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Abstract—This paper presents a novel method for trajectory Dynamic Movement Primitives (DMPs), which will seras
generation based on dynamic movement primitives (DMs) the basis for this paper, is an example of thiss TIMP
treated from a control theoretical perspective. Weextended the  formalism was presented by ljspeert et al [4-6)) dmeir
key ideas from the original DMP formalism by introducing a i,y estigations on humanoid robots have led to nomer
velocity convergence mechanism in the reformulatedystem. aplications [8-151. The original DMP algorithm ists of
Theoretical proof is given to guarantee its validity The new PP [ 1 . g_ 9 .
method can deal with complex paths as a whole. Basen this, W0 sets of differential equations; a canonicaterys and a
we can generate smooth trajectories with automatidy transformation system [4-6]. The canonical systemsed to
generated transition zones, satisfy position- and elocity represent the phase of the motor process. Thefdrametion

boundary conditions at start and endpoint with highprecision, system is a basic point attractive system, utilimedenerate
and support multiple via-point applications. Theoretc proof of the desired movement [4-6].

this method and experiments are presented. While interesting, the basic DMP formulation hasnso

limitations, which restricts its usefulness for jéctory
o _ generation applications. For example, limited by it
FOR all applications of any robotic system, we n@ed,rmjation and structure, the original DMP can umed
trajectory generating technology to create a tilsély nheijther to directly incorporate a target velocis] nor a
of relevant variables in state space (joint spa¢ask space). via-point. It always asymptotically converges te tfinal
Thus, this is still a fundamental and importaneegsh field point and the speed of approaching the targetris #@ber

in robotics. o _ et al [15] made a modification of the original DMP
A common method for joint space trajectory conti®és  ¢qrmyjation in order to implement striking (e.gatting a

lower order polynomials to providg .interp.olatingi-rne at ball) movements in the middle of a trajectory.

servo rates between user- specified via-positich@][  \ye were inspired by the original DMP applicatiodss]
Specific boundary conditions can be imposed ont@rse 4, show here a novel trajectory generating tecyydbased
lower order polynomials to obtain continuous trégeies in - 4, the key ideas from DMPs. The goal is to preaeBMP
joint space. On the other hand, by planning adtejg in task 5seq trajectory generating technology that praviteurate
space, we can completely specify the desired t@jgof the  oqq) over the trajectory including its startdandpoints in
end-effector. A popular approach is to utilize sosmaple position and velocity space.

curves (e.g., lines, arcs or parabolas) to defisenhole path * the remainder of this article is organized as fofioin
in task space, depending on the assigned via-pdiisway gection 2, we present our new solution for trajgcto
one can also introduce zones in which an interfmolat generation. Case studies and experiments are it

between the two adjacent segments can be perfd8hed  gection 3. Finally, conclusiorend application potential are
With the advent of humanoid and anthropomorphi©teb ¢, nmarized in Section 4.

many new challenges have surfaced [4-7]. The fraoriewf

I. INTRODUCTION

Il. TRAJECTORYGENERATORBASED ONDMP
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Generatory (t) , and Modulation Functior (t) , are fed into

Bound
the Second-Order System. The Boundary Function @&re Cg:gitisr?/s Training
imposes the boundary conditions onto the systeme Th T
Modulation Function, consisting of a Gaussian KeBased %, & | Yo, Y Yo Y+ ‘
Approximating Function and a Suppressing Window Boundary Sample yD(t) ‘
Function, will affect the Second-Order System'pse as — Function Trajectory
a forcing input. The Gaussian Kernel Based Appraxing Generator Generator ‘
Function contains a weight vector, and these weighed to
be trained in order to code the information broifgtin the Modulation FunctionA ‘
sample trajectoryyﬂ(t), provided by the Sample Trajectory Suppressing Gaussian -
O . . Window Kernels f

Generator. After training, the Modulation Functiodule | \ S
will contain the main information obtained frog¥(t), and — ‘ .
the sample trajectory will not be used anymore. f (t) efl)

The architecture shown in Fig. 1 is for one n “(t
Degree-of-Freedom (DOF). We can emplbgopies of this r(t) + Qb u(t) Second-Order y( )
architecture in parallel for an N-DOF application. System y(t) , ﬂt)

B. Second-Order System Module Fig. 1. The architecture of our DMP based trajgcigenerator. After
In the original DMP formalism and the following dtas  training, only the pink-shaded components will sed:

