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Abstract 

We present an architecture for real-time, online vision 

systems which enables development and use of complex vi­

sion pipelines integrating any number of algorithms. In­

dividual algorithms are implemented using modular plug­

ins, allowing integration of independently developed algo­

rithms and rapid testing of new vision pipeline configura­

tions. The architecture exploits the parallelization of graph­

ics processing units (GPUs) and multi-core systems to speed 

processing and achieve real-time peiformance. Addition­

ally, the use of a global memory management system for 

frame buffering permits complex algorithmicfiow (e.g. feed­

back loops) in online processing setups, while maintaining 

the benefits of threaded asynchronous operation of separate 

algorithms. To demonstrate the system, a typical real-time 

system setup is described which incorporates plug ins for 

video and depth acquisition, GPU-based segmentation and 

opticalfiow, semantic graph generation, and online visual­

ization of output. Performance numbers are shown which 

demonstrate the insignificant overhead cost of the archi­

tecture as well as speed-up over strictly CPU and single 

threaded implementations. 

1. Introduction 

There is a growing interest in development of complex 

vision systems for robotic vision applications. Such re­

search has strict requirements; these systems must operate 

in real-time, using input from multiple sources, and typi­

cally consist of multiple algorithms which work in concert 

to produce useful output with minimal delay. Consequently, 

the architecture which binds algorithms and input sources 

together has become an increasingly important factor. This 

work presents a vision architecture which uses modular plu­

gins, a novel buffering scheme, and GPU memory optimiza­

tions to allow real-time performance of an online vision sys­

tem, even with complex pipelines and algorithms developed 

by independent researchers. 

A primary concern when developing such complex vi-
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sion systems lies in how to properly integrate algorithms 

developed by different researchers, often from multiple in­

stitutions. Typically, computer vision researchers develop 

solutions tailor-made for their particular problem, without 

concern over the difficulties involved in integrating their 

particular algorithm in a large system. The proposed ar­

chitecture eases this integration process by providing a plu­

gin interface. The plugin system allows independently de­

veloped algorithms to communicate with the architecture's 

central memory management system, interact with the GUI, 

define their own unique data types, and integrate into sys­

tems with plugins developed by other researchers. 

Another motivation for developing a vision architecture 

is the desire to enable the use of complex algorithmic lay­

outs in an online system. In particular, interest in creating 

loops that allow high level algorithms (i. e. which come late 

in the pipeline) to feedback and improve the output of low 

level vision methods. Traditional online vision pipeline ar­

chitectures cannot accommodate such loops in an adequate 

way, as at any given moment each portion of the pipeline is 

processing data from different instants in time. 

Existent vision system architectures also do not sup­

port the use of GPUs in a fully integrated way, leading to 

inefficient use of the device and communication with de­

vice memory. The presented method incorporates specially 

designed GPU data-containers to ensure optimal PCI-bus 

use through a pre-caching scheme and concurrent mem­

ory transfers. In addition to these, extendibility is en­

sured through an interface which allows user-defined data­

container handling, allowing plugin developers to explicitly 

define how the memory manager shares data between the 

host and device. The paper is structured as follows: first we 

review existing architectures, then present our system, de­

scribe a typical system configuration used for robotics, and 

then give performance figures from a demonstration setup. 

2. Related Work 

There are a few eXlstmg open-source projects cen­

tered around computer vision system architecture, such as 

ice Wing [J ] and Imalab [2].  These systems bear some simi-



larities to ours, in that they are sophisticated vision develop­

ment environments, featuring modularity, efficient visual­

ization, and simple control of algorithm parameters. While 

a step forward, these projects lack two core features re­

quired for our work; support of feedback loops and inte­

grated use of the GPU as a coprocessor. In addition to the 

open-source projects, there are a few commercial solutions 

available. Foremost among these is MATLAB, which uses 

a high-level scripting language to allow for rapid develop­

ment. Unfortunately, its restrictive and expensive licensing 

can make it difficult to develop algorithms in distributed lo­

cations; every developer must have not only a MATLAB li­

cense, but also licenses for the multiple toolboxes required. 

