
 
 

 

  

Abstract—This paper presents a novel method for trajectory 
generation based on dynamic movement primitives (DMPs) 
treated from a control theoretical perspective. We extended the 
key ideas from the original DMP formalism by introducing a 
velocity convergence mechanism in the reformulated system. 
Theoretical proof is given to guarantee its validity. The new 
method can deal with complex paths as a whole. Based on this, 
we can generate smooth trajectories with automatically 
generated transition zones, satisfy position- and velocity 
boundary conditions at start and endpoint with high precision, 
and support multiple via-point applications. Theoretic proof of 
this method and experiments are presented. 

I. INTRODUCTION 

OR all applications of any robotic system, we need a 
trajectory generating technology to create a time history 

of relevant variables in state space (joint space or task space). 
Thus, this is still a fundamental and important research field 
in robotics. 

A common method for joint space trajectory control uses 
lower order polynomials to provide interpolating points at 
servo rates between user- specified via-positions [1,2]. 
Specific boundary conditions can be imposed onto several 
lower order polynomials to obtain continuous trajectories in 
joint space. On the other hand, by planning a trajectory in task 
space, we can completely specify the desired trajectory of the 
end-effector. A popular approach is to utilize some simple 
curves (e.g., lines, arcs or parabolas) to define the whole path 
in task space, depending on the assigned via-points. This way 
one can also introduce zones in which an interpolation 
between the two adjacent segments can be performed [3]. 

With the advent of humanoid and anthropomorphic robots, 
many new challenges have surfaced [4-7]. The framework of 
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Dynamic Movement Primitives (DMPs), which will serve as 
the basis for this paper, is an example of this. The DMP 
formalism was presented by Ijspeert et al [4-6], and their 
investigations on humanoid robots have led to numerous 
applications [8-15]. The original DMP algorithm consists of 
two sets of differential equations; a canonical system, and a 
transformation system [4-6]. The canonical system is used to 
represent the phase of the motor process. The transformation 
system is a basic point attractive system, utilized to generate 
the desired movement [4-6]. 

While interesting, the basic DMP formulation has some 
limitations, which restricts its usefulness for trajectory 
generation applications. For example, limited by its 
formulation and structure, the original DMP can be used 
neither to directly incorporate a target velocity [15] nor a 
via-point. It always asymptotically converges to the final 
point and the speed of approaching the target is zero. Kober 
et al [15] made a modification of the original DMP 
formulation in order to implement striking (e.g., batting a 
ball) movements in the middle of a trajectory. 

We were inspired by the original DMP applications [4-6] 
and show here a novel trajectory generating technology based 
on the key ideas from DMPs. The goal is to present a DMP 
based trajectory generating technology that provides accurate 
control over the trajectory including its start- and endpoints in 
position and velocity space. 

The remainder of this article is organized as follows. In 
Section 2, we present our new solution for trajectory 
generation. Case studies and experiments are provided in 
Section 3. Finally, conclusions and application potential are 
summarized in Section 4. 

II.  TRAJECTORY GENERATOR BASED ON DMP 

The following requirements are fundamental for a 
complete and useful trajectory generation technology: 
accurate adherence to boundary conditions, global 
smoothness and accuracy. Furthermore, for possible 
industrial applications, we also need to incorporate the 
required velocity profile into the trajectory. 

A. Architecture of Our Trajectory Generator 

Fig. 1 shows the architecture of our novel DMP based 
trajectory generator, which consists of four key modules. The 
Second-Order System module provides the trajectory ( )y t  

and ( )y t& . The outputs from the Boundary Function 

Accurate Position and Velocity Control for Trajectories Based on 
Dynamic Movement Primitives 

KeJun Ning, Tomas Kulvicius, Minija Tamosiunaite, and Florentin Wörgötter 

F 



 
 

 

Generator ( )r t , and Modulation Function ( )f t , are fed into 

the Second-Order System. The Boundary Function Generator 
imposes the boundary conditions onto the system. The 
Modulation Function, consisting of a Gaussian Kernel Based 
Approximating Function and a Suppressing Window 
Function, will affect the Second-Order System’s response as 
a forcing input. The Gaussian Kernel Based Approximating 
Function contains a weight vector, and these weights need to 
be trained in order to code the information brought from the 
sample trajectory ( )y t∗ , provided by the Sample Trajectory 

Generator. After training, the Modulation Function module 
will contain the main information obtained from ( )y t∗ , and 

the sample trajectory will not be used anymore. 
The architecture shown in Fig. 1 is for one 

Degree-of-Freedom (DOF). We can employ N copies of this 
architecture in parallel for an N-DOF application. 