[4-6, 8-15], parameters have not been directlytedldo the
physical meaning of a second-order system. In tireent

paper, we adopt a standard formulation to makesyiseem F(s) (9 sY(s)
easier to understand and analyze from a contrabryhe >
perspective. o) kv, e e ]| [1]] vid
Fig. 2 shows the block diagram of the Second-Order = s+ 2w, s
System module employed in this paper, expresskedptace Y(s)
space. Its forward channel is H(s)
2 1
G(s)=——2___, o | |
S(S+ zzwn) Fig. 2. Block diagrams of the employed Second-O8jatem in Laplace
space.
and its feedback channel isH (s) =1 . Let

U (s) = R(S)+ F(s) andY(s)denote the input and outputconvergence of ljspeert’s original DMPs. Egs. (32430
respectively, then the transfer function is asofo# provide the foundation for including boundary cdiadis in
’ Y(s) W’ ' the architecture shown in Fig. 1. We will discusis issue in
009 = +2(a;s+a)2 - (2) the following sections.
This is a standard second-order system, where thg' Boundary Function Generator

constants¢ and @ are the damping coefficient and the FOr @ useful trajectory generator, we have to take
wral und qf ¢ th ¢ " account boundary conditions for position and vejocAs
natural undamped frequency of the system, respgtiv mentioned above, polynomials are normally employed

When ¢ =1, the system has a double pole-ay,, and this o ,ye giscontinuities (velocity and acceleratibejween
results in a critically damped response [16]. adjacent path segments. We use a third-order poliai@and

The model shown in Eq (2) is well-studied in cohtr determine the coefficients, given %,yf and %’&T as
theory. Its steady-state error can be calculated thwsy

final-value theorem [16], as follows,

the positions and velocities at the start and epdtp

U (s) respectively.
e, =lim e(t) =lim . (3) However, we cannot employ the third-order polyndmia
e =01+ G(S) alone to construct the Boundary Function Genesttown in
Furthermore, we can express the error's changeagate Fig. 1. As we know, a type-1 system can not follaw
_ o sU (S) parabolic or a higher order function, because thady-state
& = l'[‘; @‘(t) = I;T)F(s) (4) error is infinite [16]. This conclusion can be dexd from Eq.

(3). If U (t) is a ramp function, from Egs. (3-4) we obtain
Based on Egs. (3-4), we can prove the asymptotic



e.=VI/K,, (5)

and
& =0, (6)
whereV is the slope coefficient af (t), andK, = w,/2{ .

Eq. (6) shows that the slope coefficient of theddeleOrder
System’s response will approach that of the inpmhp
function in the end. Even though Egs. (5-6) holty dor the
steady-state, we can design our system basedsoprthciple
with controllable precision. In fact, Eq. (6) isetiproof for
approaching the assigned velocity and Eq. (5) mpitssihe
offset that we can use to reduce the position efirbus, we
can utilize a third-order polynomial extended bylire

segment to construct the reference sig’r(etl) . Fig. 3 shows

such a case.

= Polynomial Segment
—Line Segment

t, t, & T

Fig. 3. A solution for building the Boundary Furwmti Generator. A
third-order polynomial extended by a line segmet be employed here

to construct the reference sigﬂa(t) for the DMP based trajectory

generator.

1) Gaussian Kernels Based Approximating Function
The original DMP introduces nonlinear control based

learned feed-forward controllers [4-6]. A nonlindanction

Let us denotd, as the junction moment (the time poinhased on a group of Gaussian kernels can be tramed
where the polynomial segment and the line segmemt amoothly approximate a given sample curve. Wezetithis

joined), then the reference signal is defined sV,
© a,+at+at’+at® O<tst, -
r(t)=
Y-t -t) % t,<tst

where,
Ye =Y; +0,
andd, =(2¢ 1a,) % -
In Eq. (7), the polynomial segmef@,t ] is employed to
connect the boundary conditions imposed on thé gtant,

and the linear segmelﬁtm,tf] works as a ramp input that

idea to build the Modulation Function for our syste

Let us define the Modulation Function wit kernels,
T
f(t)=Y W v(t) (10)

M

D,

i=1

(8) where W =[w,, w,, [w,Mw,, |, W is the weight of the
Gaussian kerndl and y =[¢,, ,, [Ty, [0, T, with

(11)

v =exp{—h G—c]]

where T is the time length of the whole procegsis the

provides a convergence reference for the Secon@fOréime, andv(t) is a suppressing window function (see later).