Additionally, since MATLAB (and it's open source equiva­

lent Octave) development is not in C/C++, creation of novel 

GPU algorithms using a language such as CUDA is diffi­

cult. Other cOlmnerical solutions, such as HALCON [3] or 

BLOX [4] also suffer from their restrictive licensing, mak­

ing them not well suited for research. None of these so­

lutions permit feedback loops in a real-time online vision 

system. 

3. System Architecture 

Our vision system is a plugin shell which provides an 

easy-to-use API for interacting with the GUI, memory man­

agement system, and visualization components. In or­

der to ensure expandability, such a system must provide 

straightforward communication and interaction between 

plugins created independently, while employing strong­

typing checks to ensure only valid plugins may be inter­

connected. In addition, it must ensure that plugins have 

the flexibility to define their own methods for visualiza­

tion. Finally, the system must ensure that each plugin is 

self-contained, and executes within its own thread. This is 

especially important for fast execution on modern proces­

sors, where the number of cores can match, or even exceed, 

the number of plugins one is running. 

In the next subsections, we shall describe how our ar­

chitecture accomplishes these goals while requiring as lit­

tle computational and communication overhead as possible. 

Small overhead is especially important in the case of real 

time video processing, where relatively large images must 

be processed at fast frame rates. 

3.1. Execution Flow 

At its core, the architecture provides a shell which 

consists of a GUI for loading plugins and visualizing 

data, a system for storing plugin output to file, and a 

buffering/memory-management system for handling data. 

This functionality is contained in the Main Thread and 

Memory Manager Thread shown in Figure l. Users build 

their system by adding plugins, configuring their options 

via the GUI, and then connecting the plugins to each-other. 
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The user can also save/load a fully configured system as an 

XML file. Once a vision system has been built, the user 

can control execution using the frame rate module, which 

controls the firing rate of the system clock. 

As the whole system runs asynchronously in indepen­

dent threads, the clock trigger acts as the initial starting 

point for each frame. This means that any source plugins, 

such as a stereo camera rig or a video file reader plugin, 

must connect to the frame rate module. As a trigger arrives 

at each plugin, a triggering signal is sent to the memory 

manager, telling it to generate a DataContainer for the plu­

gin's output. The plugin is then triggered, causing it to exe­

cute its processing functionality and generate output, which 

it stores in the location assigned to it by the memory man­

ager. The plugin then generates another triggering signal, 

which is connected to both the memory manager and what­

ever ensuing plugins use the output as their input. When a 

plugin has multiple inputs, it will loop inside its execution 

thread, waiting until all inputs for a frame have arrived be­

fore executing. This is accomplished by each thread having 

its own input queue map; it is important to note though, that 

these queues contain no actual data (and thus minimal over­

head), and merely serve as a message passing system. The 

signaling and triggering system employs the open-source Qt 

signal & slot architecture. In particular, the system makes 

use of Qt's ability to queue signals for execution as they 

arrive at a thread. 

3.2. Plugin Development and Interaction 

The functionality of the system is provided primarily via 

plugins. A plugin consists of a shared library which is lo­

cated and loaded dynamically at run-time. The system is 

based on the low-level Qt plugin API, which facilitates de­

velopment and ensures compatibility across different plat­

forms. Plugins inherit from a pure abstract interface class 

which defines a protocol for communicating with the core 

application. This permits plugins to define input and out­

put types and pass messages to/from the GUI and memory 

manager. 

Developers are required to implement a processData 

function, which receives input and writes to an output Data­

Container. The developer can optionally create any number 

of GUI elements (e. g. sliders, buttons) using the interface 

functions. Plugins specify how many inputs they require, 

and give the possible types for these inputs. Communica­

tion between plugins is accomplished through a standard­

ized data container interface. The core architecture contains 

commonly used data container implementations, such as 

StereolmageContainer. Plugins may define their own spe­

cialized data containers which are loaded at runtime with 

the plugin. For example, the Segmentation plugin has its 

own container type SegmentationData, which contains a list 

of labeled segments, metadata about the segments, and la-
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Figure L Overview of the system architecture and demonstration system output for four frames. The colums show output from the different 

components; from left to right, Kinect image and depth (in mm), optical flow, and graphs overlaid on segmentation plugin output. This 

type of output can be seen live in any number of visualization windows within the GUI. 
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beled images. The standardized data container interface al­

lows for any plugin to refer to a new container class without 

actual knowledge of the container itself other then the string 

identifiers of its members (e.g. "Segment Labels"). Cor­

rect handling of access to these members is accomplished 

through dynamic dispatch using the virtual lookup table. 

