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h i g h l i g h t s

• We present a tightly-coupled robotics systems based on Dynamic Movement Primitives.
• We provide an analytical stability analysis for an equilibration of coupled system.
• We introduce sensory feedback with a predictive learning for the agent interaction.
• We show that such a mechanism allows us to learn an adaptive, sensor-driven interaction.
• We demonstrate that agents learn to cooperate when adding adaptive sensor control.
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a b s t r a c t

Since several years dynamic movement primitives (DMPs) are more and more getting into the center of
interest for flexible movement control in robotics. In this study we introduce sensory feedback together
with a predictive learning mechanismwhich allows tightly coupled dual-agent systems to learn an adap-
tive, sensor-driven interaction based on DMPs. The coupled conventional (no-sensors, no learning) DMP-
system automatically equilibrates and can still be solved analytically allowing us to derive conditions for
stability. When adding adaptive sensor control we can show that both agents learn to cooperate. Simula-
tions as well as real-robot experiments are shown. Interestingly, all these mechanisms are entirely based
on low level interactions without any planning or cognitive component.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Novel trajectory generation methods such as Dynamic Move-
ment Primitives (DMPs [1,2]) or Gaussian Mixture Models (GMMs
[3–5]) can generalize over different start and end points of the
movement trajectory and they can efficiently emulate different
trajectory shapes also allowing us to combine them in a dynamic
way [6,7]. Such methods also allow an on-line alteration of the
trajectory, if need be. For example, it is clearly useful to alter the
trajectory of an agent as soon as an obstacle (a path disturbance)
is sensed. Such problems have been addressed by using sensory
feedback and applied in a variety of different applications, like ob-
stacle avoidance [8–15], grasping and object manipulation [16,17],
locomotion and crawling [18,19], drumming [20], Ball-in-a-Cup
game [21].

∗ Corresponding author. Tel.: +49 551 39 107 63.
E-mail address: tomas@physik3.gwdg.de (T. Kulvicius).

So far DMPs and GMMs have mainly been used for uncoupled
agent systems. In this study, we analyze tightly coupled dual agent
systemswhere each agent has its own path plan defined by a DMP.
Note that in simulations we couple agents by a stiff virtual spring
whereas in real robot scenario agents are coupled by a rigid ob-
ject, i.e., a trace. In a coupled system the problem exists that both
agentsmight not cooperate. This leads to the situations that agents
will first have to equilibratewith respect to each other. Only on top
of this any sensor influence – for example for obstacle avoidance
– and/or learning can take place. As shown here analytically both
agents will indeed equilibrate into a shared fixed point represent-
ing the two new trajectories. This leads to the situation that sensor
reactions and learning can operate in a stable way also in the dual
agent system. Specifically, we will show that learning can be em-
ployed to create a system, where both agents in the end ‘‘help each
other’’. Probably one interesting aspect of this approach is that,
due to the intrinsic attractor properties of DMPs, these systems do
not need any conventional active control-components (impedance
control, servoing, etc.), while still performing remarkably well.
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In the following we will describe our framework for interac-
tive DMPs also introducing the learning method. Mathematical
derivations are given and a detailed analysis of signals and learning
statistics is performed using simulations. In the end we then show
experiments with a real robot-arm. Finally, in the discussion sec-
tion, we will relate and compare our method to other existing ap-
proaches.

2. Methods

2.1. Dynamic Movement Primitives (DMPs)

To describe the movement trajectory of an agent we use the
method for generatingmovement sequences proposed in [7]which
is a modification of the original dynamic movement primitives
(DMPs, [1,22,23,2]). Here we use modified DMPs since they have
faster convergence at the end-point compared to the original DMP
formulation and allow smooth joining of movement sequences
with non-zero velocities at the joining point [7]. Similar to the orig-
inal approach, modified DMPs are based on differential equations
and consist of two dynamic systems: the transformation system
and the canonical system. The transformation system is described
as follows:

ż = α(β(r − y)− z)+ f , (1)
ẏ = z, (2)

ṙ =


(g − s)/T , if t ≤ T
0, otherwise, (3)

where α and β are time constants (in this study we used α = 0.75,
β = α/4), ż, ẏ and y correspond to acceleration, velocity and posi-
tion, respectively. Here r defines a piecewise-linear goal function
where s and g are the known start and goal states (start/end-point)
and T is the duration of themovement. Initially we set y0 = r0 = s,
ẏ0 = 0 and ż0 = 0.

