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Abstract. We present a method for unsupervised on-line dense video
segmentation which utilizes sequential Bayesian estimation techniques to
resolve partial and full occlusions. Consistent labeling through occlusions
is vital for applications which move from low-level object labels to high-
level semantic knowledge - tasks such as activity recognition or robot
control. The proposed method forms a predictive loop between segmen-
tation and tracking, with tracking predictions used to seed the segmenta-
tion kernel, and segmentation results used to update tracked models. All
segmented labels are tracked, without the use of a-priori models, using
parallel color-histogram particle filters. Predictions are combined into a
probabilistic representation of image labels, a realization of which is used
to seed segmentation. A simulated annealing relaxation process allows
the realization to converge to a minimal energy segmented image. Found
segments are subsequently used to repopulate the particle sets, closing
the loop. Results on the Cranfield benchmark sequence demonstrate that
the prediction mechanism allows on-line segmentation to maintain tem-
porally consistent labels through partial & full occlusions, significant ap-
pearance changes, and rapid erratic movements. Additionally, we show
that tracking performance matches state-of-the art tracking methods on
several challenging benchmark sequences.

1 Introduction

Unsupervised image segmentation attempts to cluster pixels into regions which
represent the objects present in an image frame without human intervention.
Unsupervised video object segmentation (VOS) extends this idea by linking pix-
els in time as well as space, to generate spatio-temporal clusters. Unfortunately,
the addition of the temporal domain brings new challenges; pixels which should
be grouped across time may not be continuously visible from frame to frame, as
in the case of partial or full occlusions.

To overcome this, we use a novel predictive feedback mechanism which com-
bines Bayesian tracking and VOS to preserve object labels. In this feedback
mechanism, multiple particle filters in parallel track object labels, generating a
prediction for segmentation, which relaxes this prediction to match the current
scene. The relaxed segmentation result is then used to update the particle filters.
This loop permits permanence of arbitrary objects through full occlusions.
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There are many existing video object segmentation (VOS) methods, but we
shall only review here methods which meet three criteria; on-line (the algorithm
may only use past data), dense (every pixel is assigned to a spatio-temporal clus-
ter), and unsupervised. Several state-of-the-art segmentation algorithms meet
these requirements: Multiple hypothesis video segmentation (MHVS) from su-
perpixel flows [I], Propagation, validation, and aggregation (PVA) of a preced-
ing graph [2], and Matching images under unstable segmentations [3]. Of these
methods, none are able to handle full occlusions; in fact only MHVS considers
occlusions, and it is only able to handle partial occlusions for a few frames, and
does not consider full occlusions. Even state of the art off-line methods such as
that of Brendel and Todorovic [4] only handle partial occlusions, claiming that
“complete occlusions ... require higher-level reasoning”.

Bayesian predictive filters (such as Particle filters) are a broad, well-established
field in target tracking [5]. While effective for tracking, these methods generally
depend on fixed models with a small dimensional state-space, and are unable
to deal with the high-dimensionality of VOS. A recent method [6] uses graph
cuts to extract segmentations, and a dynamical model to form predictions which
guide successive segmentations. It formally models visible and occluded parts
of the tracked objects, and so does not scale well with an increasing number of
objects, and thus is better suited to extracting the silhouettes of a few objects
than performing a full segmentation. Other methods, such as [7], are limited in
that they require pre-computed models which are calibrated to a ground plane
in order to resolve occlusions.

The paper is organized as follows. Section [2] presents the proposed algorithm;
Section 2] gives an overview of the segmentation kernel used, and Section
discusses the predictive framework. Section [3] consists of experimental results in
a specific scenario and comparison to state of the art tracking methods. Finally,
Section M describes current limitations of the algorithm, discusses future work,
and concludes.

2 Proposed Algorithm

We shall first give an overview of the algorithm (depicted in Figure[I]). To begin,
segmentation is performed on the first frame F;, to generate an initial set of
labels S, . This is used to generate initial sets of particles, each of which contains
a map of an object. Color histogram features are then generated for each object
(asin [8]) and particles are initialized with randomly distributed initial velocities.
Thus each object k at initial time ¢y from the segmentation is specified by a set
of Ny particles Xf(;l:N’“, each of which contains a representation of the object,
specified by a pixel existence map M, a reference color histogram § calculated
from Fy, N Mfo’", a position shift vector pt,, and a velocity vector vy, .
Particles are then propagated in time independently, shifting their existence
maps to new regions of the image. These shifted maps are used to generate
new measured color histograms g;,+1, which are evaluated to determine particle

weights. The set of particles for object k, Xfoiiv’ﬂ is then combined to create
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Fig. 1. Flow of algorithm for one time step, shown for three of the labels (ki, k2, and
ks3). For description see Section

an overall object pixel likelihood map l\A/I,’fo +1- The pixel likelihood maps for all

objects are then used to generate a label association likelihood map f‘t0+17 where
each pixel in the map is a PDF specifying the probability of the pixel belonging
to each object k.