This ensures that a plugin written by one researcher can be 

easily used as input to another's, as long as they know the 

proper identifiers and underlying formatting of the data. 

3.3. Visualization 

During the development and use of a vision system, it 

is of utmost importance to be able to visualize what is oc­

curring at every stage of the system pipeline. As such, our 

system allows users to create any number of visualization 

windows which can select any plugin to display (and which 

part of the plugin's output to display, e. g. left or right im­

age). If a developer creates their own data container for a 

plugin, they can define a special visualization callback func­

tion as part of this container. The system will automatically 

detect this callback when the plugin is loaded, and use it 

for visualizing the plugin's output. Developers can spec­

ify multiple methods for visualizing the plugin; the GUI for 

visualization will allow selection of which to display. 

Visualization windows read directly from the global 

buffer, and as such have a small memory overhead. Ad­

ditionally, visualization runs in the GUI thread, rather than 

in any of the plugin threads. If a plugin slows down the 

system, visualization (and the GUI) will remain responsive, 

allowing the user to troubleshoot. This also means that vi­

sualization that requires computation, such as labeling an 

image with text or vector graphics, will have a negligible 

effect on the actual frame throughput of the system. If vi­

sualization lags behind the system output, frames are auto­

matically skipped on an interval that allows visualization to 

maintain synchronization with the rest of the system. This 

is of particular importance in an online system, such as our 

real-time robotic application, where visualization lagging 

behind processing can cause confusion or even errors. 

4. Memory Architecture 

The memory management system has been designed 

to allow distributed development and computing, complex 

system pipelines incorporating feedback loops, and efficient 

use of the GPU as a computational resource. The following 

subsections will describe how these design goals have been 

achieved by illustrating our Global Buffer design and ex­

plaining how it manages GPU memory. 

4.1. Global Buffer 

Our global buffer concept was designed to overcome the 

limitations of standard online vision pipelines. In a standard 
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Figure 2. A typical buffering scheme (top) and our buffer (bottom). 

online pipeline a local buffering scheme is used; each al­

gorithm has an input buffer, where data accumulates while 

it is waiting to be processed. Such a setup is adequate as 

long as the pipeline remains unidirectional, but complica­

tions arise in using feedback loops. Figure 2 compares a 

standard pipeline with our global buffer; unlike a typical 

buffering scheme, our global buffer maintains and manages 

all memory in a central location (and separate thread). The 

global buffer is responsible for dynamic allocation of all 

data containers, maintaining reference counts, and deter­

mining when a frame can expire. Since the global buffer is 

responsible for maintaining memory, plugins use a message 

passing system to communicate. Plugins pass messages to 

each other to notify completion of a new frame, or to trigger 

a feedback mechanism. They also use the message passing 

system to request that the global buffer allocate a new data 

container for their output. When a developer creates a new 

type of data container, they use a simple interface to pass 

the global buffer a function pointer for creating an instance 

of their new data container type. 

In order to fully understand the limitations of a standard 

buffering system, consider, for instance, the system shown 

at the top of Figure 3. If the feedback mechanism is trig­

gered for frame n, plugin B must return to frame n in or­

der to modify how it was processed. This is not possible 

in the standard local buffer scheme, as that data was dis­

carded after it was used as input to B. One possible solution 

is to maintain another local buffer for each plugin which 

contains data which has already been processed, but this 

quickly adds several degrees of complexity. In particular, 

garbage collection becomes very difficult, and management 

of these buffers when feedback does occur becomes unnec­

essarily convoluted. 