The canonical system is described by a sigmoidal decay
function:

ξ̇ = −
αξ exp(αξ (T − t))

(1 + exp(αξ (T − t)))2
, (4)

where αξ is a time constant and defines the steepness of the sig-
moidal function (in this study we used αξ = 1.0) centered at time
moment T . Initiallywe set ξ0 = 1. The nonlinear function f is given
by

f = αw

n
i=1
ψiωiξ
i
ψi

, (5)

with

ψi = exp


−( t

T − ci)2

2σ 2
i


, (6)

whereψi denote Gaussian kernels, ci and σi is the center andwidth
of the ith kernel, respectively. Kernels are placed evenly along the
trajectory in time and spaced between 0 and 1,where 0 denotes the
beginning of the movement trajectory and 1 the end. The shape of
the movement trajectory is defined by weightsωi and in our study
they were generated manually but in general case they can be ob-
tained by imitation learning [1,2]. Herewe useαw as a general scal-
ing factor for all learned weights and in this study we set it to 1.
Note that here DMPs are time dependent. This can be changed to
phase-based DMPs without problems as shown in one of our older
studies [7]. However, this is not relevant for the current investiga-
tions. In simulations and a real robot experiment we used a sam-
pling rate of 200 Hz.

2.2. Interactive DMPs

We model the two agent system as two point particles cou-
pled by a spring. Here we treat agents with equal mass. Each agent
is subject to a primary force generated by a dynamic movement
primitive,which can be viewed as the control signal.Wedenote the
ith coordinate (i = 1, 2, 3 correspond to X , Y and Z-coordinates,
respectively) of the jth particle (j = 1, 2 correspond to agent P
and Q , respectively) as yi,j and the corresponding velocities as zi,j.
Assuming that the particles havemassmNewton’s equation ofmo-
tion is

mżi,j = F S
i,j + FD

i,j, (7)

where F S
i,j are the forces acting due to the spring coupling and FD

i,j
the forces from the DMP. The spring forces can be written as

F S
i,1 = k direction (d − offset) = −F S

i,2, (8)

where direction = (yi,1 − yi,2)/offset and offset =
l(yl,1 − yl,2)2. Here d denotes the spring length when relaxed

and k is the spring constant. In this study we used d = 50 cm and
k = 0.95 N/cm. Note that in our simulations we omitted masses
by setting them tom = 1 for both robots. In general, robots would
adapt to any masses due to learning. Also, in simulations we chose
k in order to obtain a relatively hard stiffness for coupling, whereas
in the real robot scenario (as shown later) there is no need to tune k.

As explained above, the position of the agent is defined by a
DMP and we denote its force FD

i,j by

FD
i,j = m(α


β

ri,j − yi,j


− zi,j


+ fi,j + uA

+ uI). (9)

Here uA is a reactive termwhich is used for obstacle avoidance and
in this study is fixed, whereas uI is an interactive term and is learnt.
Definitions of these terms are given below.

Also we have for the accelerations and velocities:

żi,j =
1
m
(F S

i,j + FD
i,j), (10)

ẏi,j = zi,j. (11)

3. Implementation

3.1. Task definition

In the interaction learning scenario, as explained above, we
have two identical agents (P and Q ) which are physically coupled
via the linear spring. Initially the agents are going to follow their
planned path, so in case the agents have different paths or the path
gets changed due to obstacle avoidance forces between agents will
increase due to the coupling. The goal is to learn to interact in a
way that the forces between agents are minimized. For example,
if agent P is going to avoid the obstacle, then agent Q has to learn
interacting and helping agent P bymoving to the same direction as
shown in Fig. 2B.

3.2. Definition of the sensor inputs

We consider two types of sensor inputs. (1) Two avoidance sen-
sors (touch and vision, with fixed characteristics used for obstacle
avoidance) and (2) two interaction-relevant sensors (displacement
and force used-for interaction learning).