The label association likelihood map is then sampled using a per-pixel selec-
tion procedure (as described in Section 2.2]) to generate a candidate label image,
St0+1. This is used as the initialization for the Metropolis-Hastings algorithm
with annealing of Abramov et al. [9], which updates the labels iteratively until
an equilibrium segmented state is reached. The segmentation result, S; 41 is
subsequently used to update the set of particles via three mechanisms; birth,
decay, and repopulation, which are described in Section
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2.1 Segmentation

To adjust the candidate label image S; to the current frame F;, we use a real-time
image segmentation algorithm based on superparamagnetic clustering of data
[10]. This formulates segmentation as a minimization problem which seeks to find
the equilibrium states of the energy function in the superparamagnetic phase. In
this equilibrium state regions of aligned spins (labels) coexist and correspond to a
natural partition of the image data [10]. The equilibrium states are found using
a Metropolis algorithm with a simulated annealing, called relazation process,
implemented on a GPU [9]. In this work, the relaxation process adjusts the
predicted label image to the current frame.

Superparamagnetic clustering of data was chosen as it can use any initial-
ization state; there are no particular requirements to the initial states of spin
variables, and the closer the initial states are to the equilibrium, the less time
that is needed to converge. This property makes it possible to achieve temporal
coherency in the segmentation of temporally adjacent frames by using the sparse
label configuration taken from the candidate label image for the spin initializa-
tion of the current frame. A final (dense) segmentation result is obtained within a
small number of Metropolis updates. Conventional segmentation methods can-
not generally turn a sparse segmentation prediction into dense final segments
which preserve temporal coherence. Moreover, since the method can directly use
sparse predictions as the seed of the segmentation kernel, we can avoid the costly
block-matching procedure required to find label correspondences in other work,
such as in Brendel and Todorovic [4] or Hedau et al. [3].

2.2 Predicting Object Labels

The goal of the proposed algorithm is to use predictions from Bayesian filtering to
inform segmentation of higher-level temporal correspondences. It is well known
that sequential Bayesian estimation methods perform well in difficult tracking
scenarios [I1]. Particle filtering is one such method which has been shown to
approximate the optimal tracking solution well, even in complex multi-target
scenarios with strong nonlinearities [5]. In this section we describe how particle
filtering can be used to predict pixel associations in order to seed segmentation
labels.

Parallel Particle Filters. The predictive portion of the method uses multiple
Sequential Importance Resampling (SIR) filters in parallel to track multiple ob-
jects simultaneously. Objects are assumed independent and interaction between
labels is not considered within the filters. Particles are first propagated using
a constant velocity dynamic model, and their predicted existence maps M*™
are used to generate a measured histogram, g;. Particles are weighted based on
the Bhattacharyya distance between the reference histogram ¢ for the particle
and the measured histogram ¢;, and then normalized as a set for each label k.
Systematic resampling is used to prevent particle degeneracy, due to its speed
and good empirical performance [I1].
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The resulting distributions from the weighting procedure are used to generate
object pixel likelihood maps for each label,Mf '+ 1, which are then combined into
the label association likelihood map L (as described in the next sections), which
can then be relaxed to produce a final segmented output, S;.

Label Image Generation. The middle portion of Figure [I depicts how the
candidate label image, S;, is generated. The candidate label image is a summary
of the accumulated knowledge of the particle filters; it is a prediction of what
the segmented scene should look like. That is to say, it is a pixel-wise realization
of the label association likelihood map L, which is constructed by combining
the object pixel likelihood maps Mf (which approximate the posteriors of the
particle sets). S, is the seed of the segmentation kernel, which uses pixel values
from F; to perform the relaxation process and generate a dense label image.

Object Pixel Likelihood Maps. The object pixel likelihood map for a partic-
ular object k is the weighted sum of the pixel existence maps of all of its labels,

Ny
Mf = w;"MP, (1)

n=1

Because the weights have been normalized, the pixel values in Mf will be in
the range [0, 1]. High pixel values will occur in regions which are present in the
existence maps of highly weighted particles, or alternatively, are present in many
particles with average weight.

