
Anticipatory Driving for a Robot-Car Based on
Supervised Learning

Irene Markelić1, Tomas Kulviĉius1, Minija Tamoŝiunaite2, and Florentin
Wörgötter1

1 Bernstein Center for Computational Neuroscience, University of Göttingen,
Bunsenstrasse. 10, 37073 Göttingen, Germany

{irene,tomas,woergoetter}@bccn-goettingen.de
http://www.bccn-goettingen.de

2 Vytautas Magnus University, Kaunas, Lithuania
{m.tamosiunaite}@if.vdu.lt

http://www.vdu.lt

Abstract. Using look ahead information and plan making improves hu-
man driving. We therefore propose that also autonomously driving sys-
tems should dispose over such abilities. We adapt a machine learning
approach, where the system, a car-like robot, is trained by an experi-
enced driver by correlating visual input to human driving actions. The
heart of the system is a database where look ahead sensory information
is stored together with action sequences issued by the human supervi-
sor. The result is a robot that runs at real-time and issues steering and
velocity control in a human-like way. For steer we adapt a two-level ap-
proach, where the result of the database is combined with an additional
reactive controller for robust behavior. Concerning velocity control this
paper makes a novel contribution which is the ability of the system to
react adequatly to upcoming curves.

Key words: anticipatory behavior, example based learning, robot car
driving, longitudinal control, lateral control, learning from experience

1 Introduction

Automated system control is important in industry and has many applications
for every day life. For example autonomously driving cars have the potential
to increase safety and reduce costs. In driving, planning plays an important
role, look ahead information help us decide which actions to take in response
to upcoming events. We can either act immediately or prepare for taking cer-
tain actions, which reduces reaction time. For this reason we propose that an
autonomously driving car should also dispose over such abilities as using look
ahead and plan making. The advantages are that it can a) react to upcoming
events and b) can cope with short lacks of sensory information and c) could
use these plans for making predictions about its own state which can be used
for higher-level planning. For a more thorough list of the advantages of action
sequence generation in general see [1].

2 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

A conventional approach to autonomously driving cars using cameras as pas-
sive distal sensors is to extract as much relevant information as possible from the
data stream. With this information a model of the environment is constructed
wich is used to calculate optimal trajectories by applying laws of physics.

Where this is a precise and successfully used strategy, (e.g. [2, 3]) it also
comes with some flaws. a) For the model construction all information must be
built in a priori, thus the designer must consider all contingencies. b) The model
construction is computationally expensive even with modern hardware, but a
fast driving vehicle must process information in real time.

Therefore, a model-free approach seems attractive and as a consequence nu-
merous machine learning mechanisms have been applied to this problem e.g.:
artificial neural networks (ANNs) [4], reinforcement learning [5], genetic algo-
rithms [6], neuro-fuzzy controller [7], and case based reasoning [8], to name
but a few. Often artificial neural networks are used with a supervised learning
algorithm [4, 9, 10], where there is a trend towards the usage of neuro-fuzzy con-
trollers. Supervised learning in this case is convenient because it is often easy
to produce large sets of training data from an expert. Although not all appli-
cations make use of this, ANNs can in principle solve two problems. a) they
can perform feature selection and extraction (in other words they make con-
ventional computer vision obsolete), and b) they can approximate control laws,
by establishing a functional relationship between in- and output from train-
ing data. One very successful application in the autonomous driving domain is
Alvinn (Autonomous Land Vehicle in a Neural Network) [4]. The pixel values
of a downsampled camera image were fed into a multilayer network that was
trained using a backpropagation algorithm. It was implemented for steer control
in a real car and the performance was demonstrated by a 90 mile drive where
velocity was controlled externally and steering by the network. One difficult issue
in this project, which is inherent to all learning-from-human-exemplars scenar-
ios, was how to deal with unknown situations. Since during training the system
is only shown how to do the ”right” thing some situations of the state space
are never encountered. If the system in autonomous mode for some reason faces
such a situation it must extrapolate from the training data, which leaves unclear
if an appropriate action can be generated. In the Alvinn approach this problem
was treated by artificially producing data for ”bad” situations, i.e. being off the
road, and training the network with these bad exemplars. This data was ob-
tained using image projections, so the system would see the scenary as if being
off the road, and the steering value was accordingly shifted in order to bring the
car back to the center of the road.