Obstacle avoidance is implemented in the conventional way
(potential field approach [8,9,12]) and is used to create realistic
situations for interaction learning. We use two types of sensors
which generate a compound avoidance signal: touch and vision.
Normally the agent should be able to use the gradually rising vision
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signal alone to avoid the obstacle. The binary touch signal is used as
an emergence fall-back. For example, if the robot–robot interaction
massively pushes one robot into an obstacle, then this situation can
be recovered by the reaction to touch. Specifically we define:

(1a) The touch sensor obtains value 1 if the agents hits the
obstacle and 0 if there is no collision:

AT (t) =


1, if δ(t) < ΘT
0, otherwise, (12)

where δ is the minimal distance from the agent’s center point to
the obstacle, andΘT is the threshold for collision detection.

(1b) The visual sensor is triggered whenever the obstacle ap-
pears within the vision field (defined by a threshold) of the agent
and is described by

AV (t) =


δ(t)/ΘV , if δ(t) < ΘV
0, otherwise, (13)

where ΘV defines the radius of the visual field. In this study we
usedΘT = 5 cm andΘV = 20 cm.

In general, we use a filter to smooth sensor signals and obtain
as final input:

uA(t) = auA(t −∆t)+ (1 − a)(ΓTAT (t)+ ΓVAV (t)), (14)

with a = 0.98 the filter parameter. Here ΓT ,V are weights which
define the strength anddirection of the obstacle avoidance reaction
where positive weights were used to generate leftward/upward
movements and negative weights for rightward/downwardmove-
ments. Values forΓT ,V can change for different experiment and are,
thus, given below. In this study we used∆t = 0.005 s.

(2a) The displacement sensor D is defined by

D(t) =


η(t) (ya(t)− yp(t)), if |ya(t)− yp(t)| < ΘD
0, otherwise, (15)

where η(t) = 1, if uA(t) < ϵ and η(t) = 0, otherwise. In this
study we used ϵ = 10−4. Thus, η acts as an inhibition term where
an agent, that encounters an obstacle will not react to any push or
pull produced by the other agent, as the need to avoid the obstacle
is fundamental. This way the agents obtain their roles (leader and
follower) naturally depending on the situation and there is no need
to define them in advance. Here ya is the actual trajectory of the
agent defined by Eq. (11) and yp is the planned trajectory obtained
without spring force (i.e., in Eq. (10) we set F S

= 0). Note that here
we use the threshold ΘD for the displacement sensor in order to
compensate for tracking errors, since in the real robot applications
the actual and the planned paths will never match exactly. In this
study we used ΘD = 1 cm. Also, the displacement signal does not
influence the trajectories of the robots. It is only used for learning.

(2b) The force sensor signal F is defined by the force F S of the
spring model (see Eq. (8)):

F(t) = η(t)F S(t). (16)

This signal is filtered with

uI(t) = auI(t −∆t)+ (1 − a)ρ(t)F(t), (17)

with a = 0.98 and ρ a weight, which will be changed by the
learning rule described next. Note that in real robot experiment (as
shown later) F S is obtained from a force sensor of the robot. Also,
please keep inmind that the agents are independent and have their
respective sensors.

3.3. Learning rule

For learning we make use of the physical fact that the po-
sition signal follows the acceleration-dependent signal. Hence
force (acceleration-dependent) is predictive for a displacement

(position-dependent) that will arise later.We can use the displace-
ment signal to learn a predictive reaction in response to the (ear-
lier occurring) force signal. Thus, for learning the sensor signal D
(displacement) is paired with the sensor signal F (force) to grow
weight ρ [24].

For this, we use a correlation based learning rule (Hebbian
type [25]).

ρ̇ = µDF , (18)

whereµ is the learning rate. Learning stops as soon asD = 0, i.e., as
soon as the displacement sensor is not triggered anymore and the
predictive response has fully taken over.

4. Results

This section will start with an analytical stability analysis of the
coupled agent system. This will be followed by simulation results,
first for 1D cases and then for a 3D case. Finally we will show a real
robot experiment.