B. Second-Order System Module 

In the original DMP formalism and the following studies 
[4-6, 8-15], parameters have not been directly related to the 
physical meaning of a second-order system. In the current 
paper, we adopt a standard formulation to make the system 
easier to understand and analyze from a control theory 
perspective. 

Fig. 2 shows the block diagram of the Second-Order 
System module employed in this paper, expressed in Laplace 
space. Its forward channel is 

( ) ( )
2

2
n

n

G s
s s

ω
ζω

=
+

,                             (1) 

and its feedback channel is ( ) 1H s = . Let 

( ) ( ) ( )U s R s F s= +  and ( )Y s denote the input and output 

respectively, then the transfer function is as follows, 

( )
( )

2

2 22
n

n n

Y s

U s s s

ω
ζω ω

=
+ +

.                        (2) 

This is a standard second-order system, where the 
constants ζ and 

nω  are the damping coefficient and the 

natural undamped frequency of the system, respectively. 
When 1ζ = , the system has a double pole at 

nω− , and this 

results in a critically damped response [16]. 
The model shown in Eq. (2) is well-studied in control 

theory. Its steady-state error can be calculated by the 
final-value theorem [16], as follows, 

( ) ( )
( )0

lim lim
1ss

t s

sU s
e e t

G s→∞ →
= =

+
.                            (3) 

Furthermore, we can express the error’s change rate as 

( ) ( )
( )

2

0
lim lim

1ss
t s

s U s
e e t

G s→∞ →
= =

+
& & .                            (4) 

Based on Eqs. (3-4), we can prove the asymptotic 

convergence of Ijspeert’s original DMPs. Eqs. (3-4) also 
provide the foundation for including boundary conditions in 
the architecture shown in Fig. 1. We will discuss this issue in 
the following sections. 

C. Boundary Function Generator 

For a useful trajectory generator, we have to take into 
account boundary conditions for position and velocity. As 
mentioned above, polynomials are normally employed to 
remove discontinuities (velocity and acceleration) between 
adjacent path segments. We use a third-order polynomial and 
determine the coefficients, given by 0, fy y  and 0, fy y& &  as 

the positions and velocities at the start and end points 
respectively. 

However, we cannot employ the third-order polynomial 
alone to construct the Boundary Function Generator shown in 
Fig. 1. As we know, a type-1 system can not follow a 
parabolic or a higher order function, because the steady-state 
error is infinite [16]. This conclusion can be derived from Eq. 
(3). If ( )U t  is a ramp function, from Eqs. (3-4) we obtain 
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Fig. 1. The architecture of our DMP based trajectory generator. After 
training, only the pink-shaded components will be used. 
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Fig. 2. Block diagrams of the employed Second-Order System in Laplace 
space.  
 



 
 

 

/ss ve V K= ,                               (5) 

and 

0sse =& ,                                  (6) 

where V  is the slope coefficient of ( )U t , and / 2v nK ω ζ= . 

Eq. (6) shows that the slope coefficient of the Second-Order 
System’s response will approach that of the input ramp 
function in the end. Even though Eqs. (5-6) hold only for the 
steady-state, we can design our system based on this principle 
with controllable precision. In fact, Eq. (6) is the proof for 
approaching the assigned velocity and Eq. (5) presents the 
offset that we can use to reduce the position error. Thus, we 
can utilize a third-order polynomial extended by a line 

segment to construct the reference signal ( )r t . Fig. 3 shows 

such a case. 

Let us denote mt  as the junction moment (the time point 

where the polynomial segment and the line segment are 
joined), then the reference signal is defined as follows, 

( ) ( )
2 3

0 1 2 3 0 m

e f f m f

a a t a t a t t t
r t

y t t y t t t

 + + + ≤ ≤=  − − < ≤ &
            (7) 

where, 

e f ey y δ= +                                (8) 

and ( )2 /e n fyδ ζ ω= & . 

In Eq. (7), the polynomial segment [0, ]mt  is employed to 

connect the boundary conditions imposed on the start point, 

and the linear segment ( , ]m ft t  works as a ramp input that 

provides a convergence reference for the Second-Order 
System, with both, position and velocity, constraints. The 
value 

mt  depends on the temporal properties of the 

Second-Order System module. 
The Boundary Function Generator will guarantee the 

required system’s performance at start and end regions.  

D. Modulation Function 

For most application tasks, we need to control a robot to 
move along an assigned path. The Modulation Function 

( )f t shown in Fig. 1 is used to “force” the generated 

response to follow the assigned trajectory (i.e., the sample 
trajectory, see later) at the middle of the path. 