In this paper we also use supervised learning for teaching a robot-car to
drive, but we equip the system with the ability to predict sequences of actions.
According to the taxonomy of [11] this work is most related to the category
of sequential decision making, which is defined by choosing actions aj , .., aj+k

according to the last previous situation(s), si, .., si+j and a goal state, G, where
k > 1 and (in our case) i = 0, but see Discussion. We achieve this in a very simple
way which requires only little image preprocessing, and thus a priori knowledge.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 3

The approach is based on a database construction and lazy-learning [12]. The
underlying idea is that a system that repeatedly perceives visual input followed
by certain actions (from an expert) should be able to correlate this [13]. But
instead of linking only one action to the visual input we use many of them.
Concerning steer we also face the above explained problem of having to deal with
unknown situations. Instead of intricately synthesizing data, which also puts
additional constraints on the architecture (it requires camera calibration), we
adopt a two-level approach, where we combine an additional reactive controller
with the plan constructed from the database output. The process that generates
this plan is referred to as planner. This improves robustness of the system and is
justified by the assumption that human steering is a combination of using look
ahead and reactive control [14].

The structure of the paper is as follows: In the section Experimental Setup
we describe the means for realizing the approach. In Methods we explain plan-
ner, reactive controller and their combination, in Results we show the system
performance and we discuss our approach in Conclusion.

2 Experimental Setup

Experiments are carried out in an indoor environment on a four-wheeled robot (a
modified VolksBot [15] of 50 cm x 60 cm size) with two motors, one for driving the
wheels on each side, thus, using differential steering. The robot is equipped with
a monochrome firewire camera operating at approx. 20Hz, comp. Fig. 1A. The
laboratory setup simulates a street environment, where the driver can control
the robot from a special station, see Fig. 1B. Here, one can see ”through the
robot’s eyes” by means of a TV on which we display the camera output. The
driver can manipulate the robot’s actuators using a steering wheel and pedal
set where the communication between human control output and robot sensory
input is realized via a peer-to-peer architecture. A laptop placed on the robot,
is connected to motors and camera. In a cyclewise fashion it acquires a camera
image, sends it to the TV, and waits for a control input from a desktop computer
connected to the steering wheel and pedal set. The control, or action input, is
a steer and a velocity command, for which we use the following notation: ast

denotes the steer signal, and av velocity. Both signals take numerical values
with ast ∈ [−128, 128] related to the steering angle and av ∈ [−512, 512] related
to the voltage sent to each motor. Throughout this text we skip the superscripts
st or v, if referring to both action signals. They are generated by the human and
sent to the robot-laptop via the desktop computer, which in turn passes them
to the motors of the robot, (comp. Fig. 1C). Thus, every communication cycle
defines a discrete timestep t where every incoming image frame It is related
to the corresponding control av

t , and ast
t . In Fig. 1D we show a sketch of the

parcours on which we trained the robot.

4 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

Fig. 1. A: A car-like robot. B: Control station. C: Information flow in the experimental
setup: cam denotes camera, and ML and MR left and right motor, the shaded area
indicates the robot. D: Sketch of the track used for training the robot. E: Short and long
term visual information. x and α are defining short term information for the reactive
controller and s0, s1, s2 define the long term information for the planner.

3 Methods

For vehicle control steer and speed regulation is necessary. Steer control is consid-
ered to be a two-level process [14] using short-term information and look ahead,
and we assume that speed control is based on look ahead information. We use
the word ”short-term” to denote relevant visual information that is temporally
close to the vehicle; it also means being physically close to it; and ”look ahead”
for visual information that is relevant in the future, i.e. further away from the
vehicle. As explained we use two modules 1) planner and 2) reactive controller
(RC), where the planner is in charge of processing look ahead information and
generating action plans, i.e. sequences for steer and speed control, and the RC
maps short-term information to a single steer control value. The final steer com-
mand is a combination of planner and RC output. This setup is visualized in
Fig. 2. In the following we describe both modules starting with the planner.

