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Abstract—In this paper, we present energy harvesting systems
in a prothetic leg using piezoceramic Macro Fiber Composites
(MFCs) and their models using artificial neural networks. The
piezoceramic MFCs are implemented at the sole and heel of the
leg and transform impact forces into electrical power during
walking. The neural model of the energy harvesting system
installed at the sole is developed on the basis of a standard
feedforward backpropagation neural network. On the other
hand, the neural model of the energy harvesting system installed
at the heel is manually synthesized from different neural modules
(networks). Experimental results show that these neural models
can appropriately transform the impact forces detected by force
sensing resistors (FSRs) into the electrical responses of the
piezoceramic MFCs. The models will be used to study and analyze
dynamical behaviors of the piezoelectric materials with respect
to walking.

Index Terms—Neural networks, Signal processing, Piezoce-
ramic, Prosthesis, MFC, Energy Harvesting

I. INTRODUCTION

The idea of energy harvesting has become popular over the
past few decades due to high energy consumption all over the
world. Piezoelectric power generation is one of the alternative
energy sources. It can transform kinetic energy (i.e., ambient
vibrations or impact forces) into electrical energy that can be
stored and later used to drive electrical devices, like sensors
and actuators. From this point of view, a significant amount
of research has been devoted to develop and understand
power harvesting systems. Umeda et al. [1] investigated the
power generated when a free-falling steel ball impacted a
plate with a piezoceramic wafer attached to its underside.
They used an electrical equivalence model to simulate the
energy generated and calculate the ability of the lead zerconate
titanate (PZT) to transform mechanical impact energy into
electrical power. Sodano et al. [2] developed a mathematical
model of piezoelectric power harvesting beam based on energy
methods. The model can predict the amount of power capable
of being generated through the vibration of a cantilever beam
with attached PZT elements. Kymissis et al. [3] examined
using a piezofilm and a Thunder actuator to charge a capacitor
and supply a radio frequency identification (RFID) transmitter
from the energy lost to the shoe during walking. Elvin et al.
[4] built a self-powered damage detection unit that used the

polyvinylidene fluoride film (PVDF) for energy generation and
a capacitor to store the energy. The circuit was able to transmit
a signal that held information on the integrity of the structure.
Jian-Hui et al. [5] presented theoretical and experimental
analyses of vibration-based piezoelectric power generator in
discontinuous operation mode. They successfully performs the
analyses to realize the optimal voltage interval and appropriate
value of the storage capacitor in order to minimize the time
interval between successive required operations.

In contrast to these published studies, the central goal of
our study is to develop modular and compact electrical energy
harvesting systems using piezoelectric materials for self power
generation in advanced prosthetic legs (e.g., variable-damper
prosthesis [6]) during walking. Based on our goal this paper
concentrates on developing models of the energy harvesting
systems using piezoceramic Macro Fiber Composites (MFCs)
implemented at the sole and heel of a prosthetic leg. We
employ artificial neural networks to develop the models. One
network is a standard feedforward backpropagation neural
network which was trained to transform the force at the
sole into the response of the piezoceramic MFC. In contrast,
another network is manually synthesized from different neural
modules to transform the force at the heel into the response of
the piezoceramic MFC. These developed models will be used
to study and analyze dynamical behaviors of the piezoelectric
materials with respect to walking. Besides this, we also show
that the artificial neural networks can be a powerful technique
for modelling such nonlinear dynamic systems.

The following section describes the piezoelectric energy
harvesting systems in a prosthetic leg. Section 3 explains the
neural models of them. The experiments and results are given
in section 4. Conclusions and an outlook on future research
are provided in the last section.

II. PIEZOELECTRIC ENERGY HARVESTING SYSTEMS IN A
PROSTHETIC LEG

Here, we use the piezoceramic MFCs [7], [8] (see Fig. 1)
to harvest energy in a prosthetic leg during walking. This type
of piezoceramics is selected because it is flexibly adaptable to
the structure’s surface being suitable to install at the sole and
heel of the leg.
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Fig. 1. (a) Schematic of a piezoceramic MFC structure [7]. (b) Piezoceramic
MFC arrays.

We implement the piezoceramic MFCs together with force
sensing resistors (FSRs) at the sole and heel (see Fig. 2).
The FSRs serve as force detection during walking. They are
basically a type of resistor whose resistance changes when a
force or pressure is applied. To simulate walking behavior in a
simple but effective way, we disconnect the foot from the leg
(see Fig. 2a) and reattach it to a servo motor with a guiding
mechanism (see Figs. 2b and c). The servo motor is controlled
via a servo-controller board in which a step waveform is
programmed with a frequency of 0.5 Hz. This frequency is
set according to normal walking frequency. Using this exper-
imental setup, the foot can be naturally moved in vertical and
slightly horizontal directions. During walking, the FSR signals
and electrical power generated by the piezoceramic MFCs are
recorded via an oscilloscope with a sampling frequency of
10 kHz. These data are filtered and then used to develop the
models using artificial neural networks.

III. NEURAL MODELS OF THE PIEZOELECTRIC ENERGY
HARVESTING SYSTEMS

The models of the piezoelectric energy harvesting systems
at the sole and heel were developed using artificial neural
networks. They basically transform a force sensory input (i.e.,
impact forces detected by force sensing resistors (FSRs)) into
the electrical response of the piezoceramic MFC.