System, with both, position and velocity, consttsirlhe
value t  depends on the temporal

Second-Order System module.

properties of th(éonstantscI andh are centers and widths of the Gaussian

kernelsi , evenly distributed over the range, 1) .

The Boundary Function Generator will guarantee the

required system’s performance at start and enamnsgi

D. Modulation Function
For most application tasks, we need to controllmtdo

2) Weight Learning
The weight vectorw is trained to match the sample

trajectory yD(t) generated by the Sample Trajectory

move along an assigned path. The Modulation Functig€nerator shown in Fig. 1. We have used a simpte an
f(t) shown in Fig. 1 is used to “force” the generateBraC“Ca' learning rule to train the weight vectoy ,

response to follow the assigned trajectory (ilee, $ample
trajectory, see later) at the middle of the path.

formalized by the following equation:

Aw, =y(yD(k)—y(k))v(k) (12)

As shown in Fig. 1, the input to the Second-Ordgst&n where, )/ is the learning ratek =cT defines the center of

is

u(t)=r(t)+f(t).

The variablef (t) works as the forcing input to this systerrtl

thei-th Gaussian kernel within the time periEmtT]. Here,

K serves as a phase variable to anchor the Gaussiag&to
he time periodl . Regression methods like in [5, 6] can be

and we use it to counteract unwanted effects brobiglthe sed instead.

original reference signal (t) from the Boundary Function

Generator and to reshape the system’s output &r dodorce
it to follow the desired path.

3) Suppressing Window Function
The Suppressing Window Functicm(t) in Eqg. (10),



serves as an “enable” term inside the Modulationcian —— Sampié

shown in Fig. 1. It controls kernel influence bypuessing (—DMP >

their action near start and endpoints thereby asgur 0.25] S

accuracy of the process. When the system is irethegions, 0.2 i
we should let the Boundary Function Generator'spout _ '
r(t) drive the Second-Order System and Egs. (5-6) will §0.15

guarantee that the assigned boundary conditionk heil 014

successfully reached. We define the Suppressingddviin >

Function by, 005&/“ 0.35
1 1 03025 7,7z 3

V(t) ) 1+ e_'l(“cl) * 1+ elz(t‘cz) . (13) Y (m) . . X (m)

Eq. (13) is a double-sigmoid function. It is comntirus and (@)
differentiable and it has a pair of horizontal apyotes as 0.8 R y—
t » *oo. In Eqg. (13),l,,1, are used to set the slopes, and — Vel DMPp
C,,C, to set the inflection points. With suitable paraenst - 06
setting,v(t) approaches zero at the start- and end time as io

= 0.4
close as possible in order to obtafirft) = 0. This way, r (t) %
totally governs the Second-Order System at stand a g 0.2
endpoints and a more precise result is achieveid.Kitd of
transition region is similar to the popular “zomdusion” [3], 0 ‘ ‘ ‘ ‘ ‘
but implicitly described by the parameters of EiB)( 0 05 1 Tinﬁ(f(s) 2 25 3
E. Sample Trajectory Generator (b)

. . . . . Fig. 4. A multi-segment trajectory generating caseth two-end
Planning a trajectory by this method is done in sieps. none-zero velocity constraints. (a) Position paimple and the generated

In the first step the sample trajectory providesrgetric path  position trajectory; (b) Velocity plot, sample atite generated position
constraints and the speed profile information aldhg trajectory.

trajectory. Note, when designing the sample trajgct

sequence, we do not need to care about the pogsitié €asiest solution is to set up independent LSPRdtajies

and final velocities imposed by the boundary cdad# (see between adjacent via points and then to conneot tree by

the signal flow shown in Fig. 1), which simplifitisis step ©one to form the whole sample trajectory sequenosvstas

dramatically. Also, the samplg™ is only used during the Ed. (14). In fact, the discontinuous variation ihet
. . - acceleration which comes from the LSPB will beefiid out
training process. It is a one-shot process. Afitaining,

f (t) will contain all the information required to ohtaihe by th? trglned Modulanop anctlon. In the follogiaection,
we will give several application examples.
resulting trajectory.

In the second step the boundary conditions are segbo I1l. APPLICATION CASES

and the final smooth result is obtained throughitkeraction Our DMP based trajectory generator has the potetatia

of f (t) andr(t). deal with very complicated application cases.

