
9th IEEE-RAS International Conference on Humanoid Robots
December 7-10, 2009 Paris, France

Task adaptation through exploration and action sequencing

Bojan Nemec Minija Tamošiūnaitė Florentin Wörgötter Aleš Ude

Abstract— General-purpose autonomous robots need to have
the ability to sequence and adapt the available sensorimotor
knowledge, which is often given in the form of movement
primitives. In order to solve a given task in situations that
were not considered during the initial learning, it is necessary to
adapt trajectories contained in the library of primitive motions
to new situations. In this paper we explore how to apply
reinforcement learning to modify the subgoals of primitive
movements involved in the given task. As the underlying senso-
rimotor representation we selected nonlinear dynamic systems,
which provide a powerful machinery for the modification of
motion trajectories. We propose a new formulation for dynamic
systems, which ensures that consecutive primitive movements
can be splined together in a continuous way (up to second order
derivatives).

I. INTRODUCTION

Action generation and trajectory modulation are among
the most important issues in humanoid robot motor control.
An often used paradigm is learning from demonstration or
imitation learning [10], where the demonstrated action is
used to seed the learning process. Due to different kinematic
and dynamic capabilities of the human demonstrator and
the target humanoid robot, demonstrated trajectories cannot
be simply copied as sequences of joint angles [15], but
need to be adapted to the capabilities of the robot. Such
problems can be avoided by kinesthetic guiding [3], where
the robot arm is led through the action by a human teacher,
but this method is not applicable to every robot. Even
after the observed trajectories have been made feasible with
respect to the robot’s kinematics and dynamics, they still
need to be modified when the configuration of the external
world changes compared to the initial demonstration. Thus a
suitable, higher-level adaptation process is needed to change
the learned trajectories.

The adaptation can take place in the form of an au-
tonomous exploration, where the robot modifies the available
movements by exploring its action space in the neighborhood
of the previously acquired movements, thus continuously
expanding the available knowledge until optimal (or satisfac-
tory) solution is found. This process is often realized using
reinforcement learning techniques. Since we are interested
in the development of intelligent robots in household envi-
ronments, we took the pouring of a liquid into a glass as a
representative example in our evaluation experiments. Cup

B. Nemec and A. Ude are with the Jožef Stefan Institute, Depart-
ment of Automatics, Biocybernetics, and Robotics, Ljubljana, Slovenia,
bojan.nemec@ijs.si, ales.ude@ijs.si

M. Tamošiūnaitė is with the Vytautas Magnus University, Kaunas,
Lithuania, m.tamosiunaite@if.vdu.lt

F. Wörgötter is with the Bernstein Center for Computational Neuro-
science, Göttingen, Germany, worgott@bccn-goettingen.de

filling is an appropriate task for learning because in general
liquid streams are hard to model if one considers arbitrary
vessels and liquids. Even if the appropriate robot movements
that solve the task for some glasses and liquids are available,
these movements require further adaptation procedures if the
relative position of the glass with respect to the robot changes
or if one of the vessels changes.

When considering reinforcement learning (RL) for at-
taining a delayed reward, learning at different levels of
abstraction is possible. One possibility is to parametrize the
shape of the selected trajectory and perform learning by
adapting these parameters, so that the overall movement is
changed towards better performance. Examples of adaptation
of this type are provided in [7], [8], using specific policy
gradient technique called natural actor-critic. Another pos-
sibility is to leave the parameters specifying the shape of
the trajectory as they are. Instead, higher-level parameters
specifying the relationship between the movement and the
task space can be adapted, e. g. by shifting the trajectory to
a new location in 3-D space, this way reducing the problem
to an easier reinforcement learning problem with a smaller
number of parameters. This second approach was chosen
in our research. We applied reinforcement learning with
function approximation and continuous actions.

To generate subgoals suitable for this kind of reinforce-
ment learning, it is often useful to segment the overall
movement into primitive movements that are related to the
subgoals of the task. Such methodology was also used in [2]
in the context of learning from demonstration and practicing.
In this paper we employ dynamic movement primitives
(DMPs) [4], [11], which are essentially parametrized trajec-
tories encoded by dynamic systems, as a basic movement
representation. DMPs explicitly contain the final goal po-
sition of the primitive motion among the parameters and
thus provide suitable higher-level parameters for reinforce-
ment learning. Since a smooth transition between primitive
movements without coming to a full stop is often needed
to effectively sequence the primitives, we propose a new
formulation of dynamic systems that ensures smoothness (up
to derivatives of second order) of the transition between two
consecutive primitive movements.