We designed the neural model of the energy harvesting
system at the sole (see position 1 in Fig. 2b) as a simple four-
layer feedforward neural network (see Fig. 3). Input and output
layers have one neuron while two hidden layers have four
neurons. In addition, a bias neuron is given at the input and
hidden layers each. All neurons of the networks are configured
as a discrete-time non-spiking neuron. The output of each
neuron is governed by:

y(~x) = g

 n∑
j=0

ωixi

 . (1)

The neuron has n input ‘dendrites’ (x0 . . . xn) and one
output ‘axon’ y(~x). The weights (ω0 . . . ωn) determine, how
much the inputs are transmitted, and the activation function g
does a transformation of the output. The bias neurons receive
no input and emit a constant output of 1.0. The activation
function of the input and output neurons is linear, while the
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Fig. 2. (a) Prosthetic leg donated by Rehabilitation Research Institute (RRI).
It is modified by installing the sensors and the piezoelectric materials to be
used as an experimental platform. (b) Installation of the piezoceramic MFCs
and the force sensing resistors (FSRs) at the sole (1) and heel (2) of the leg.
(c) Experimental setup to simulate walking behavior and to record the force
sensory signals and the electrical power generated by the piezoceramic MFCs.

hidden layer neurons have a symmetrical sigmoid activation
function g(x) = tanh(x).

We use a standard backpropagation algorithm [9], where the
weights are updated after each training pattern. As a result,
after 10000 epochs the learning converges where the network
gives a good performance of output prediction with a small
mean square error of about 0.00037 (see Sect. IV).

To develop the neural model of the energy harvesting system
at the heel (see position 2 in Fig. 2b) having input-output
patterns which are different from the ones at the sole, we apply
a modular neural network technique [10] using linear neurons.
The network is basically synthesized by observing the signal
transformations. The network consists of three neural modules
(Fig. 4). The module (A) performs as a derivative network
presented in [11] while the modules (B) and (C) perform as
low-pass filter [12] and signal scaling networks, respectively.
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Fig. 3. Feedforward neural network with linear activation functions for input
and output neurons and symmetric sigmoid activation functions (i.e., tanh) for
hidden neurons. The weights (ω from neuron j to neuron i) were trained by
a backpropagation algorithm. The resulting weights are ω31 = 0.142, ω32 =
0.062, ω41 = −0.679, ω42 = 0.221, ω51 = −1.012, ω52 = −0.493, ω73 =
0.049, ω74 = −0.360, ω75 = 0.422, ω76 = 0.143, ω87 = 4.0.

All neurons of the networks are configured as a discrete-time
non-spiking neuron similar to the network shown above. The
output of each neuron is defined by Eq. 1 with a liner activation
function.

In this case, the synaptic weights were manually tuned. As
a result, the network can perfectly transform the force sensory
input into the response of the piezoceramic MFC at the heel
with a small mean square error of about 0.00028 (see Sect. IV).
Note that one can optimize this network, for instance by using
an evolutionary algorithm [13], but for the purposes of this
input-output transformation model, it is good enough.
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Fig. 4. Modular neural network with a liner activation function of all neurons.
It consists of three modules: (A), (B), and (C). All synaptic weights indicated
by the small numbers were manually tuned.

IV. RESULTS

In this section, we show the performance of our developed
neural models of the energy harvesting systems. The models
were implemented on a PC using C++ programming. We
recorded data from ten simulated walking steps at a frequency
of 0.5 Hz. Figures 5 and 6 show recorded data and the
performance of the neural models. It can be seen that the
neural models can generate the outputs (see Figs. 5b and 6b)
from the given force sensory inputs (see Figs. 5a and 6a)
where their outputs show patterns close to the desired outputs
(i.e., the responses of the piezoceramic MFCs (see Figs. 5d
and 6d)). In general, the developed neural models function
as nonlinear mapping of these dynamic systems (see Figs. 5c
and 6c).
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Fig. 5. a) Force sensory input from the FSR at the sole during simulated
walking driven by the setup shown in Fig. 2c. It is used as an input of the
neural model of the piezoelectric energy harvesting system. b) The output
of the neural model which was trained to obtain a desired response of the
piezoceramic MFC. c) Nonlinear relation between the force sensory input and
the response of the piezoceramic MFC. d) The response of the piezoceramic
MFC during simulated walking. All filtered signals are recorded at a sampling
rate of 10 kHz.
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Fig. 6. a) Force sensory input from the FSR at the heel during simulated
walking. It is used as an input of the neural model of the piezoelectric
energy harvesting system. b) The output of the neural model which shows a
similar pattern to the response of the piezoceramic MFC. c) Nonlinear relation
between the force sensory input and the response of the piezoceramic MFC. d)
The response of the piezoceramic MFC during simulated walking. All filtered
signals are recorded at a sampling rate of 10 kHz.

These experimental results show that the used methods are
able to deal with a non-linear relationship between the force
sensory signal and the electrical response of the piezoceramic
MFC. We feel that conventional methods could probably still
do the tasks here. However, they would require carefully
design where the neural network can learn to find the solution
without efforts (see Fig. 3) or it can be synthesized based on
a modular technique (see Fig. 4).



V. CONCLUSION

In this paper we present energy harvesting systems at the
sole and heel of a prosthetic leg and their neural models. Two
different structures of the neural models were developed. As
a result, using the force sensory input, each neural model can
predict the response of the piezoceramic MFC during simu-
lated walking at the approximate normal walking frequency.
For future research, more demanding tasks will be related
to the use of these models to study and analyze dynamical
behaviors of the piezoelectric materials from the strength
and pattern of the force sensory input according to different
walking behaviors. We will also use these neural methods to
develop models of different types of piezoelectric materials,
like PZT implemented at other parts of the leg.
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