Fig. 2. The system setup. It denotes the image frame at time t and Seq a sequence of
actions.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 5

3.1 Planner

As mentioned before, the idea is that a system should be able to correlate ex-
perienced action sequences with visually perceived situations. When exposed to
similar situations it should remember the previously conducted action manou-
vers. For example, if the system observes a right turn it should know from ex-
perience that it needs to steer to the right in the observable future and not to
the left. This example also shows that even if this plan is not very exact, it
already provides guidance into the right direction. We realize this idea by build-
ing a database, where the system stores triplets containing a perceived situation
description along with the according sequence of steering and velocity actions.
When driving in autonomous mode the system queries the database with the cur-
rently perceived situation and receives (remembers) the assigned action plans.
Based on these retrieved plans it computes current and if necessary future ac-
tions. This leads to the following steps: a) database construction, b) database
query at runtime, and c) calculating control sequences at retrieval time.

a) For the database construction a visual state or situation description, s, is
needed comprising look ahead. For that purpose we use a polygonized approxi-
mation of the right street lane, thus s = [s0, s1, ..sl], where si, with 0 ≤ i ≤ l, are
the corner points of the polygon. For detecting the lane we develop a simple and
fast algorithm based on conventional edge detection (Canny [16]) which returns
an ordered 2d-curve, that is then polygonized using the Douglas-Peucker method
[17]. Note, that the vertices of the vector s are also ordered, i.e. s0 is the first
vertex at the bottom of the image and sl describes the last vertex on the 2d-
curve. The vector length l can vary. An example of an extracted lane can be seen
in Fig. 3 and 5a. It is a rough description of the observed street which contains
look ahead information, but not explicitly extracted detailed information.

To each st according control sequences are assigned. Control sequences are or-
dered series of actions, Seqsteer = [ast

t , ast
t+1, ..a

st
t+n], and Seqspeed = [av

t , av
t+j1, ..

av
t+n]. The length n of a given sequence is supposed to resemble the number

of actions that are executed while following the observed trajectory at a given
timestep. That is, if only a short stretch of the street is visible we only assign
a short action sequence to it and vice versa. Since we do not know exactly how
many actions correspond to the observed street we use an experimentally deter-
mined value, which is:

n = b1
8

l∑
i=1

|si−1 − si|c. (1)

A triple (st, Seqsteer, Seqspeed) is stored in the database, unless a similar entry
is already available, (i.e. ε ≤ 10, see below and equation 2). The database is
complete if either a predefined number of entries is reached, or no more triples
are added by the routine. We denote the total amount of database entries as K
thus, Seqk

steer, with 1 ≤ k ≤ K is the steering sequence of the k′th database
entry. If we are referring to Seqsteer and Seqspeed interchangeably we skip the
subscripts.

6 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

b) For the retrieval step we need a metric to determine the difference ε
between the extracted vectors, s, which describe the street ahead. We use a
weighted euclidean distance between vectors of same length l, normalized by l.
The weighting enforces similar curves to be those, that are especially similar in
the beginning, that is the part of the street that is closest to the robot:

ε =
1
l

l∑
i=0

ωi

√
(sqi − sdbi)

2
, (2)

where sqi denotes the i’th element of the queried vector and sdbi the i’th element
of a vector in the database, ω is a vector containing weights where ωi+1 < ωi,
precisely we used: 20, 10, 5, 5 for the first four ω entries and 1 for all remaining
ones. Equipped with such a database, the robot can use its current visual input

Fig. 3. Screenshot example of the planner operating mode. Left: The observed street
(red) is compared to the database entries and the best match is returned (blue). Right:
The assigned steering sequence of the best match.

for making queries. The return values are: 1) the difference ε to the best found
match and 2) Seqsteer and Seqspeed that were assigned to it.

c) The action sequences from the database retrieval contain valuable infor-
mation, not only for the current timestep t but also for t + 1, t + 2, ..., t + n.
However, the database output as such only corresponds to the observed street to
a certain degree. How can we drive on unknown streets? Even on the same track
it is unlikely that exactly the same images are retrieved for a second time. In
other words, how can we generalize using the database output? Postponing this
step until retrieval time is typical for lazy-learning algorithms that often employ
local learning [12, 18]. Here, we adopt this idea and test two different ways of
using the query information: 1) We use values from one retrieved sequence until
a better match is found or it ends, 2) we use values from all (or the latest N)
retrieved sequences, (comp. Fig. 4A and B). For the former we propose a method
that we refer to as DIFF, because it is based on a difference equation and for the
latter a method that we refer to as AVG, since it is based on simple averaging.