Label Association Likelihood Map. The label association likelihood map
L, is a combination of all the object pixel likelihood maps, such that each pixel
contains a discrete probability distribution giving the likelihood of the pixel
belonging to a certain label. Additionally, a likelihood, pg, for the pixel belonging
to no label is inserted to allow pixels where no label has high likelihood to remain
unlabeled in S;. More formally,

~

My’ + po. (2)

=

L, =

n=1

Each pixel of L, is then normalized, such that the sum of the discrete probabil-
ities sums to one. The candidate label image can then be generated by taking
a realization of L; to select pixel label values. An example of the result of this
process, st, can be seen in Figure [l

Particle Birth, Repopulation, and Decay. A key feature of the method
is use of segmentation results S; to update the particle sets. This allows the
creation of new object labels, adaptation to changing object appearance, and
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elimination of objects which are no longer observed. This is accomplished via
three mechanisms; birth, repopulation, and decay.

Birth occurs when a label which has not existed previously is found in the
segmentation output S;. It consists of generating a set of particles X* for the
new label using S to initialize an existence map MF and {F;MF¥} to calculate
a reference color histogram ¢F. Decay occurs when a label is not found in the
segmentation output, k ¢ S;. Particles are selected from k using random sam-
pling, at a rate determined by the decay rate Ay, and are pruned; they are no
longer considered when filtering k. If the number of active particles for a label
falls below a certain threshold, N,,;,, then the set of particles for the label is
deleted, and the object is no longer tracked.

Repopulation allows the pixel likelihood map for an object, 1\7[’“, to adapt over
time to the changing appearance of the object. Every iteration, all previously
existing object labels which are found in S; are repopulated by replacing some
particles in the set with particles generated from S; and F;. Particles are chosen
for replacement using stratified sampling, at a rate specified by parameter \,.
The repopulation mechanism gradually modifies the object “model” through the
addition of particles which have an updated existence map and color histogram
(coming from the segmentation result). Note that there is no explicit model for
the objects shape, only a pixel likelihood map generated at each time step by
weighting an objects constituent particles using the current image frame.

Occlusion Handling. Occlusion relationships are handled naturally, since fore-
ground objects will tend to have a strong peak in their weight distribution,
corresponding to those particles which align properly with F;. Objects they oc-
clude will have a flat particle weight distribution, since there will exist no shifted
existence map which contains a color distribution which matches the reference
histogram exactly. This is due to the fact that the occluding objects and objects
surrounding the occluded object have color distributions which differ from the
occluded object. Let us assume foreground object j is contained by occluded
object k, that is

M]" C Mp". (3)
We also assume that the number of particles is sufficiently large such that
I MI™ € MY : hist(Fy N MP™) =~ ¢, (4)
If the objects have different color distributions then from (B]) and (@)
B ME™ e MF - hist(F, " MP™) &~ g (5)
therefore
minyn, { A", hist(F, " M)} <
miny.y, {A(G"™, hist(Fy N M}™))} (6)
and thus

mari.y;, {wf"} > maxlsz{wf’n}. (7)
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This means that in the label association likelihood map L, the occluding object
will have a higher likelihood then the occluded. The candidate label image, S,
will therefore tend to favor occluding object labels, which will dominate the
occluded object label during the segmentation relaxation process.

3 Experimental Results

In order to evaluate performance, we demonstrate occlusion-handling in the con-
text of the Cranfield benchmark, a test scenario used in robotics research to
evaluate ability to plan and execute goals. The benchmark consists of building
a “widget” consisting of several simple parts such as pegs. In this work, we seg-
ment a recording of a human constructing the Cranfield benchmark in order to
demonstrate the ability to distill meaningful semantic information from object
labels. We emphasize meaningful because the recording contains many occlu-
sions, which cause all other state-of-the-art VOS methods to lose track of labels,
spoiling the semantic information contained in the segmentation result (for in-
stance, if a peg changes label when occluded by a hand). In all tests, we employ
no learned or a-priori specified models and use 100 particles per label (this runs
at 10fps at 640x480 with a GPU implementation).

Figure 2] (see supplementary material for full video) shows the ability of the
algorithm to handle full and partial occlusions in the Cranfield sequence. Objects
which are temporarily occluded by the hand regain their original labels once they
are no longer occluded. Additionally, as objects deform (for instance, as a peg is
rotated), tracking successfully maintains their correct labels, while segmentation
and repopulation adapt the masks to their changing appearance.