4.1. Stability analysis

Such coupled DMP-based systems are quite interesting as cou-
pling leads to mutual influence of one DMP onto the other. The
question arises, thus, under which conditions these systems are
stable and how they converge along the trajectory. In Appendix A
we provide analytical details addressing this question. They are
based on the, quite conventional, approximation of each agent as a
point-source (end point of the robot’s end-effector) and a mutual
compliance that is modeled by a spring. Robot experiments shown
here confirm that these approximations are justified for systems
that have limited intrinsic dynamics (kinematically stiff conven-
tional robots). As solutions are complex, here we will just sum-
marize the result. We discuss the only case that m1 = m2 = m.
Generalization to differentmasses are straightforward as only their
relation m1/m2 is relevant.

Conventionally (uncoupled) DMPs are used with parameters α
and β = α/4 as this leads to critical damping along the DMP-
trajectory and, thus, to optimally fast convergence [1]. Fixed point
analysis (see Appendix A) of the coupled system reveals that for
these parameters the system will oscillate along the direction of
the spring. One has to chooseα >

√
8k/

√
m andβc = (mα2

−8k)/
(4mα) to achieve critical damping along the spring, butwill receive
now a slightly suboptimal (over-damped) behavior along the DMP
trajectories. From analysis we also found that depending on the
parameters there exist either one stable fixed point or two fixed
points, one stable and the other unstable. The stable one represents
the desired solution (agents approach goal-points). This analysis is
valid for all start and goal positions andwithout any constraints on
the system.

4.2. Interaction learning without obstacle avoidance
First of all we will present interaction learning between two

agents without obstacle avoidance when the agents initially have
different paths (paths were generated by setting DMP weights
manually). In this case we are going to learn the interaction only
for the Y -coordinate (1D case). Simulation results of such an ex-
periment are shown in Fig. 1. Signal development during the learn-
ing process is given in panels A1–A3 (we show signals only for the
agent Q , because signals of agent P are identical with an inverted
sign). The first few seconds show the control case (before learning,
0–5 s). The first five learning trials follow (5–30 s). Note that here
one trial lasts 5 s, which given a sampling rate of 200 Hz corre-
sponds to 103 time steps). One can see that already during the first
learning trial (5–10 s) forces are significantly reduced compared



4 T. Kulvicius et al. / Robotics and Autonomous Systems ( ) –

A1 A3

A2

B

A4

Fig. 1. Simulation results from interaction learning without obstacles. In panels A1–A4 signals only for the agent Q are shown. (A1) Displacement signal D; (A2) predictive
force signal F ; (A3) output signal uI ; (A4)weight ρ; (B) trajectories. Green and red dots correspond to the start and end points, respectively. The learning rate wasµ = 0.04.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the control trial (0–5 s). The displacement signal (panel A1)
was fully avoided and the weights (panel A4) stabilized after eight
learning trials. Resulting trajectories are presented in panel B. We
observe that the agents converge to the ‘‘natural’’ equilibrium,
which is the one that would also be obtained by purely passive
equilibration, i.e., terms uA and uI are equal to zero all the time.
The main gain from employing learning, however, is that this way
the forces between both agentswill beminimized, which is not the
case for passive equilibration (in real robot scenarios, if the forces
are high then the robots might lose or damage the object by which
they are coupled).

4.3. Interaction learning with obstacle avoidance
In the next experiment we have a scenario where the agents

initially have the sameplanned trajectories but theywill encounter
obstacles along their paths. So in this case agents have to learn to
help each other to avoid obstacles bymoving to the same direction.
As in the previous experiment we are going to learn interaction
only for the Y -coordinate.

Results for interaction learning with obstacle avoidance are
presented in Fig. 2. As in the previous case signals for the control
case (before learning, 0–5 s) and the first three learning trials
(5–20 s) are shown in panels A1–A3. Here we can see that before
learning agents will be pushed into the obstacles (see touch signals
AT , inset of panel A1) whereas – as learning proceeds – agents
are learning to help each other and the obstacles are not touched
anymore. Weight development is shown in panel A4. In this case
it took one trial longer for agent Q than for agent P (17 and 16
trials, respectively) until weights finally stabilized since agent Q

was pushed stronger away by agent P due to its obstacle avoidance
reaction. Resulting trajectories are shown in panel B where we
can see that the roles of agents interchange depending on their
sensor inputs, i.e., the agent which is going to avoid the obstacle
becomes the leader and the other agent is the follower (which
learns to follow the leader). For comparison we also show the case
when the roles of the agents were predefined at the beginning
(P = master and Q = slave). Resulting trajectories are presented
in panel C where we can see that in this case only agent Q was
learning to help the other agent. As a consequence agent Q was
never able to avoid the obstacle (see also touch signal in the
inset). These results clearly demonstrate that presented non-rigid
Leader/Follower mechanism is advantageous compared to a fixed
Master/Slave architecture.