In the following we first study movement sequencing with
DMPs. In the second part we investigate an application of
reinforcement learning to the adaptation of the available
motor primitives in the context of cup filling.

II. SEQUENCING OF MOTION PRIMITIVES

Lets briefly consider the task of pouring a liquid into a
glass. It depends on many factors including the position of

978-1-4244-4588-2/09/$25.00 ©2009 IEEE 610

the glass with respect to the body, the shape of the vessel
containing the liquid and the shape of the glass to be filled.
A general strategy for pouring is 1) approach the glass to
be filled with a suitable approach trajectory and 2) start the
pouring motion towards the end of the approach trajectory
and execute the pouring motion while controlling the liquid
flow until the glass is filled to the desired level. These two
phases define two separate movement primitives. Note that
there is a smooth transition between the two phases, i. e. the
hand motion does not come to a full stop while transitioning
from the approach phase to the pouring phase.

To successfully fill the glass placed at different locations
on the table, the actual pouring motion does not need to
be changed. Successful pouring can be achieved solely by
selecting the appropriate goal position for the approach
trajectory, which is automatically taken into consideration by
the underlying dynamic system, followed by the previously
learned and constant pouring movement. The goal position
of the approach trajectory provides the parameters that can
be learned by reinforcement learning. For this approach to
work, we need to be able to smoothly sequence the available
primitives. In this section we propose a dynamic systems
formulation that allows smooth sequencing of DMPs without
coming to a full stop at the end of each movement, as it is
necessary in the case of pouring movements. While some
of these parameters could be inferred analytically, this is at
least a non-trivial task because many parameters need to be
considered (shape of the glass, properties of liquid flow for
different liquids, capabilities of the robotic arm, ...).

In the standard DMP formulation for discrete movements,
motion in each task coordinate is represented as a damped
mass-spring system perturbed by an external force. Such a
system can be modeled with a set of differential equations
[11]1

v̇ =
1
τ

(K(g − y)−Dv + f(x)) , (1)

ẏ =
v

τ

where v and y are the velocity and position of the system, x
is the phase variable, which defines the time evolution of the
trajectory, τ is the temporal scaling factor, K is the spring
constant, and D is the damping. The phase variable x is
defined by

ẋ = −αx
τ
. (2)

For trajectory generation it is necessary that the dynamic
system is critically damped and thus reaches the goal position
without overshoots. A suitable choice is D = 2

√
K, where

K is chosen to meet the desired velocity response of the
system. Function f(x) is a nonlinear function which is used
to adapt the response of the dynamic system to an arbitrary
complex movement. A suitable choice for f(x) was proposed
by Ijspeert et al. [4] in the form of a linear combination of

1While constants are denoted differently in this paper, the two formula-
tions are equivalent.

M radial basis functions

f(x) =

∑M
j=1 wjψj(x)∑M
j=1 ψj(x)

x, (3)

where ψj are Gaussian functions defined as ψj(x) =
exp(− 1

2σ2
j
(x− cj)2). Parameters cj and σj define the center

and the width of the j-th basis function, while wj are the
adjustable weights used to obtain the desired shape of the
trajectory.

Fig. 1. Filtered output of the DMP

In the original DMP formulation [4], the system has an
initial state (x, y, v) = (1, y0, 0) and a final state (x, y, v) =
(0, g, 0), which means that the previous motion has to com-
pletely stop before the next motion is generated. Pastor et al.
[6] noted that by appropriately defining the initial conditions
for the second movement, two consecutive movements can be
joined together with continuous velocities. The acceleration,
however, remains discontinuous even after this modification.
Here we eliminate this restriction by replacing the second
order system (1) with a third order system.

In order to overcome the jumps in velocities and acceler-
ations when joining two trajectories, we propose to apply a
first order low-pass filter at the output of the DMP generator,
as shown in Fig. 1. The second order system (1) now turns
into a third order system, which is defined by equations

v̇ =
1
τ

(K(g − y)−Dv + f(x)) ,

ẏ =
v

τ
, (4)

q̇ =
H

τ
(y − q).