We begin with building an intuition for the DIFF method: The first step is to
construct a sequence ã from the ”raw” database response as shown in Fig. 4A.
For that we query the database every timestep and keep a retrieved sequence,
let’s call it Seqbest as long as we do not find another better match, that is as long

Anticipatory Driving for a Robot-Car Based on Supervised Learning 7

Fig. 4. Visualizing the data DIFF (A) and AVG (B) operate on. Points of same color
denote actions from the same retrieved sequence. The red line indicates the final val-
ues obtained by each method. A) The basis for DIFF, the sequence ã, constructed
from single sequences, which leads to jump discontinuities between the single parts as
indicated by the dashed vertical lines. B) The basis for AVG, a buffer, holding many
sequences, the colored rectangle denotes the vector v, see text for more information. C)
Shows real data from DIFF and D) from AVG. Here the gray lines indicate sequences.

as εbest ≤ εt, where εbest denotes the difference measure ε affilliated with Seqbest

and accordingly εt the difference affiliated to the current database query. To
acknowledge that a good match that was found a few timesteps ago is less well
suited at the current timestep we discount Seqbest by adding a decay factor λ to
it at every timestep, with λ = 5. If j denotes the number of timesteps that we are
using a given Seqbest, we set ãt to Seqbestj

, which is just formally expressing that
we use consecutive action values from a given best action sequence. Important
to note is, that we can also use future values, i.e. ãt+1 = Seqbestj+1, ãt+2 =
Seqbestj+2, ..., ãt+n−j = Seqbestn−j , with n being the length of Seqbest. Note
that this way of keeping a match as long as a better one is found, can lead
to jump discontinuities between those parts that stem from different sequences,
(comp. 4A). The second step is applying the difference equation (4) on ã. The
equation realizes smooth transitions from one found action segment to another,
but based on future information, i.e. not only ãt but, ãt+iτ , comp. equation (4),
from which new action sequences can be generated that are not contained in the
database. In Fig. 4C an example of DIFF on real data is shown. The formulas
are:

at+1 = at + ∆at (3)

∆at =
n−1∑
i=0

αi
ãt+iτ − at

(1 + at

amax
)G

, (4)

8 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

where at is representing either ast
t or av

t , and n is the length of the currently
used sequence. The variable τ is a constant determining the sampling frequency
on the current sequence. It influences how fast ”jump” from one segment to
another. If a low value is chosen the resulting control sequence lingers longer
in the vicinity of the previous segment before reaching the values of the new
segment and vice versa. The denominator decelerates the growth of the function
if the previous action was already close to the maximum, thus counteracting the
emergence of too extreme actions, it is determined by G, a constant, which we

set to 10, and αi = e
−i2

σ2 a decay term which discounts the influence of future
values of ã, and σ is a constant, which we set to 4. Finally amax is the maximum
steer or speed value from all the stored sequences in the database.

We now turn to the second method, AVG, which also makes a query every
timestep, but in contrast to DIFF keeps the returned sequence of each retrieval
in a buffer as visualized in Fig. 4B. To determine an action value at a given
timestep we simply compute the average on the action values from the latest N
retrievals, which are contained in a vector v as shown in the figure. Thus:

at =
1
|v|

|v|−1∑
i=0

vi. (5)

3.2 RC

One potential problem with the database approach is, that it will most probably
only work well on streets similar to what is contained in the database. We tested
this assumption by letting the robot drive on an unknown track3 and indeed, in
sharp turns it looses the street. The reason is that the system has never expe-
rienced such sharp turns and as a consequence it does not contain appropriate
entries in the database. That means that the planner provides action sequences
that belong to more shallow curves, thus the amplitude in steering is less then
required for the current sharp turn. Simple averaging cannot transform low am-
plitude signals into a high amplitude signal, in other words the extrapolation
capacity of the planner is poor. Since for a real car observable street trajectories
are very repetitive this problem can be solved by ensuring that the database
contains diverse enough entries which are collected during a training phase. To
achieve a robust driving behavior during this training phase as a fall-back strat-
egy we add a second controller. It takes only a short stretch of the observable
street into account, we call it short-term situation, and maps a single action to
it st 7→ at. One can think of this as stimulus-response or reactive system. We
decided to add such a system to the robot control and to combine it with the
planner output.