4.4. Statistical evaluation
We evaluated our model statistically in a 3D scenario with ob-

stacles (see Fig. 3C1) where the agents initially had different paths
(most general case). In this case we were learning weights for
the interaction for all three dimensions (X , Y and Z-coordinates).
We analyzed the robustness of the learning and the influence of
the learning rate µ by the number of learning trials (experiences)
needed to learn interacting. Signals and resulting trajectories (see
the supplementary video, Appendix B) from a single simulated ex-
periment are shown in Fig. 3A–C, where in panels A1–A3 we show
signals only for agent P (signals for agent Q look similar). Again,
we show the control case (before learning, 5–10 s) and the first
four learning trials. As in the previous examples, we see that the
amplitude of the displacement signals for all three dimensions is
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A1 A3

B C

A4A2

Fig. 2. (A, B) Simulation results from interaction learning with obstacles without predefined roles of the agents and C with initially predefined roles (P = master and Q =

slave). Note that in simulations we let the robots go through obstacles, whereas in the real robot experiment this would not be the case and the behavior wouldmuch depend
on the obstacle avoidancemodule, e.g., if the reflex is strong enough, then the robot would avoid an obstacle without toggling it. (A1)Displacement signals D; (A2) predictive
force signals F ; (A3) output signals uI ; (A4) weights ρ; (B, C) trajectories. The learning rate was µ = 0.4. Weights for obstacle avoidance were tuned experimentally and
were as follows: Γ P

T ,y2
= 2, Γ P

V ,y2
= 5, Γ Q

T ,y2
= −2, Γ Q

V ,y2
= −5 and Γ P/Q

T/V ,y1
= 0. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

decreasing as learning proceeds. In this case, for agent P it took
longer compared to agent Q (17 and 9 trials, respectively) until
weights finally stabilized due to differences in trajectories and con-
figuration of the obstacles.

To gather statistics we changed start and end positions of the
coupled agents in every learning trial. We considered learning as
finished and successful if (1) the displacement signal was not trig-
gered and (2) the weights were not changing anymore within five
consecutive trials. We found that weights converged and learning
was successful in all 100 experiments. The influence of the learning
rate is shown in Fig. 3D where we can observe, as expected, that
higher learning rates lead to fewer learning experiences needed
to learn interacting. Results also demonstrate that depending on
the differences in trajectories and configuration of the obstacles
the number of learning experiences between agents can vary. Note
that in general too high learning rate will potentially lead to the
one-shot learning where the learnt reaction might be not optimal
for that particular case, i.e., overlearning.

4.5. Robot experiments

Finally, we performed two robot experiments (similar to the
simulations) with KUKA light-weight arms [26]. In the first exper-
iment we demonstrate the human–robot interaction, whereas in
the second experiment we let two robots interact with each other.
The results of these experiments are presented below.

4.5.1. Human–robot interaction
Here we let a human and a robot interact carrying a tray with

bottles. Hence, here we do not consider two equilibrating DMPs
(two robots), but only one. The goal is to avoid the red bar (left)
not hitting it with the tray when moving along a curved trajectory
(see Fig. 4B, T0). As in the simulations the robot has to learn to
move in the same direction by reacting to the force sensor thereby
helping the human avoiding the obstacle. Signals and resulting
trajectories are shown in Fig. 4 and are similar to the experiments
presented above. Note that here learning was applied only for the
Y -coordinate. In this case learning stopped and weights stabilized
after three learning trials (T1–T3, see the supplementary video,
Appendix B).