Here H is an appropriately chosen filter constant and q is
the new output of the modified DMP. The phase variable x
remains defined by Eq. (2). Like in the original formulation
(1), the third order system is stable if the constants K, D, H ,
and τ are appropriately selected. The proof is as follows. It
is easy to see that if we omit the nonlinear term f from Eq.
(4), a general solution for the remaining linear differential
equations system is given by

 v
y
q

 =

 0
g
g

+exp (tA) c, A =


−D
τ
−K
τ

0

1
τ

0 0

0
H

τ
−H
τ

 ,
(5)

where c ∈ R3 is an arbitrary constant, which is determined
from the initial conditions. The system is guaranteed to

611

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1
MOTION PRIMITIVES

m

y1
y2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

0.2

0.4
joined DMP position

m

DMP3
DMP2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.6

−0.4

−0.2

0

0.2
joined DMP velocity

m
/s

DMP3
DMP2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−15

−10

−5

0

5
joined DMP acceleration

m
/s

2

TIME (sec)

DMP3
DMP2

Fig. 2. Sequencing of dynamic movement primitives: the output of the
second and third order DMP

converge to the attractor point [0, g, g] if the eigenvalues of
A are negative. The eigenvalues of A are given as solutions
to the equation

det(A−λI)=−
(
λ2 + λD/τ +K/τ2

)
(H/τ + λ)=0, (6)

thus A has negative eigenvalues −
√
K/τ and −H/τ if D =

2
√
K, H,K, τ > 0. Since the phase x and consequently the

nonlinear term f(x) tend to zero, the nonlinear system (4)
is also guaranteed to converge to the attractor point [0, g, g].

In simulation we have tested the sequencing of linear
movements encoded by DMPs. Figure 2 shows the response
of two consecutive second and third order DMPs and the
corresponding velocities and accelerations. As we can see,
the modified DMP formulation ensures continuous acceler-
ations, whereas the accelerations in the original formulation
are discontinuous.

A. Motion Acquisition

The trajectory represented by a third order dynamic
system is parameterized with the initial acceleration, ve-
locity, and position, the final goal position, and a set of
weights wj associated with radial basis functions. In this
section we present the procedure for the calculation of
weights wj . We assume that from human demonstration
or kinesthetic guiding we obtain trajectory data points
{qd(ti), q̇d(ti), q̈d(ti),

...
q d(ti)}i, ti ∈ [0, T]. Note that unlike

in the original DMP formulation, this formulation requires

Fig. 3. Two frames from the pouring demonstration. The motion was
captured by attaching markers to the container.

also to estimate the jerk. We define function f∗ as follows

f∗(t) =
τ3

H

...
q +τ2

(
1 +

D

H

)
q̈+τ

(
K

H
+D

)
q̇+K(q−g),

(7)
where q = q(t). This function is obtained by replacing the
system of three first order equations (4) with one equation
of the third order, where the nonlinear term f(x) has been
omitted. Our task is to find a set of weights {wj} that
minimize the quadratic cost function

J =
N∑
i=0

(f∗(ti)− f(x(ti)))2. (8)

We use global regression methods to find the optimal weights
wj . Other authors [4], [6] applied locally weighted regres-
sion, which instead minimizes M separate cost functions

Jj =
N∑
i=0

ψj(x(ti))(f∗(ti)− wjx(ti))2, (9)

j = 1, . . . ,M . Locally weighted regression [1] was proposed
as a method that prevents negative interference between task
models. Local models are used to generalize in the neigh-
borhood of the given data point. However, in the context of
trajectory generation from human demonstration, a complete
trajectory is observed over the entire time interval, therefore
locally weighted regression has no advantages over the global
regression except for the lower computational burden. On the
other hand, when using global regression, significantly less
kernel functions are necessary to encode the trajectory within
the required precision and consequently less computation is
required to track the previously calculated trajectory. Global
regression results in the following linear system of equations

Aw = f∗, (10)

w =

 w1

...
wM

 , f∗ =

 f∗(t0)
...

f∗(tN)

 ,

A =


ψ1(x(t0))x(t0)PM

j=1 ψj(x(t0))
· · · ψM (x(t0))x(t0)PM

j=1 ψj(x(t0))

...
...

...
ψ1(x(tN))x(tN)PM

j=1 ψj(x(tN))
· · · ψM (x(tN))x(tN)PM

j=1 ψj(x(tN))

 .