As shown in Fig. 1, the input to the Second-Order System 
is 

( ) ( ) ( )u t r t f t= + .                             (9) 

The variable ( )f t  works as the forcing input to this system 

and we use it to counteract unwanted effects brought by the 

original reference signal ( )r t  from the Boundary Function 

Generator and to reshape the system’s output in order to force 
it to follow the desired path. 

 
1) Gaussian Kernels Based Approximating Function 

The original DMP introduces nonlinear control based on 
learned feed-forward controllers [4-6]. A nonlinear function 
based on a group of Gaussian kernels can be trained to 
smoothly approximate a given sample curve. We utilize this 
idea to build the Modulation Function for our system.  

Let us define the Modulation Function with M  kernels, 

( ) ( )

1

M

i
i

f t v t
ψ

=

=
∑

T
ψ W ,                         (10) 

where 
1 2[ , , , , , ]Ti Mw w w w= ⋅⋅⋅ ⋅ ⋅ ⋅W , iw is the weight of the 

Gaussian kernel i  and 
1 2[ , , , , , ]Ti Mψ ψ ψ ψ= ⋅⋅⋅ ⋅ ⋅⋅ψ , with 

2

expi i i

t
h c

T
ψ

  = − −     

,                    (11) 

where T is the time length of the whole process, t  is the 

time, and ( )v t  is a suppressing window function (see later). 

Constants ic  and ih  are centers and widths of the Gaussian 

kernels i , evenly distributed over the range ( )0,1 . 

 
2) Weight Learning 

The weight vector W is trained to match the sample 
trajectory ( )y t∗  generated by the Sample Trajectory 

Generator shown in Fig. 1. We have used a simple and 
practical learning rule to train the weight vector W , 
formalized by the following equation: 

( ) ( )( ) ( )iw y k y k v kγ ∗∆ = −                      (12) 

where, γ  is the learning rate, ik c T=  defines the center of 

the i-th Gaussian kernel within the time period [ ]0,T . Here, 

k serves as a phase variable to anchor the Gaussian kernels to 

the time period T . Regression methods like in [5, 6] can be 
used instead.  
 

3) Suppressing Window Function 
The Suppressing Window Function ( )v t  in Eq. (10), 
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Fig. 3. A solution for building the Boundary Function Generator. A 
third-order polynomial extended by a line segment can be employed here 

to construct the reference signal ( )r t  for the DMP based trajectory 

generator. 
 



 
 

 

serves as an “enable” term inside the Modulation Function 
shown in Fig. 1. It controls kernel influence by suppressing 
their action near start and endpoints thereby assuring 
accuracy of the process. When the system is in those regions, 
we should let the Boundary Function Generator’s output 

( )r t  drive the Second-Order System and Eqs. (5-6) will 

guarantee that the assigned boundary conditions will be 
successfully reached. We define the Suppressing Window 
Function by, 

( ) ( ) ( )1 1 2 2

1 1

1 1l t C l t C
v t

e e− − −= ×
+ +

.                     (13) 

Eq. (13) is a double-sigmoid function. It is continuous and 
differentiable and it has a pair of horizontal asymptotes as 
t → ±∞ . In Eq. (13), 

1 2,l l  are used to set the slopes, and 

1 2,C C to set the inflection points. With suitable parameters’ 

setting, ( )v t  approaches zero at the start- and end time as 

close as possible in order to obtain ( ) 0f t = . This way, ( )r t  

totally governs the Second-Order System at start- and 
endpoints and a more precise result is achieved. This kind of 
transition region is similar to the popular “zone solution” [3], 
but implicitly described by the parameters of Eq. (13). 

E. Sample Trajectory Generator 

Planning a trajectory by this method is done in two steps. 
In the first step the sample trajectory provides geometric path 
constraints and the speed profile information along the 
trajectory. Note, when designing the sample trajectory 
sequence, we do not need to care about the possible initial 
and final velocities imposed by the boundary conditions (see 
the signal flow shown in Fig. 1), which simplifies this step 

dramatically. Also, the sample *y  is only used during the 

training process. It is a one-shot process.  After training, 

( )f t  will contain all the information required to obtain the 

resulting  trajectory. 
In the second step the boundary conditions are imposed 

and the final smooth result is obtained through the interaction 
of ( )f t  and ( )r t . 

Now we describe how to define for step 1 the Sample 
Trajectory Generator. It provides a sample trajectory 
sequence ( )t∗y : 

( ) ( ) ( ) ( ) ( )0 , , , , ,
T

t y y y k y Lτ τ τ∗ ∗ ∗ ∗ = ⋅⋅⋅ ⋅⋅⋅ 
*y ,     (14) 

where, τ is the sampling time period, andL Tτ = is the total 
desired time to complete the path. We can acquire it by 
imitation (teaching and recording), or generate it by a simple 
path planner routine. Without loss of generality, in this paper, 
we focus on the latter. 