4.5.2. Robot–robot interaction
In the second experiment, we let two KUKA robot-arms inter-

act with each other where both robots were learning in this case.
The experimental setup is shown in Fig. 5A. Robots were coupled
by a wooden (painted in red) bar. The goal, as in the previous ex-
periments, was to avoid obstacles (a box and a bottle) without hit-
ting them when moving along a planned path. The positions of
the obstacles were fixed and the paths for obstacle avoidance was
predefined (as the planned trajectories) such that the robots were
able to avoid obstacles without touching them when being decou-
pled. As paths are initially independent of each other, this, how-
ever, leads to the situation that prior to learning obstacles will be
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A1

A2

A3

B1

B2

C2

C3

C1

D

Fig. 3. (A–C) Simulation results from interaction learning with obstacles in a 3D scenario. In panels A1–A3 signals only for agent P are shown. (A1) Displacement signals D;
(A2); predictive force signals F ; (A3) output signals uI ; (B1, B2) weights ρ; (C1–C3) trajectories. The learning rate was µ = 0.2. Weights for obstacle avoidance were tuned
experimentally and were as follows: Γ P

T ,y3
= 2, Γ P

V ,y3
= 2.5, Γ Q

T ,y2
= −2, Γ Q

V ,y2
= −2.5, Γ P

T/V ,y1/2
= 0 and Γ Q

T/V ,y1/3
= 0. (D) Statistics for the 3D simulation as shown in

panels A–C obtained from 100 experiments. In this case we changed start and end positions of the coupled agents in every trial (from a uniform distribution with interval
[−5; 5] cm for all, X , Y and Z positions), whereas the position of the obstacles was always the same. The average number of learning experiences needed to learn to interact
is plotted vs. the learning rate µ. Error bars show confidence intervals of the mean (95%).

hit, when robots are coupled. Resulting signals are shown in pan-
els C and Dwhere we show one control case (equilibration, 0–20 s)
followed by four learning trials and one post-learning trial. Note
that here we have a full 3D case. In this case for the agent Q , learn-
ing stopped and weights stabilized after three trials and for agent
P after four trials. Trajectories for planned, equilibrated and post-
learning paths are shown in panels B1 and B2 (see the supplemen-
tary video, Appendix B).

5. Discussion

In this study we presented a combination of sensory driven in-
teraction learning with dynamic movement primitives in a dual
tightly-coupled agent system. Of importance for motivating the
here-used learning mechanism is the following. Learning does not
require manual tuning of parameters for sensors in order to pro-
duce appropriate behavior, but let the system find the right param-
eters by itself. Another advantage of using learning is that learning
makes the system easily transferable to different agents/robots
with different sensor–motor embodiments. The third reasonwhich
motivates the here-used learning is that the agent can adapt their
interaction to new situations, which might occur due to environ-
mental changes or changes in agents behavior. In the following we
will compare our method to other existing approaches.

Previously, many different learning techniques, such as local/
global regression techniques [1,2,27–29]) or reinforcement learn-
ingmethods [30–34], were successfully applied to the DMP frame-
work in order to learn movement trajectory and/or goal. Different
from these approaches, we do not learn DMPweightsω, which en-
code the shape of the trajectory, but instead weight ρ of the inter-
active term uI by which the trajectory is locally influenced. It is, of
course, possible to combine ω- and ρ-learning. In addition to this,
our approach can also be applied to other trajectory-shapingmeth-
ods (like GMMs [3–5]). In this case the reactive term will have to
be added to velocity, instead of acceleration as done here.

As already mentioned above, so far sensor-driven DMPs and
GMMs have mainly been used in uncoupled systems. Different
from this in the current study we were concerned with construct-
ing sensor-driven interactive dynamic movement primitives in
order to use them for cooperative tasks. We were interested in un-
derstanding the passive (equilibration) DMP-properties of coupled
agents as well as their potential for conjoint adaptation. Conven-
tionally, there are two architectures existing for introducing cou-
pling: (1) master/slave and (2) non-master/slave [35]. In the first
case one needs in advance to explicitly define master and slave,
which is often a drawback of this architecture. The position of the
slave (force-controlled) is defined by the position of the master
(position controlled). The second architecture is a centralized ap-
proach where some reference frame is used to control both agents
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A1 A2

A3 A4

B

Fig. 4. Results fromhuman–robot interaction learning. (A) Signal development from six trials (separated by dashed lines). Trial T0 is a control case-path-persistence behavior
(no learning). (A1) Displacement signal D; (A2) predictive force signal F ; (A3) weight ρ; (A4) output signal uI . The learning rate was µ = 0.04. (B) Trajectories for control
case (T0), learning process (T1–T3) and post-learning (T4, T5). Dashed and solid lines represent planned and actual paths, respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

at the same time. Such architectures usually are realized by using
position/force [35–38], impedance control or variable impedance
control with virtual stiffness [39,40]. Our approach is similar to the
impedance control, however, instead of setting/adapting stiffness
parameters, we learn (in a model-free way) the appropriate reac-
tion in order to minimize external forces between agents and help
to cooperate with each other.