The global buffer solves this by maintaining data in a 



Figure 3. Feedback using a global buffer 

more structured way. When a feedback mechanism is trig­

gered for frame n the triggering plugin (D) sends a message 

to B, causing it to stop processing what it has scheduled, and 

revert to frame n. As frame n is still easily accessible in the 

global buffer, B can simply send a request for the pointer(s) 

to the input data container(s) it requires. The global buffer 

is guaranteed to still have the data for frame n, because D 

never produced an output for frame n, so the global buffer 

has not marked frame n as complete. Once B finishes pro­

cessing frame n with its new feedback information, it will 

overwrite its old output for frame n (shown in orange) and 

then simply continue on as it would normally, processing 

frame n+ 1. The feedback corrected data will propagate 

down the pipeline, and any data which is no longer valid 

(shown in red) will simply be overwritten. Infinite feedback 

loops are avoided by a preventing feedback from occurring 

more than once per plugin per frame. 

4.2. GPU Memory Handling 

While utilizing the massively-parallel GPU as a copro­

cessor has become increasingly common, how to integrate it 

effectively into an open vision architecture remains an open 

question. Particularly vexing is how to integrate it seam­

lessly into the memory system of such an architecture, as 

the GPU has separate physical memory, which is entirely 

distinct in both location and structure from that used by the 

CPU [5] .  Data streaming through the system must be trans­

ferred to the GPU for modules which use it, and then trans­

ferred back out for visualization and used by modules later 

in the pipeline. 

A naive implementation of this architecture would sim­

ply serialize the operations; when a module needs to use 

the GPU, it copies data to device memory, executes a ker­

nel, and then copies the output back out to host memory. 

While this is still relatively efficient, it fails to fully take 

advantage of the pipe lined streaming architecture, since the 
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Figure 4. Streaming; Concurrent kernel execution 

memory transfer bandwidth is idle while the kernel is exe­

cuting. The architecture uses the streaming CUDA API to 

utilize this spare bandwidth, allowing it to perform concur­

rent asynchronous memory transfer and kernel execution. 

As shown in Figure 4, we utilize a pre-caching tech­

nique, whereby data for frame n+ 1 is transferred during the 

execution of frame n. When the kernel execution time is sig­

nificantly longer than the transfer time (B), memory trans­

fer is completely hidden, even with unidirectional mem­

ory. When kernel execution time is comparable to memory 

transfer time, only some of the transfer can be hidden (C), 

unless the hardware supports concurrent data transfers I (D). 

5. Demonstration System 

This section presents a real-time demonstration system, 

consisting of six plugins. The demonstration system calcu­

lates dense disparity using a standard stereo camera setup 

(rather than Kinect data) in order to show the flexibil­

ity of the architecture as well as highlight the speedup 

achieved via multithreading. Switching from Kinect in­

put to a stereo camera setup is simply a matter of changing 

connections in the GUI. The pipeline described consists of 

plugins for reading and rectifying stereo data, calculating 

optical flow[7],  computing disparity[7] ,  segmentation and 

tracking[8] ,  dense disparity estimation, and semantic graph 

and event chain generation[9, 10] .  This type of a system 

configuration is used to recognize and learn object manipu­

lation actions in a robotics context. 

I Concurrent data transfers are supported under the Fermi 
architecture[5]. Currently the Fermi Quadro and Tesla series cards 
have two Direct memory access (DMA) engines[6], aUowing them to 
perform host-to-device and device-to-host operations simultaneously. The 
consumer Fermi cards (GTX 4xx, 5xx) only have a single DMA engine, 
so concurrent transfers are disabled on them. 



5.1. Image Acquisition 

Video is acquired using a Firewire stereo camera rig. 

Triggering for image acquisition can be controlled using ei­

ther an external hardware trigger or the architecture's soft­

ware clock. Rectification is performed on the GPU (there 

is a separate plugin for calibration using a standard chess­

board). Time from triggering to output of a rectified pair of 

stereo images is around lOms at lO24x768. 

5.2. Disparity and Optical Flow 

Optical flow is computed using the GPU implementa­

tion [7] of a phase-based algorithm [J 1] .  The algorithm 

tracks the temporal evolution of equi-phase contours by tak­

ing advantage of phase constancy. Differentiation of the 

equi-phase contours with respect to time yields spatial and 

temporal phase gradients. Optical flow is then computed 

by integrating the temporal phase across orientation. Es­

timates are refined by traversing a Gabor pyramid from 

coarser to fine levels. The plugin uses the five most re­

cent frames to compute optical flow in the case of online 

video, but can also use "future" frames when working with 

recorded movies (this can slightly improve the quality of 

output flow). 

