4

[14] S. Song and J. Xiao. Sliding shapes for 3d object detection in

rgb-d images. In European Conference on Computer Vision

(ECCV), volume 2, page 6, 2014. 2

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. arXiv preprint

arXiv:1409.4842, 2014. 4, 5

[16] Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao. 3d

shapenets for 2.5 d object recognition and next-best-view

prediction. In Computer Vision and Pattern Recognition

(CVPR), 2015 IEEE Conference on. IEEE, 2015. 3, 4, 5

[17] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In Advances in

Neural Information Processing Systems, pages 3320–3328,

2014. 6

782