Our approach creates an alternating (depending on the envi-
ronment) leader/follower architecture. Thus, we do not have to ex-
plicitly define the agents’ roles beforehand, but they obtain them
depending on their sensory information. This way the one agent
that first encounters the obstacle becomes the leader, whereas the

other agent becomes the follower and learns to help the leader.
Only in the real robot scenario presented above, we do indeed have
a predefined master/slave architecture. However, here we wanted
to show the example of the interaction learning where the robot
learns to interact and help human. So here, only one (the robot) of
the two agents was learning.

Another aspect of traditional master/slave architectures is that
there is an important constraint which must be satisfied: the
distance between the master and slave should be equal to the
length of the object. In our approach we do not need to define
this constraint. Agents act autonomously but this can also lead to
situations where the object will be lost or deformed at the start of
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B1

C1 C2 C3 C4

D1 D2 D3 D4

B2A

Fig. 5. Results from robot–robot interaction learning. (A) Experimental setup. (B) Trajectories for planned, equilibrated (before learning) and post-learning paths. Note that
here robots started and ended at the same point marked by a green dot, whereas arrows show the direction of the movement. (C1, D1) Displacement signal D; (C2, D2)
predictive force signal F ; (C3, D3) weight ρ; (C4, D4) output signal uI . The learning rate was µ = 0.001. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

learning. The trade-off between autonomy and potential damage
cannot be resolved up front for all situations. In general, however,
a ‘‘floating’’ master/slave architecture, such as the one present
here, appears advantageous if the roles and/or the environmental
constraints are not known in advance, i.e., for truly autonomous
robots in a dynamic environment.

Also, different from the abovementioned tightly-coupled agent
interaction approaches we use learning in order to acquire coop-
erate behavior instead of pre-programming it. There is a recent
study by Gribovskaya et al. [41], which more closely relates to our
method, where adaptive impedance control is employed for the
agent interaction. Here the impedance parameters are adapted by
using an iterative algorithm based on an error function. However,
in this case robot-leader and robot-follower are again predefined
in advance (master/slave architecture).

The way we couple DMPs with sensory inputs in order to pro-
duce an on-line reaction is similar to the approaches presented
in [8,21,9,16,29,12,17]. Here, we show that such coupling can also
be applied for dual-agent systems in order to solve cooperative
tasks. Different from our approach, in [8,9,16,12] there is no learn-
ing applied and the reaction is generated by manually defined po-
tential fields with fixed parameters which makes them incapable
to adapt their behavior to new situations. [21,29,17] as in our case
use learning, however, different from our approach, learning acts
on DMP weights [21,29] and not on sensory terms as in our case.
Also, learning in those approaches is performed in several phases,
for example, first of all DMP weights are learnt to obtain basic
behavior and only afterward they are modified by sensory feed-
back [21].

As explained above, the trajectory planning and on-line modi-
fication in our case was done in a task-space taking into account
collision avoidance only for an end-effector of the manipulator.
However, due to the interaction trajectories of the end-effectors
might be altered in such a way that it will lead to link-collisions.
To prevent such situations one can augment the system by adding

potential fields on the manipulator links [42] or use an inverse-
kinematics model in which the null-space is constrained to avoid
link-collisions [43,8].

