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Abstract—In the work at hand we introduce a neu-
ral pre- and post-processing framework whose param-
eters can be adapted by any learning mechanism, e.g.
reinforcement learning. The framework allows to gen-
erate goal-directed behaviors while at the same time
exploiting the beneficial properties, e.g. robustness, of
self-organization based primitive behaviors.
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1 Introduction

The definition of preprogrammed (primitive) behav-
iors for autonomous robots requires an understanding
of the robotic system in order to actuate it properly
[1]. To minimize these efforts self-organizing control
generating such behaviors seems promising. In this
work, we investigate how self-organization of motor
primitives and learning of goal-oriented behaviors can
be combined. Therefore, we introduce a general neural
pre- and post-processing framework (sec. 3), in which
basic motor primitives generated by a first controller
(H1) can be modified by a second controller (H2) in
order to achieve a desired behavior or a given goal.
Since only the sensor values and motor commands but
no internal parameters of H1 are modulated the prin-
ciple can be applied to basically every controller.

In the work at hand, H1 is a self-organizing con-
troller (sec. 2), hence cannot generate goal oriented
behaviors. H2 is based on reinforcement learning and
can shape the generated behaviors in order to achieve
a given goal (sec. 4).

2 Self-organizing Control

For the self-organizing control of the robotic device
the homeokinetic principle [2] is employed. This prin-
ciple does not take externally specified goals or refer-
ence values into account. Instead it generates various
primitive behaviors in autonomous robots, depending
on the properties of robot and environment. From the
homoekinetic principle, learning rules for neurons of
closed loop robot controllers can be derived.

3 Neuronal Pre- and Post-Processing Frame-
work

Let us consider a robot that provides at each instant
of time, t = 0, 1, . . ., a vector of sensor values xR

t ∈ Rn

and is controlled by the motor values yRt ∈ Rm. With
n ≥ m the robot is assumed to not only provide (pro-
prioceptive) feedback about the actuators but maybe
also context information required for the task at hand.

The controller H1 generates in each time step a vector
of motor commands yCt ∈ Rk (with k = m) based on
the sensory input xC

t ∈ Rl (with n ≥ l ≥ m), where
usually only the feedback about the actuators is used.

The post processing is an adaptable mapping M :
Rk → Rk, which depends on the parameters b ∈ Rk

defining the amplitude change of the motor command
of H1 before it is executed by the robotic hardware:
yR = M(yC) with

yR,i = biyC,i, bi > 0 for all actuators i. (1)

The preprocessing is the inverse mapping M−1 :
Rl → Rl where the sensor values of the robot are scaled
inversely to the motor command1:

xC,i =
1

bi
∗ xR,i, i = 1, ..., l (2)

The adaptation of the parameters b is done by the
controller H2 (sec. 4). The pre and post processing can
be represented as artificial neurons with linear output
function whose input weights are 1

b and b respectively,
see figure 1.

Figure 1: Neuronal representation of the proposed pre-
and post-processing framework for one degree of free-
dom.

Assuming an ideal actuator which can immediately
execute motor commands (xR,i

t = yR,i
t ) and together

with equations 1, 2 we find xC,i = 1
bi ∗ b

i ∗yC,i = yC,i.
Hence from the point of view of the self-organizing
controller (H1) there is no influence caused by the pre
and post processing.

4 Goal-oriented control
The goal-oriented control (H2) is used to adapt the

parameters of the neural pre and post processing in
order to achieve a given goal. In principle any method
could be used. In order to emphasize the presented
framework and not the details of a complex learning
mechanism a simple reinforcement learning method,
Q-Learning [3] with a greedy behavior policy, is used.

1In the case of l > k (more sensors then motors) senors con-
nected to the same motor share the same b.



5 Experiments

The experiments with a four-wheeled robot in a
square arena with four goals (cp. figure 2) were con-
ducted in the physics simulator LpzRobots [4].

The homeokinetic controller (H1), which has to co-
ordinate the wheels in order to bring the robot into
motion, is provided with the preprocessed measured
wheel velocities xC,i

t = 1
bix

R,i
t , i = 1, . . . , 4, as sen-

sory input. The motor command yCt ∈ R4 of H1 is

passed to the robot via the post processing: yR,i
t =

biyC,i
t , i = 1, . . . , 4.

The goal-oriented controller H2 guides the robot to
the goal positions in the environment, which are se-
lected in serial order. Sensor information is the angle
between direction of motion and currently active goal
location. The actions of the Q-learning correspond to
changes of the parameters bi, i = 1, . . . , 4, allowing
to steer the robot. In the first minute only H1 was
active, while during the following ten minutes H2 was
learned. After learning two tasks had to be executed.

Also pure homeokinetic control (no pre or post pro-
cessing) and the “common” control paradigm with
manually predefined instead of self-organization based
motor primitives were investigated. The first task
(normal case) for the learned systems is to let the
robot follow a sequence of goal positions for ten min-
utes. A new goal is activated when the current goal
is reached and the total number of visited goals is
counted. The second task (defective case) is like the
first, but the sense of direction of one motor is inverted.
For each of the three controllers described above ten
experimental runs were conducted.

6 Results

The number of visited goals for the two cases (nor-
mal/defective) and the different control paradigms is
depicted in figure 3. Sample traces of the robot in the
normal case are depicted in figure 2. It is in the nature

Figure 2: Traces of the robot during an experimen-
tal run in normal case. The black dots represent the
sequence of goals: 0, 1, 2, 3, 0 and so on (robot
size scaled up for visibility). Left: pure homeoki-
netic control (with change of direction after collision),
Center: pre- and post-processing framework (see also
http://frankhesse.org/jnns), Right: manually defined
motor primitives.

of the homeokinetic approach that it is not focusing
on the goal (and in this case can not even perceive it)
leading to 2.5 visited goals in the mean. The proposed
pre- and post-processing framework controlled by H2
clearly shows goal-oriented behavior manifesting in 27
visited goals in the mean. This is slightly lower than

with predefined motor primitives (34 goals), due to de-
viations from the desired path (figure 2, right) by the
exploratory drive of the self-organizing control.

In the defective case the manually tuned control,
relying on predefined primitive behaviors, cannot ac-
count for the change in the body properties. Hence
the resulting behaviors are not as intended and do not
lead to the goals. The proposed pre and post process-
ing framework has no difficulties, since the primitive
behaviors can be immediately adapted.
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Figure 3: Number of visited goals during ten trials of
ten minutes each, h: homeokinetic control, p: pre- and
post-processing framework, m: manual defined con-
trol. The star indicates experiments in defective case,
where the sense of direction of one wheel was inverted.

7 Discussion
The presented approach of a neural pre- and post-

processing framework provides a possibility to com-
bine self-organization and reinforcement learning for
the control of autonomous robots. Instead of prede-
fined motor primitives self-organization based basic
motor primitives can be used to achieve a given goal.
This requires less initial knowledge about the proper-
ties of robot and environment and allows adaptation to
changes without relearning of the goal-oriented behav-
ior. So e.g. the system can deal with obstacles/walls or
inverted direction of motion of actuators even so they
are not addressed in the behavioral control. A combi-
nation of self-organization and reward based learning
seems thus a promising route for the development of
adaptive learning systems.

Note that the proposed framework is not limited to
the controllers presented in this study. E.g., recent ex-
periments showed that goal oriented locomotion for a
purely central pattern generator driven haxapod robot
can be achieved by adding the introduced pre- and
post-processing framework.
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