The reactive controller, RC, is designed as follows: We define the immediate
future (short-term information) of the robot-car by the tangent constructed from
the beginning of the extracted street boundary and describe it by the angle α

3 This is the same track the robot was trained on, but the opposite direction.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 9

between tangent and horizontal border of the image and its starting position
x on the x-axis at the bottom line of the image, see Fig. 1E. To acquire the
supervisor’s policy with respect to these parameters we assigned human actions
(from the training set) to the state space, comp. 5A and to fill the empty spaces,
that is to generalize to unknown situations we use k-nearest neighbour, shown
in 5B. Of course, other approximation methods can be used instead. Note, that
this simple approach results in an extremely fast controller, only requiring the
time necessary for looking up a steering signal in a matrix.

Fig. 5. A: The acquired policy from the supervisor. B: The interpolated policy using
k-nearest neighbour.

3.3 Combination of Planner and RC

The next step is the combination of RC and planner. The RC should correct the
planner in critical, i.e. unfamiliar situations, therefore a measure is needed that
informs about the robot’s currrent state. Theoretically this should be indicated
by ε, the error measure of the database query. If no sufficiently good match to the
currently observed image is contained in the database the system performance
should decrease and this must be correlated with the value of ε. To test if this
is really the case we let the robot drive on the known and unknown track. To
have a value that describes system performance other than ε we measure the
lateral deviation of the robot from the right lane boundary. One could argue,
that we could use this value straight away for measuring system performance,
then we would not need to consider ε, however, a change of this value does not
necessarly mean that the system is in a critical state, e.g. it also occurrs if the
supervisor likes cutting curves. Nevertheless, in addition to ε it gives us at least
some information about the system’s state, so we can evaluate ε. The result is
shown in Fig. 6F. We can observe that indeed a high error and a higher deviation
from the street lane coincide. At the end of the plot, where ε is highest, the robot
lost track of the street.

Having confirmed the assumption that ε indicates the system performance we
can now combine RC and planner as a function of ε, f(ε) → ωc with ωc ∈ [0, 1].
The smaller ε the more we want to rely on the planner, the larger the more we

10 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

consider RC output: steer = ωc ∗ RC + (1 − ωc) ∗ planner with f(ε) = ea, and
a = (ε−εtolerable)

150 , we set εtolerable to 700.

4 Results

To test the algorithms DIFF, AVG and RC we produced training and test data.
For that we let a human drive the robot eight laps (always in the same direction)
on our parcours in the lab. The database is constructed from five of these laps
and the remaining data is used as test set. First we consider the performance of
a single action prediction, i.e. generating at, which is shown in Fig. 6A-E. For
velocity prediction with AVG we found best results when averaging over the last
N = 20 buffer entries and for steer the last N = 10. It can be seen that all
three methods capture the human behavior, where AVG and DIFF give smooth
output and RC is comparably jerky. Conventional smoothing (low pass filtering)
can only be applied to a certain degree, since it introduces a time delay.

The error for speed prediction on average is higher than for steer, which is
explainable, since there is more variance in the human velocity data than in the
steering data. Consider for example the velocity plot in Fig. 6B or C between
timesteps 300 and 500 on the x-axis, where the depicted speed can be considered
to be constant. We also compare the methods by plotting the squareroot of the
summed squared error between algorithmic output and human signal, (error =√

(algorithmout − humanout)2) This error and confidence interval (95%) are
plotted in Fig. 7A. It can be seen that there is no statistical difference between
AVG and DIFF. The higher error in RC can be explained by its jerkiness.

As this is a quantitative comparison it is necessarily offline and it does not
prove if the system behavior would also be acceptable if the controllers were
placed inside the closed-loop setup, i.e. when the generated action of the con-
troller affects its future sensory input. Therefore, we let the robot run on the
track in autonomous mode. We find that with all three controllers it can follow
the road well, i.e. it stays on the track. The jerkiness of the RC output also
results in a jerky lateral behavior. However, due to the inertia of the robot it is
less strongly visible than what could be expected from the plotted signal.