The visual quality of segmentation results are not evaluated here as they have
been presented in [9]. Additionally, we do not evaluate other VOS methods, as
it is clearly stated in the literature that they fail under partial [2] and full [41]
occlusions (see supplementary material for an example). Instead, we evaluate
the algorithm from a pure tracking standpoint, as these methods are currently
able to cope with full occlusions. We compare to the state of the art on several
challenging video tracking benchmark sequences which are available onlind].
Results are compared to PROST [12], MilTrack [13], FragTrack [14], and ORF
[15]. Details concerning the parameters used for the above algorithms in the
benchmarking can be found in [12].

In order to compare with the other methods, we needed to output a tracking
rectangle for each frame - we simply used the bounding box of the tracked label.
This was compared to ground-truth using two measures; Euclidean distance and
the PASCAL-challenge based score proposed in [12]. The latter compares the
area of intersection of the ground truth and tracked box with the union of the
same. When this is greater than 0.5, the object is considered successfully tracked.
Table [l gives our results and the results for the other methods.

! mttp://gpudvision.icg.tugraz.at/index.php?content=subsites/
prost/prost.php


http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php
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Fig. 2. Output frames from the Cranfield sequence, in which objects are completely
occluded by an arm, and change in appearance when manipulated. Labels are clearly
maintained through partial and full occlusions, as well as through manipulations
and changes in appearance. F;-Original frames. S;-Segmentation output. ME™ &
l\A/I;”dgct—Object pixel likelihood maps for the arm and widget base plate labels. Inten-

sity represents the sum of the normalized weights of the set of particles.

Table 1. PROST dataset benchmark results. Numbers given are average pixel error

(APE) and PASCAL scores, given as APE | PASCAL

|Sequence| PROST | MIL | Frag | ORF |Segmenting—PF|
Lemming|25.1 | 70.5/14.9 | 83.6(82.8 | 54.9|166.3 | 17.2| 19.8 | 73.9
Box 13.0 | 90.6{104.6 | 24.5|57.4 | 61.4(145.4 | 28.3] 114.1 | 7.5

Liquor |21.5 | 85.4|165.1 | 20.6(30.7 | 79.9|67.3 | 53.6| 25.5 | 54.2
Board 39.0 | 75.0{51.2 | 67.9(90.1 | 67.9|154.5 | 10.0| 30.9 | 71.4
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Testing showed that, when certain assumptions hold, our algorithm performs
on par with, and in some cases outperforms, state of the art tracking algorithms.
This is the case for the liquor, lemming, and board sequences. In the lemming se-
quence (shown in supplementary material), our algorithm outperforms the other
methods in cases of occlusion, especially when the tracked object is fully occluded.
While other methods offer false positives and erroneous tracks, our method decays
the label for the object and avoids proposing incorrect tracking solutions. In ad-
dition to showing the strengths of our method, a weakness was also highlighted
by the benchmark sequences. The box sequence demonstrated the limitations of
using unsupervised color-based segmentation to initialize the objects to track. In
the sequence, the object to track contains strong color differences, which are seg-
mented into different initial regions. As the object moves around, the particles for
these regions are attracted to other objects it passes over which have similar color.
This will be addressed in future work, which will use a measurement model more
heavily weighted on geometric information rather than color.

4 Conclusion

This paper presented a method for performing on-line, dense, unsupervised video
segmentation which uses feedback to handle occlusions. Results showed that the
method is able to resolve occlusion relations between objects without explicitly
modeling them, and by doing so can maintain consistent labels for objects, even
through partial or full occlusions. Additionally, the method is able to adapt to
rapidly changing appearance of tracked objects, producing consistent segmenta-
tions over lengthy video sequences. The combination of these in an unsupervised
online algorithm enables new robotics research, as it allows extraction of se-
mantic information directly from segmented labels. This semantic information
(how objects interact with eachother) could be used to bootstrap unsupervised
learning algorithms and generate plans for complex tasks - such as building the
Cranfield benchmark.

Future work will address the limitations of the measurement model by the
addition of geometric features extracted from point cloud data. Additionally,
movement of labels while occluded is an area of open research; currently, the
algorithm will diffuse particles following the most recent velocity vector (before
occlusion), and does not associate occluded particles with the motion of the oc-
cluder. Finally, we should note that this work shows the need for a standardized
video benchmark which evaluates segmentation performance in complex scenar-
ios (such as movement while occluded). In particular, the community needs to
select a set of complex scenarios, and come to a consensus as to what constitutes
“correct” labeling of them.
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