Now we describe how to define for step 1 the SampleFig. 4 shows an application case in Cartesian spaisea
Trajectory Generator. It provides a sample trajgcto3D multi-segment path. Velocity vectors are asgigoestart-
sequencgm(t): and end-points. Three trajectory generators wonbairallel

T to yield X, Y and Z components. The sample trajgcteas

y (t)=[y"(0),y"(r) mmy’(kz) mmy”(L7) | - (14) planned by the LSPB method, and without velocitystint
where, T is the sampling time period, ahd =T is the total consideration. One can see that our method gesegte

desired time to complete the path. We can acquifeyi frajectory that satisfies the assigned boundaryliciom. As

imitation (teaching and recording), or generatayia simple Shown in Fig. 4 (b), the generated result “slows/eloand

path planner routine. Without loss of generalityttiis paper, Closely passes these sharp comers (via-pointshamtously.

we focus on the latter. The method presented in this paper generates smooth

To generate a velocity profile for a sample trajegtthe transitiononits own. _
Linear Segments with Parabolic Blends (LSPB) [1&lmod In the case shown in Fig. 5, a manipulator needadve
can be employed. For applications with many viaatgithe along a rectangle path. The difference betweenscsisewn
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Fig. 5. A multi-segment trajectory generating anthparison case, with two-end none-zero velocitystramts. (a) More and narrower Gaussian kernels:
M =40and h =400; (b) Fewer and wider Gaussian kernéi$:= 4, andh =10.
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(c)
Fig. 6. A trajectory generating experiment with tipié via-points: “Multiple balls touching”. The miulator passes closely all via-points, and bekave
smoothly and naturally. (a) Simulation model. (bsfon and velocity plots of the joints. (c) Snhpts during experiment.

in rows (a) and (b) of Fig. 5 is that they own diffint approximate a more complicated trajectory more txaé
Gaussian kernel parameters. If the number of Gamsssmaller kernel number will produce a smoother muatiral
kernels, M , in Eqg. (10) is bigger, the method carrajectory, if intermediate trajectory accuracydt required.



Fig. 6 shows a trajectory generating experiment wit
multiple via-points: “Multiple balls touching”. The [1]
manipulator passes closely all via-points, and beba
smoothly and naturally. A movie of several basiperiments 2]
is shown at [18]. For these cases, the Roboticsbbad/7.1 (3]
[19] was employed to aid our analysis.

All methods presented in this paper
implemented on a simple robotic manipulator platfor
(Neuro-Robotics, Sussex) in our laboratory, wheyeanly
the key algorithm shown in this paper, but also enofol
low-level driving and interfacing programs for thebedded
control system of this platform have been impleradnt

have been
[4]

(6]
IV. CONCLUSIONS ANDAPPLICATION POTENTIAL

In this paper, we presented a novel trajectory ggoe [7]
based on DMPs, formulated from a control theory and
robotics viewpoints. Our work is quite different@smpared
to the original DMPs and the existing extension$[8-15].

The technology presented
characteristics: (9]

- The generated trajectory is smooth and can be quite
complex using as many via-points as desired;

- Transition zones will be created automatically @thb [10]
ends, different from the traditional ways by
sectionalizing and connecting by spline/polynomial
[1]; 11]

- A required speed profile can be imposed on tfge
trajectory;

- A Dbuilt-in filter (when ¢, is low, the second-order

8]
in this paper has some

system indeed acts as a low pass filter) makes {2
trajectory output being easier to follow by motion
control system, as long as the bandwidth of motiq{b]
control system is higher than the one of our system
[16]. The traditional spline-based solution doe$ no
have this property [1]; 14]
- The path planning stage of a practical task can L)e
simplified greatly, because this design introduces
boundary conditions in an independent way.

The often pursued combination of DMPs with imitatio
learning is also possible with this framework. Boich an
application, this method has the potential to alfowsome [16]
dynamic tasks as mentioned above. For instancemamoid |17
robot can imitate the movement profile and prodiifferent
kinds of end velocities. (18]

In summary, we believe that this novel trajectory
generating technology exhibits great flexibility dan[i9)
applicability. Thus, we hope that our work presdrte this
paper will stimulate further DMP related researad a
development, and that this novel trajectory gefgat
technology can be an alternative and widely emmloyet
only in humanoid robots, but also in industry.
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