Concerning lateral control the combination of planner and RC is supposed
to improve the system performance. In case of an unfamiliar environment that
is not found in the database the RC should still be able to issue appropriate
steering signals, however, without the ability to plan ahead. We trained the
robot in one direction, and since in our setup the track is circular the robot is
almost exclusively exposed to turns into the same direction, in our case to the
right, thus, when turned around it is facing turns to the left, which are not part
of its database. For a first evaluation we let the human drive the unknown track
and at the same time record the suggested steering actions of RC, planner, and
the combined signal. One would expect that the latter captures the human signal
better than RC or planner output alone. We show an excerpt of this drive in Fig.
8 were at around timestep 100 on the x-axis this behavior can be well observed.
The negative human steering value indicates a steep (left) curve, which is not

Anticipatory Driving for a Robot-Car Based on Supervised Learning 11

well known to the robot. The amplitude of the signal is very important. Over-
or understeering without correction would lead the robot off the track. It can
be seen that the suggested signals from the planner indicate less left steering,
since it does not know what to do in this situation. The RC signal captures
the amplitude of the human steer signal better. In this unfamiliar situation the
combined output is more determined by the RC signal, therefore it also captures
the human behavior better - however, it is also jerkier. In less critical situations
the combined signal is smooth, since it is more determined by the planner.

As a second evaluation we let the robot drive on the unknown track using a)
only the planner, b) only RC, and c) the combined signals. With the planner it
drives smoothly but looses the track in difficult turns due to the explained reason.
Using RC it can stay on track, which is as expected, however, the behavior is less
smooth. Finally, when using the combination it manages to stay on the track
and it drives smoothly on the known parts, which constitutes the majority of
the encountered situations.

To evaluate the performance of the system concerning sequence prediction
which is our main interest we do not consider the DIFF method but only AVG,
since DIFF is more complicated with more parameters to tune than AVG, but
does not lead to better results in generating single actions, as shown above. Again
we test quantitatively and qualitativly. For the former we apply AVG on the test
set to generate an action a few timesteps (t = 0, 10, 20, 30) ahead which we then
compare to the signal that was elicited by the human at that time. We sum the
difference over the entire test set and plot it in Fig. 7B and C. We also included
RC4 in this plot, mainly for comparison. It can be seen that RC’s predictive
capacity is very low - as expected, and that AVG’s predictive capacity is high,
but the error increases with the number of timesteps to be predicted ahead. This
indicates that the actions in the sequence generated by AVG are more precise in
the beginning and less reliable the longer we predict, which is also as expected.

For qualitative testing we let the human drive and suddenly block the view.
This can be interpreted as a short sensor ”black-out”, which might occurr due
to technical problems. We measure the timesteps that the human can stay on
the street without the visual feedback. For that we use a constant speed (during
human performance, not for the robot), since otherwise the probands tend to
stop the robot, which is probably not a bad strategy. Furthermore we decide to
block the view shortly before a curve, which means, that a real change in actions
is required. We repeate this with three more probands, where two are not trained
in driving the robot, one intermediate driver and the expert who also generated
the training data set for the robot. The result is shown in Fig. 9. It can be seen
that the robot does perform the turn which means that it is successfully using
its generated plan and it does it similar to the trainer. It also shows that the
less well trained humans loose the track quickly.

4 Since the RC cannot predict sequences we had to ”trick” here. To predict the action
for t = 10, we constructed the RC by mapping (αt, xt) 7→ at+10. We proceeded
analogously for t = 20 and t = 30.

12 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

Fig. 6. A and B: Performance of AVG on generating ast
t and av

t . ”N” is the amount of
entries in the buffer over which was averaged. C and D: Performance of DIFF on gen-
erating ast

t and av
t . E: Performance of RC on generating ast

t F: Correlation between the
quality of database retrieval and system performance. Plots labeled as known/unknown
denote data from driving on a known or unknown track. ”deviation” is the measured
lateral deviation of the robot from the right lane boundary, and ε is the measured
database retrieval error. It can be observed that a high ε value results in a higher
deviation of the system from the right lane.

Fig. 7. A: Comparison of AVG, DIFF and RC for steer prediction for at. B: Comparison
of RC and AVG for steer sequence prediction.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 13

Fig. 8. Comparison of the combined signal to RC, Planner, and human output, where
the robot was driven by the human. At around t = 100 it can be seen how the combined
signal improves the Planner output by being drawn closer to the RC signal.