612

Similarly as in the case of locally weighted regression, it
is possible to compute a solution to (10) recursively by
incrementally updating the following quantities

Pi = Pi−1 −
Pi−1aiaTi Pi−1

1 + aTi Pi−1ai
, (11)

wi = wi−1 + (f∗(ti)− aTi wi−1)Piai, (12)

where ai is the M dimensional column vector associated
with the corresponding row of the matrix A and the optimal
weights are w = wN .

Using the proposed estimation method, we captured and
successfully reconstructed the approach and the pouring
movements (see Fig. 3). An optical tracking system with
passive markers attached to the container was utilized to
capture the motion of the container. The motion of the
container was then mapped to the 3-D space motion of the
robotic hand.

III. GOAL CONFIGURATION ADAPTATION USING
REINFORCEMENT LEARNING

Now we turn our attention towards the adaptation of
the available action knowledge through exploration. In the
interest of better understanding of the learning process,
we fist describe our experimental setup. The implemented
learning process is, however, more general and is not limited
to this experiment.

A. Experimental setting

The evaluation experiments were performed using two
robots; a humanoid robot HOAP-3 and a seven degrees of
freedom (DOFs) robotic arm PA-10. HOAP-3 is a small
humanoid robot, whose arm has a limited workspace (5
DOFs), while the seven degress of freedom available to PA-
10 allow the arm to reach any desired position and orientation
of the wrist within the robot workspace.

The execution of the pouring action consists of two phases;
the approach movement and the actual pouring movement.
The pouring movement of HOAP-3 was fixed and was not
changed during the exploration process. What the robot
needed to learn was the optimal position and orientation of
the robot’s hand from where to start the pouring movement

Fig. 4. Experimental setup with HOAP-3 humanoid robot

(with respect to the location of the glass to be filled).
This parameter is given as a final position on the approach
trajectory and is explicitly encoded within a DMP. Obviously,
the optimal starting position for pouring changes when the
glass is moved to a new location. However, because the arm
has only 5 degrees of freedom and because of nonlinearity
of the robot’s kinematics, the new optimal position is not a
linear function of the glass location. The task space to be
explored was further limited by specifying the height from
which to start pouring, which was defined as a function of the
distance of the glass from the robot body using the formula

z = 0.5((x− 0.1) + (−0.14− y)) + 0.01, (13)

where (x, y, z) are the robot-centered coordinates with the
following directions (x - forward, y - to the side, z - up).
Thus the wrist was kept lower when being close to the body,
and higher going away from the body. This was important to
move the arm at sensible orientations because the 5 degrees
of freedom arm of HOAP-3 cannot reach every desired
configuration in the 6-D task space. The 3-D wrist orientation
was defined so that the glass was not tilted at the beginning
of the pouring movement, which fixed the remaining two
degrees of freedom.

The reinforcement learning process described in the next
sections explored the so defined planar surface to find the
optimal position for pouring with respect to the given glass
location. The outcome of pouring, which provided the reward
for reinforcement learning, was measured using a scale that
weighted the amount of liquid that remained in the glass to
be filled (see Fig. 4). The scale could be replaced by a vision
system measuring the level of liquid in the glass, but this was
not the focus of our investigation.

We also evaluated our algorithms with a PA-10 robot
arm. Since the problem to keep the wrist at a specific angle
does not arise when using a 7 degrees of freedom arm, we
now allowed variable height in addition to the y coordinate
(direction to the side of the robot), but x coordinate (forward)
was kept fixed. This coordinate can be estimated by vision.
The 3-D wrist orientation was defined so that the glass was
not tilted at the beginning of the pouring motion and the wrist
axis orientation was parallel to the robot’s sagittal plane.

B. Exploration

We implemented a reinforcement learning method with
function approximation. We define the value function V (s)
as follows

V (s) =
N∑
k=1

θkΦk(s)/
N∑
k=1

Φk(s) (14)

where Φk(s) is the activation function of the k-th kernel in
state s, θk are the weights associated with the k-th kernel
function, and N is the overall number of kernels in the
system. In the context of the our experiment, state s is
defined as a pair of Cartesian coordinates at which the robot
starts pouring the liquid ([x, y]T and [y, z]T for HOAP-3 and
PA-10, respectively). Weights θ are adapted through learning

613

as described in the next section. We used spherical Gaussian
kernels, uniformly distributed over the analyzed area with
σ = 0.5 cm for the HOAP-3 setup and σ = 2.1 cm
for the PA-10 setup. N = 2000 was used in both cases
to thoroughly exclude effects from insufficient coverage of
the state space, although according to our experience with
function approximation methods of similar complexity [13],
ten times smaller amount of kernels would often suffice to
adequately represent the investigated space.