Sparse disparity maps are computed on the GPU using 

a technique similar to optical flow [7] .  Rather than use 

temporal phase gradients, the disparity algorithm relies on 

phase differences between stereo-pair rectified images. As 

with the optical flow algorithm, results are computed using 

a coarse to fine pyramid scheme. 

5.3. Segmentation and Tracking 

The segmentation and segment tracking plugin has two 

roles; first, it partitions the image into labeled regions, as 

seen in the right-most column of Figure 1 , and second, it de­

termines correspondences between frames to maintain con­

sistent labeling. The segmentation algorithm is based on the 

work of Blatt et al. [12],  which applies the Potts model in 

such a way that superparamagnetic phase regions of aligned 

spins correspond to a natural partition of the image data. 

Initial spins are assigned to pixels randomly, and then a 

Metropolis-Hastings algorithm with annealing [8] is used 

to iteratively update the spins until an equilibrium state is 

reached. 

The Metropolis algorithm is implemented on the 

GPU[8],  permitting real-time performance. The algorithm 

itself lends itself to efficient implementation on a GPU, as 

interactions are only computed locally (8 connected nearest­

neighbors). Coupling interactions between pixels are deter­

mined using average color vector difference (in the HSV 

space) of nearest-neighbors. Additionally, when depth data 

is available, the algorithm prevents interactions between 

pixels if there is a significant difference in their depth val-
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ues. This prevents coupling across regions which have sim­

ilar color but discontinuous depth. 

In addition to segmentation, the plugin maintains con­

sistent labels for objects from frame to frame. This is ac­

complished by transferring spins between frames using out­

put from an optical-flow plugin [8].  As such, only the first 

frame is actually initialized at random; subsequent frames 

are initialized using a forward-propagated version of the 

previous frame's equilibrium spins. This has two advan­

tages; the number of iterations needed to reach equilibrium 

is greatly reduced since the spin distribution already ap­

proximates the final state, and the algorithm naturally tracks 

objects since spins (and thus labels) are maintained over 

time. 

5.4. Semantic Graphs 

The semantic graphs plugin constructs a symbolic 3D 

description of the scene from the segmentation results and 

disparity maps. Segments are used to construct undirected 

and un-weighted graphs (seen in the right-most column of 

Figure 1; nodes are labeled with numbers and red lines are 

graph edges). Each segment is given a node and edges rep­

resent their three dimensional touching relations. Graphs 

can change by continuous distortions (lengthening or short­

ening of edges) or, more importantly, through discontin­

uous changes (nodes or edges can appear or disappear). 

Such a discontinuous change represents a natural breaking 

point: All graphs before are topologically identical and so 

are those after the breaking point. Hence, we can apply an 

exact graph-matching method [1 3] at each breaking point 

and extract the corresponding topological main graphs. The 

sequence of these main graphs thus represents all structural 

changes (manipulation primitives) in the scene. 

This type of graph representation is then encoded by 

a semantic event chain (SEC), which is a sequence-table; 

rows and columns of which represent possible spatial rela­

tions between each segment pair and manipulation primi­

tive. This final output can be used to classify manipulations 

and categorize manipulated objects for use in a robotics or 

human-computer interaction (HCI) seuing[9, 10] .  The pri­

mary advantage of this method is that actions can be ana­

lyzed without models or a-priori representation; the dynam­

ics of an action can be acquired without needing to know 

the identities of the objects involved. 

6. Results and Discussion 

Testing was performed to compare single threaded with 

multi-threaded operation mode and to detect the impact of 

visualization on processing speed. Testing was performed 

on an Intel i7 (3.33Ghz, 8 execution threads) system with an 

NVIDIA GTX 295 GPu. The demonstration setup depicted 

at the top of Figure 5 was used for all tests. To determine if 

visualization had a negative impact, the tests were run with 
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Figure 5. Timing results for demonstration system; plugins are color coded and contain frame numbers. When run in single thread mode, 

short GPU operations such as optical flow are significantly faster due to reduced overhead; this results in slightly lower (2ms) frame lag. 