In summary, in this study we stressed the importance of com-
bining sensory information with dynamic movement primitives
and learning in a dual tightly-coupled agent system where the
behavior and cooperation of agents is purely based on low level
sensory information without any advanced planning. We believe
that the here arising attractive properties, like fast adaptation,
mutual equilibration, and cooperative interaction, can be very
helpful for designing reactive, DMP-based motor control for co-
operative tasks. It should also be easier to introduce planning
as well as other (higher) cognitive traits into such systems as
their sensory-reactions and low-level learningmakes themalready
‘‘well-behaved’’ from the beginning.
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Appendix A. Stability analysis

To investigate how the coupled agents converge toward the goal
we look at the fixed points of the dynamical system in Eqs. (10) and
(11).We set fi,j[t] = 0 and ri,j[t] = gi,j becausewe are interested in
the behavior as t → ∞. Then without loss of generality we choose
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coordinates such that g1,1 = g1,2 = gx, g3,1 = g3,2 = gz and
g2,1 = a/2 = −g2,2, for some constant a ≥ 0. In other words, we
align the y-axis with the spring in the goal position. Note that all
parameters (i.e., α, β,m, k, d, a) are assumed positive.

For convenience we use center of mass coordinates in this sec-
tion. Let y⃗j = (y1,j, y2,j, y3,j)T , z⃗j = (z1,j, z2,j, z3,j)T . Then the trans-
formation of the new coordinates is given by

y⃗1 = R⃗ + r⃗,
y⃗2 = R⃗ − r⃗,
z⃗1 = V⃗ + v⃗,

z⃗2 = V⃗ − v⃗.

(A.1)

Here R⃗ = (Rx, Ry, Rz)
T and V⃗ = (Vx, Vy, Vz)

T are the center of mass
positions and their velocities respectively, r⃗ = (rx, ry, rz)T the rela-
tive coordinates, v⃗ = (vx, vy, vz)

T their respective velocities. Stan-
dard linear stability analysis [44] of the transformed dynamical
system reveals that depending on parameters, there is either only
one stable fixed point or additionally an unstable one. In any case
they share all coordinates besides ry, these are as expected:

R⃗∗
= (gx, 0, gz)T , V⃗ ∗

= (0, 0, 0)T

v⃗∗
= (0, 0, 0)T , r⃗∗

= (0, r∗

y , 0)
T .

(A.2)

One fixed point (FP1) always exists and is stable throughout the
parameter range.

FP1 : r∗

y =
amαβ + 2dk
2mαβ + 4k

. (A.3)

This corresponds to both agents being as close to the goal posi-
tion as the spring allows, e.g., let d = a then r∗

y = a/2 = g2,1
such that each agent’s position coincides with its goal position. If
amαβ < 2dk there is another, unstable, fixed point (FP2) at

FP2 : r∗

y =
amαβ − 2dk
2mαβ + 4k

. (A.4)

This corresponds to the situation where the agents switch around
(r∗

y < 0) and block each other from reaching the goal by compress-
ing the spring in between them. The fixed point FP2 disappears
when the pull toward the goal position is stronger than the spring
can compensate (amαβ > 2dk).

In order to analyze the asymptotic dynamics toward FP1 we
look at the linearization of the dynamical system at FP1. The lin-
earized twelve dimensional first order system can be rewritten as
six second order equations of Rx, Ry, Rz, rx, ry, rz . Each equation is
that of a free damped harmonic oscillator. The equations are

¨⃗R = −αβR⃗ − α
˙⃗R,

r̈x = −
aαβ(mαβ + 2k)
amαβ + 2dk

rx − αṙx,

r̈y = −
mαβ + 2k

m
ry − αṙy,

r̈z = −
aαβ(mαβ + 2k)
amαβ + 2dk

rz − αṙz .

(A.5)

From here one can follow any text book on mechanics (e.g. [45])
to derive the DMP parameter that leads to critical damping βc for
each coordinate. For Rx, Ry and Rz we find βR

c = α/4 which corre-
sponds to the standard value of β for uncoupled DMPs. For ry we
find βy

c = (mα2
− 8k)/(4mα) which is smaller than βR

c if k > 0.
For rx and rz the expression is quite complicated

βx,z
c = βy

c +
1
8


am2α4 − 16akmα2 + 32dkmα2 + 64ak2

am2α2

and always larger thanβy
c . Note that for a = d, we obtainβx,z

c = βR
c .

The goal in choosing β is that no oscillations occur, which means
that if we cannot damp all coordinates critically, we prefer to over-
damp them. In all cases above overdamping is achieved if β < βc ;

therefore, the smallest βc , i.e., β
y
c should be chosen for the coupled

system. Because we need β > 0 for a converging DMP, we must
require α >

√
8k/m in this case.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.robot.2013.07.009.
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