To define a new exploratory action, gradient of the cur-
rent estimate of the value function was calculated ∆ =
gradV (s), and an action was performed taking the direction
of the gradient into account. Instead of using pure gradient
ascent, the update for the next state was calculated as a
combination of the current gradient and the previous action
Aprevious:

∆current = (∆x,∆y)current, (15)
Aprevious = (Ax,Ay)previous, (16)

which resulted in

Afinal = c∆current + (1− c)Aprevious, (17)

where at the beginning of learning c = 1.5 was used,
while in later trials c was reduced by 0.1 trial by trial.
The proposed smoothing procedure helps to avoid jerky
exploratory movements in the beginning of the learning
process and also to some degree influences the process of
refinement in RL with function approximation. Traditional
proofs of convergence for RL are no longer valid when using
action smoothing, but in practice learning converged reliably.

In the beginning of learning, the probability of random
exploration was set to 0.5 due to the fact that the chosen
method for performing continuous actions in the value func-
tion approximation scheme was sometimes attracted towards
local minima. The exploration was diminished by 0.05 in
each trial to adhere to the learned components better.

C. Learning method

In the proposed learning framework, the change in the
value of θk follows the mean across all activated kernels of
the next state s′

θk = θk + µ[r + γV (s′)− θk]ΦkN (s), (18)

where k is the number of the kernel to which the weight is
associated, r is the reward, µ < 1 the learning rate, γ < 1
the discount factor, V (s′) is the value of the next state, and
ΦkN (s) is the normalized activity function for kernel k in
state s

ΦkN (s) = Φk(s)/
N∑
k=1

Φk(s). (19)

The rule (18) is called averaging function approximation
rule and is considered to perform more stably [9] in function
approximation schemes as compared to standard methods
(e. g. see [12]).

Fig. 5. Learning trajectories, vector field obtained in the process of learning
(marked with pointers), and the contour plot of the reward (succesful pouring
amounts) obtained through sampling (A); amount of reward accumulated in
successive trials (B). Real HOAP-3 robot was used in this case.

D. Results

In experiments with HOAP-3, ten trials with eight pouring
attempts each were performed. Exploratory paths together
with the resultant vector field are shown in Fig. 5.A. All
trials started at the same initial hand position and orientation.
One can see that the learning was successful and the rewards
starting with the 3rd trial were always high (see Fig. 5.B).
Some oscilations in the reward profile are due to the random
exploration component.

Several improvements were introduced to make learning
quicker: 1) restarting the next trial from the best point of the
previous trial; 2) shortening the step size with the number
of trials; and 3) reducing the amount of smoothing of the
trajectory with the number of trials. This led to a more
reliable learning both in simulation and on the robot. The
exploratory paths at the end of learning together with the
obtained vector field are shown in Fig. 6.A. Statistics plots
are shown in Fig. 6.B.

A similar experiment was performed using the PA-10 robot
arm. Examples of the exploratory paths are shown in Fig. 7.
In Fig. 7.A, a few initial paths are shown, while in Fig. 7.B,
exploratory paths at the end of learning and the obtained vec-
tor field, are shown. The inset of Fig. 7.A shows the reward
contours obtained through sampling. One can see from the
inset that the same reward is obtained independently of the
wrist height (z coordinate). Learning chooses an arbitrary
height but prefers the appropriate y coordinate. Vector field

614

Fig. 6. Exploratory paths of the hand traversed during learning and the
vector field obtained at the end of learning when using the strategy of
jumping directly to the best point of the previous trial (A); sequences of
accumulated reward for 20 learning experiments obtained using HOAP-3
simulator (B).

is also stronger along the y coordinate as compared to the
height coordinate.

In PA-10 experiments, good performance was obtained
after 6-8 trials. In Fig. 8.A accumulated rewards over se-
quential trials from 10 experiments are shown. The average
over those experiments is given in Fig. 8.B. In the current
setup with PA-10, learning effects were achieved several
trials later as compared to the analyzed HOAP-3 setup, which
is probably due to the bigger area that needs to be explored.

IV. SUMMARY AND CONCLUSION

A reinforcement learning procedure with function ap-
proximation and continuous actions, which are encoded
by dynamic systems, was developed. To support action
sequencing, a new formulation for dynamic systems was
proposed. This methodology was successfully applied to
learn appropriate robot movements for liquid pouring. We
have shown that good performance can be achieved within
3-8 trials (exploratory paths, or 20 to 60 attempts to pour), on
two different robot arms. The number of trials is acceptable
for a robotic application, where procedures with thousands
of learning trials are often not feasible.