To generate a velocity profile for a sample trajectory, the 
Linear Segments with Parabolic Blends (LSPB) [17] method 
can be employed. For applications with many via-points, the 

easiest solution is to set up independent LSPB trajectories 
between adjacent via points and then to connect them one by 
one to form the whole sample trajectory sequence shown as 
Eq. (14). In fact, the discontinuous variation in the 
acceleration which comes from the LSPB will be filtered out 
by the trained Modulation Function. In the following section, 
we will give several application examples.  

III.  APPLICATION CASES 

Our DMP based trajectory generator has the potential to 
deal with very complicated application cases. 

Fig. 4 shows an application case in Cartesian space. It is a 
3D multi-segment path. Velocity vectors are assigned to start- 
and end-points. Three trajectory generators work in parallel 
to yield X, Y and Z components. The sample trajectory was 
planned by the LSPB method, and without velocity constraint 
consideration. One can see that our method generates a 
trajectory that satisfies the assigned boundary condition. As 
shown in Fig. 4 (b), the generated result “slows down” and 
closely passes these sharp corners (via-points) autonomously. 
The method presented in this paper generates smooth 
transition on its own. 

In the case shown in Fig. 5, a manipulator needs to move 
along a rectangle path. The difference between cases shown 
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Fig. 4. A multi-segment trajectory generating case, with two-end 
none-zero velocity constraints. (a) Position plot, sample and the generated 
position trajectory; (b) Velocity plot, sample and the generated position 
trajectory. 
 



 
 

 

in rows (a) and (b) of Fig. 5 is that they own different 
Gaussian kernel parameters. If the number of Gaussian 
kernels, M , in Eq. (10) is bigger, the method can 

approximate a more complicated trajectory more exactly. A 
smaller kernel number will produce a smoother more natural 
trajectory, if intermediate trajectory accuracy is not required. 
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Fig. 5. A multi-segment trajectory generating and comparison case, with two-end none-zero velocity constraints. (a) More and narrower Gaussian kernels: 
40M = and 400h = ; (b) Fewer and wider Gaussian kernels: 4M = , and 10h = . 
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(c) 

Fig. 6. A trajectory generating experiment with multiple via-points: “Multiple balls touching”. The manipulator passes closely all via-points, and behaves 
smoothly and naturally. (a) Simulation model. (b) Position and velocity plots of the joints. (c) Snapshots during experiment. 



 
 

 

Fig. 6 shows a trajectory generating experiment with 
multiple via-points: “Multiple balls touching”. The 
manipulator passes closely all via-points, and behaves 
smoothly and naturally. A movie of several basic experiments 
is shown at [18]. For these cases, the Robotics Toolbox V7.1 
[19] was employed to aid our analysis. 

All methods presented in this paper have been 
implemented on a simple robotic manipulator platform 
(Neuro-Robotics, Sussex) in our laboratory, where not only 
the key algorithm shown in this paper, but also more 
low-level driving and interfacing programs for the embedded 
control system of this platform have been implemented. 

IV.  CONCLUSIONS AND APPLICATION POTENTIAL 

In this paper, we presented a novel trajectory generator 
based on DMPs, formulated from a control theory and 
robotics viewpoints. Our work is quite different as compared 
to the original DMPs and the existing extensions [4-6, 8-15]. 

The technology presented in this paper has some 
characteristics:  

- The generated trajectory is smooth and can be quite 
complex using as many via-points as desired; 

- Transition zones will be created automatically at both 
ends, different from the traditional ways by 
sectionalizing and connecting by spline/polynomial 
[1]; 

- A required speed profile can be imposed on the 
trajectory; 

- A built-in filter (when 
nω  is low, the second-order 

system indeed acts as a low pass filter) makes the 
trajectory output being easier to follow by motion 
control system, as long as the bandwidth of motion 
control system is higher than the one of our system 
[16]. The traditional spline-based solution does not 
have this property [1]; 

- The path planning stage of a practical task can be 
simplified greatly, because this design introduces 
boundary conditions in an independent way. 

The often pursued combination of DMPs with imitation 
learning is also possible with this framework. For such an 
application, this method has the potential to allow for some 
dynamic tasks as mentioned above. For instance, a humanoid 
robot can imitate the movement profile and produce different 
kinds of end velocities. 

In summary, we believe that this novel trajectory 
generating technology exhibits great flexibility and 
applicability. Thus, we hope that our work presented in this 
paper will stimulate further DMP related research and 
development, and that this novel trajectory generating 
technology can be an alternative and widely employed not 
only in humanoid robots, but also in industry. 
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