Fig. 9. Top view on part of the track. Shown is the driven trajectory of the probands
and the robot, sampled every 10 centimeters. The vertical line denotes where the view
was blocked.

14 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

5 Discussion

We presented a robot-car that learns predictive driving from a human supervisor
and visual sensory data. Predictive means, that it can generate action sequences
and that it can react to upcoming events which is necessary for velocity control,
e.g. speed must be decreased when approaching sharp turns. It runs at real-time
and issues steering and velocity control in a human-like way where it can also
deal with missing visual input due to the sequence generation. We described
the underlying controller which is based on the combination of a reactive signal
and a generated plan, which leads to better performance than each single signal
alone. The system is simple and apart from the image preprocessing, where we
extract the right lane boundary, it makes few assumptions about the problem
domain which makes it relatively general.

The image processing is an important issue. As mentioned above neural net-
works can be used for that. However, their processing is opaque, i.e. it is difficult
to analyze what they are actually doing [19]. On the other hand particular in-
fluential features are often not known a priori and finding them is difficult. We
consider our work to be a compromise between these two extremes. Extract-
ing the lane requires some work beforehand but it allows the construction of a
transparent controller. On the other hand it is only a rough description of the
street ahead and we do not need to know, and do not have to extract, more
specific features like the so-called tangent-point5, which is often considered to
be highly influential in curve negotiation [20], the distance to an upcoming curve
etc. Therefore, for this approach no stereo information, rectified or undistorted
images are necessary.

For function approximation a database has some advantages compared to a
neural network. Besides being transparent, it stores the expert knowledge of the
supervisor, which can be used as is or for interpolation between examples. A
neural network used as global approximator would smooth over these support
points, which in this case is undesired. Also the training set for the network must
be chosen with caution, if overrepresenting one event the net might forget about
others. If only storing examples in a table there is no need to consider this. On
the other hand a network is very small compared to the size of the database
which makes it more efficient for storage. But todays large storage capacities
and fast access decrease the importance of this aspect. More generally speaking
this is actually not a question of database or network but rather concerns the
differences between global and local approximation, which is discussed in [18] and
[21]. Hence other local learning techniques can replace the database if desired.

One might assume, that the RC is sufficient as a controller, also for action
sequence generation, since we can apply the RC on the currently observed sit-
uation sj to get aj and based on this predict sj+1. If we do this repeatedly we
get an action sequence. The prediction step could be done either by learning the
transition matrix based on the training data, or by calculating it using knowl-
edge of the robot and applying image projections. We do not do this because,

5 Where the driver’s gaze touches the lane in a curve.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 15

in the latter case, we a) loose the advantages of a model-free approach, and b)
we need knowledge about the camera parameters which makes the setup less
robust and also contributes to the computational costs. If we use probabilities
we make predictions based on predictions of which the accuracy decays very fast.
In fact we tried using a feedforward multilayer perceptron and the results were
discouraging.

As said in the introductory part, our work is related to sequential deci-
sion making, according to [11]. For convenience we restate the definition here:
”si, .., si+j ; G 7→ aj , .., aj+k That is, given si, .., si+j and a goal state G we want
to choose action aj through aj+k that might lead to that goal.” Apart from
the fact, that we do not have an explicit goal, we similarly consider the current
situation si+j to obtain an action sequence. However, this action sequence is not
used directly, but for constructing either ã in case of DIFF, or the buffer used
for constructing v from which we then compute the aj , ..aj+k, in case of AVG.
Thus, we never compute actions based directly on past situations, but instead
consider predictions from the past. Using predictions from the past, differs from
using past situations, since in the latter case a system might become inert, not
able to react fast enough to new situations. Predictions, however, even if they
are old, are based on the observable future and are thus, more flexible. Of course,
if the observed situation changes this would not hold anymore. But usually a
right curve does not turn into a left curve from one moment to another.