There are alternative ways to refine robot movements
using reinforcement learning. In [8], a novel policy gradient
method called natural actor-critic was used to solve the prob-
lem of throwing a ball into a cup with a 7 degrees of freedom
robot arm. The method exhibits excellent performance when

Fig. 7. Exploratory paths obtained at the beginning of learning in the
experiment with PA-10 (A). The inset shows contours of the reward area
obtained using sampling. Exploratory paths and vector field obtained at the
end of learning are shown in (B).

applied to problems involving multiple dimensions. One
problem we had with the natural actor-critic technique –
at least in our experiments – was that the initial trajectory
had to be relatively close to the desired trajectory if one
wants to achieve efficient convergence [14]. In comparison,
approaches like ours need to explore a smaller task space to
find a satisfactory solution and are therefore less susceptible
to a bad initial approximation. Also, value function based
reinforcement learning methods deal with delayed rewards
in a systematic way, whereas gradient based methods like
the natural actor-critic would fail because of the flat reward
surface. This is another reason for why our method can
correct larger inaccuracies in the demonstration as compared
to the natural actor-critic. Hence although with methods like
natural actor-critic, reinforcement learning can be applied
to large state spaces, an alternative to divide the task into
several smaller problems and solve one or several of the
smaller tasks with reinforcement learning may provide more
stable results. While other systems in which the task has been
subdivided into smaller tasks by defining suitable subgoals
were developed in the past [5], our approach shows how to
refine the available movement primitives by encoding them
as dynamic systems. We demonstrated that dynamic systems
provide a suitable framework for task decomposition and
proposed a formulation that allows smooth sequencing of

615

Fig. 8. Ten sequences of accumulated reward in PA-10 experiments (A);
average value of the ten reward sequences (B).

consecutive movement primitives up to second-order deriva-
tives.

Acknowledgment: The work described in this paper was
conducted within the EU Cognitive Systems project PACO-
PLUS (FP6-2004-IST-4-027657) funded by the European
Commission.

REFERENCES

[1] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” AI Review, vol. 11, pp. 11–73, 1997.

[2] D. C. Bentivegna, C. G. Atkeson, A. Ude, and G. Cheng, “Learning to
act from observation and practice,” International Journal of Humanoid
Robotics, vol. 1, no. 4, pp. 585–611, 2004.

[3] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Trans. on Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.

[4] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proc. IEEE Int.
Conf. Robotics and Automation, Washington, DC, 2002, pp. 1398–
1403.

[5] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by
real robot using hierarchical reinforcement learning.” Robotics and
Autonomous Systems, vol. 36, pp. 37–51, 2001.

[6] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
Proc. IEEE Int. Conf. Robotics and Automation, Kobe, Japan, 2009,
pp. 763–768.

[7] J. Peters and S. Schaal, “Reinforcement learning for parameterized
motor primitives,” in International Joint Conference on Neural Net-
works, 2006, pp. 73–80.

[8] ——, “Reinforcement learning of motor skills with policy gradients.”
Neural Networks, vol. 21, pp. 682–697, 2008.

[9] S. I. Reynolds, “The stability of general discounted reinforcement
learning with linear function approximation.” in UK Workshop on
Computational Intelligence (UKCI-02), September 2002, pp. 139–146.

[10] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[11] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs.
optimal control – a unifying view,” Progress in Brain Research, vol.
165, no. 6, pp. 425–445, 2007.

[12] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[13] M. Tamosiunaite, J. Ainge, T. Kulvicius, B. Porr, P. Dudchenko, and
F. Wörgötter, “Path-finding in real and simulated rats: assessing the
influence of path characteristics on navigation learning.” Journal of
Computational Neuroscience, vol. 25, pp. 562–582, 2008.

[14] M. Tamosiunaite, T. Asfour, and F. Wörgötter, “Learning to reach by
reinforcement learning using a receptive field based function approx-
imation approach with continuous actions.” Biological Cybernetics,
vol. 100, no. 3, pp. 249–260, 2009.

[15] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-
ments for humanoid robots by observation,” Robotics and Autonomous
Systems, vol. 47, no. 2-3, pp. 93–108, 2004.

616