The true benefit of multi-threaded mode is the higher maximum frame-rate that can be achieved. 

and without a visualization windows for each component, 

showing live views of their outputs. Timing measurements 

for plugins are the mean execution time per frame of a 1000 

frame (640x480) stereo video sequence (frames of which 

are shown in Figure 1), averaged over 10 runs. The code 

for the single and multi-threaded versions is identical with 

the exception of the movement of plugin objects to separate 

threads. 

We measure performance by analyzing two key at­

tributes of a pipelined vision real-time vision system. First, 

in terms of frame lag, that is time from frame acquisition 

to final output, multi-threaded mode is slightly slower than 

single-threaded. As shown in Figure 5, this is due to rel­

atively fast plugins which use the GPU (disparity and op­

tical flow in this case). This can be attributed to the static 

overhead cost incurred by switching between threads while 

using the CUDA run-time API. The switching is relatively 

expensive for short GPU operations as it forces the CUDA 

driver to create and destroy GPU contexts2. This could 

be avoided by the addition of an additional GPU; in our 

demonstration system the driver is forced to change con­

texts as there are three threads (flow, disparity, segmenta­

tion) attempting to use two GPUs. Additionally, the archi­

tecture will soon be brought to the newest CUDA release, 

which allows context sharing between threads. It should 

also be noted that at higher resolutions multi-threaded mode 

overtakes single-threaded, as the overhead cost of context 

switching is outweighed by the gain from computing opti­

cal flow and disparity in parallel. 

2GPU contexts are analogous to CPU processes, and each have their 
own distinct address space. Each thread may only have one context active 
at a time, and contexts may not share threads. See [5, 14] for more details. 

367 

The second measure of performance, throughput, or 

maximum frame rate, shows a significant speedup in multi­

threaded mode, almost doubling from 11 .1 (stereo )fps to 

20.83. While significant, the speedup is not equal to the 

number of execution threads used by the demonstration 

setup (six; one for each plugin and one for the GUI & mem­

ory manager). This less-than-optimal gain can be attributed 

to the fact that the demonstration system had one com­

ponent, segmentation & tracking, which was significantly 

slower then the rest. As seen in Figure 5, the entire system 

throughput is limited by the rate at which the segmentation 

plugin produces output. 

As seen in Figure 6, the addition of visualization com­

ponents has a small impact on performance. This delay was 

most noticeable for the shorter components, disparity and 

optical flow, but never exceeded 2ms. Fortunately, this ad­

ditional time does not affect throughput in multi-threaded 

mode, as it is hidden by the length of the longest component. 

The times with visualization were used for Figure 5; clearly 

shortening the time of any component other than segmen­

tation will have a negligible effect on performance. While 

the increase does not affect throughput, it has a slight effect 

on frame lag. Frame lag is less important than throughput 

for our research, but it should be noted that in certain cases, 

such as when quick reactions are required, frame lag may 

be an important performance measure. 

Although we have shown that an architecture which sup­

ports feedback loops for an online vision pipeline can be im­

plemented efficiently and can have real-time performance, 

we have not presented a feedback loop in our demonstration 

system. The description of the algorithms which use them 

is beyond the scope of this paper. As such, we presented the 
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Figure 6. Visualization has a slight impact on performance, but 
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buffering system which enables the use of feedback loops 

in a pipeline, but leave testing of the efficacy of feedback 

mechanisms themselves in improving segmentation results 

to future publication. 

7. Conclusion 

Building a self-contained, efficient, and complete vision 

system acts as a significant barrier to entry for those wish­

ing to develop and test new vision algorithms. We have 

presented a modular plugin environment, designed specifi­

cally for expand ability and parallel architectures, which fa­

cilitates rapid distributed development of vision pipelines. 

Our plugin system allows simple collaboration between or­

ganizations, allowing developers to share algorithms eas­

ily, and without forcing them to share code. The architec­

ture permits streaming use of the GPU as a coprocessor, 

efficient visualization of algorithm outputs, and the ability 

to use complex pipelines involving feedback mechanisms. 

The system architecture is being released under an open­

source GPL Iicense3, with the goal of spurring the growth 

of GPU use and the research of feedback mechanisms in 

real-time vision applications by lowering the cost-to-entry 

of development and prototyping of algorithms. 
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