This paper makes an original contribution concerning speed control, which
has been much less investigated than steer. Simpler controls are Adaptive Cruise
Control (ACC) systems that use radar or laser to slow down the vehicle when de-
tecting an obstacle in front or Intelligent Speed Adapters and Limiters, ISAs and
ISLs [22] that adjust or limit a vehicles speed according to the given mandatory
limits. Other approaches determine speed given that there is a leading vehicle
[23]. More related to this work are [7] and [24], where simulation has been used
to train fuzzy neural networks using human training data to anticipate curves
and regulate speed accordingly. Where these works have some nice properties,
e.g. the linkage to a symbolic level due to the used fuzzy logic paradigm, both
generate a single action per timestep. In the former the input to the fuzzy con-
troller is based on experiments that investigated what processed information is
acquired while driving. In our case knowledge of such specific parameters is not
necessary.

References

1. Sun, R., Sessions, C.: Learning plans without a priori knowledge. Adaptive Be-
havior 8 (2000) 225–253

2. Dickmanns, E.: Dynamic Vision for Perception and Control of Motion. Springer
(2007)

3. Gregor, R., Lutzeler, M., Pellkofer, M., Siedersberger, K., Dickmanns, E.: Ems-
vision: a perceptual system for autonomous vehicles. Intelligent Transportation
Systems, IEEE Transactions on 3 (2002) 48–59

16 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

4. Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. In:
Advances in Neural Information Processing Systems 1, Morgan Kaufmann (1989)

5. Riedmiller, M., Montemerlo, M., Dahlkamp, H.: Learning to drive a real car in
20 minutes. In: Proc. Frontiers in the Convergence of Bioscience and Information
Technologies FBIT 2007. (2007) 645–650

6. Togelius, J., Lucas, S.: Evolving robust and specialized car racing skills. In: Proc.
CEC 2006. Evolutionary Computation IEEE Congress on. (2006) 1187–1194

7. Partouche, D., Pasquier, M., Spalanzani, A.: Intelligent speed adaptation using a
self-organizing neuro-fuzzy controller. In: Proc. IEEE Intelligent Vehicles Sympo-
sium. (2007) 846–851

8. Weng, J., Chen, S.: Autonomous navigation through case-based learning. In: Proc.
International Symposium on Computer Vision. (1995) 359–364

9. Pomerleau, D.: Neural network based autonomous navigation. In: NAVLAB90.
(1990) 558–614

10. Pomerleau, D.A.: Neural network vision for robot driving. In: The Handbook of
Brain Theory and Neural Networks. M. Arbib (1999)

11. Sun, R., Giles, C.L.: Sequence learning - paradigms, algorithms, and applications.
In Sun, R., Giles, C.L., eds.: Sequence Learning. Volume 1828 of Lecture Notes in
Computer Science., Springer (2001)

12. Aha, D.W., ed.: Editorial. In: Lazy Learning. Volume 11 of Artificial Intelligence
Review. Kluwer Academic Publishers (1997) 7–10

13. Florentin Wörgötter, B.P.: Temporal sequence learning, prediction, and control:
A review of different models and their relation to biological mechanisms. Neural
Computation 17 (2005) 245–319

14. Donges, E.: A two-level model of driver steering behaviour. Hum Factors 20 (1978)
691707

15. Volksbot: (http://www.volksbot.de)
16. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern

Anal. Machine Intell. 8 (1986) 679–698
17. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization 10 (1973)
112–122

18. Bottou, L., Vapnik, V.: Local learning algorithms. Neural Computation 4 (1992)
888–900

19. Pomerleau, D., Touretzky, D.S.: Analysis of feature detectors learned by a neural
network autonomous driving system. In: International Conference on Intelligent
Autonomous Systems. (1993) 572–581

20. Boer, E.: Tangent point oriented curve negotiation. In: Proc. IEEE Intelligent
Vehicles Symposium. (1996) 7–12

21. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Comput. 4 (1992) 1–58

22. Brookhuis, K., de Waard, D.: Limiting speed, towards an intelligent speed adapter
(isa),. Transportation Research Part F: Traffic Psychology and Behaviour 2 (1999)
81–90

23. Tahirovic, A., Konjicija, S., Avdagic, Z., Meier, G., Wurmthaler, C.: Longitudinal
vehicle guidance using neural networks. In: Computational Intelligence in Robotics
and Automation, 2005. CIRA 2005. (2005)

24. Kwasnicka, H., Dudala, M.: Neuro-fuzzy driver learning from real driving observa-
tions. In: Proceedings of the Artificial Intelligence in Control and Managamnent.
(2002)

