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Introduction: Anatomy and 
Physiology of Olfactory 
System in Fruit Flies

For species survival, an organism is required 
to obtain energy, avoid harm, and reproduce. 
In all these behaviors, a neural representa-
tion of the environment, through the pro-
cess of “neural encoding,” is created. The 
main thrust of many neuroscience studies is 
the transformation of sensory information 
during initial detection, neural information 
processing, and generation of a percept that 
eventually drives specific behaviors.

Survival of many organisms, in particular 
insects, depends heavily on olfaction (a form 
of chemosensation) to obtain vivid qualita-
tive, quantitative (Keene & Waddell,  2007) 
and temporal (Laurent,  1999) information 
about the stimulus through detection of weak 
and fluctuating signals with large numbers of 
volatile chemicals (Firestein,  2001). Thanks 
to the striking structural and functional 
similarity of olfactory systems in animals and 
insects (Ache & Young,  2005), researchers 
can generalize (Olsen & Wilson, 2008) many 
principles of olfactory information process-
ing (olfactory perception, discrimination, 
olfactory memories, and associative learning 
(Laurent et al., 2001)) across species.

The small and manageable size of Dros­
ophila melanogaster (briefly Drosophila or 
fruit fly), along with a comprehensive under-
standing of its olfactory system (including 
molecular description of olfactory receptor 
neurons), and recent advances in molecu-
lar, genetic, and neural activity recording 
make it a model organism to study olfactory 
information processing (Olsen & Wilson, 
2008). Computational models provide valu-
able insights into information processing and 
transformation in terms of neural activity 
and plasticity for different odors/multi-odor 
mixtures.

In this chapter, we first summarize the 
structure and function of neural substrates 
involved in Drosophila’s olfactory process 
followed by a description of information 
processing and associative learning. We then 
summarize the existing computational mod-
els of olfaction.

The Structure and Function of the 
Drosophila Olfactory System

The Drosophila olfactory system com-
prises antenna, antennal lobe (AL), mush-
room body (MB), lateral horn, and output 
neurons as shown in Fig.  15.1 (McGuire, 
Deshazer, & Davis, 2005).
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The Antenna and Olfactory Receptor 
Neurons

Drosophila has two pairs of olfactory 
organs, the antenna and the maxillary 
palps. Each antenna contains about 1,200 
olfactory receptor neurons (ORNs), while 
the maxillary palp comprises approxi-
mately 120 ORNs. ORNs, the seminal site 
for volatile odor reception, bear only a 
single odorant-specific receptor, hence 
the specificity. A single odorant-specific 
population of ORNs projects to the same 
glomerulus. A glomerulus in turn projects 

to projection neurons monosynaptically 
(Fishilevich & Vosshall, 2005). This leads to 
convergence and divergence in the neuronal 
information processing (Garcia-Sanchez & 
Huerta, 2003).

The binding of environmental volatile 
molecules (odors) to the receptor proteins 
on the surface of the neuronal dendrites 
in the antenna, ORNs (Vosshall, Wong, & 
Axel, 2000), triggers neuronal spikes (Benton, 
Vannice, Gomez-Diaz, & Vosshall,  2009). 
These spikes are subsequently sent to the 
inner parts of the insect’s brain to convey the 
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Figure 15.1  Schematic illustration of the Drosophila olfactory system. Odor as a stimulus in the environment 
binds to the receptors located on the antenna; each olfactory receptor neuron expresses one specific type of 
receptor (illustrated by different colors). Olfactory receptor neurons of the same class project to one glomeruli in 
the antennal lobe. The projection neurons in the antennal lobe, in turn, activate the Kenyon cells in the 
mushroom body and the lateral horn via cholinergic, excitatory synapses. GABAergic inhibitory neurons provide 
inhibitory effects on the activated Kenyon cells. The synapses between the output neuron and the Kenyon cells, 
along with the synapses between the Kenyon cells and the projection neurons, are the sites of learning.
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odor’s qualitative and quantitative information 
to ORNs (Bicker,  1999) where acetylcholine 
acts a primary excitatory neurotransmitter.

The Antennal Lobe (AL)

The insect AL comprises projection 
neurons, PNs (in Drosophila, n = 150–
200; Stocker, Heimbeck, Gendre, & de 
Belle, 1997), and is analogous in structure 
and function to the vertebrate olfactory 
bulb (Strausfeld & Hildebrand, 1999). PNs 
receive input from the ORNs and trans-
mit odor information to the mushroom 
body and the lateral horn. In Drosophila, 
PN dendrites usually innervate a single 
glomerulus (Stocker, Lienhard, Borst, & 
Fischbach, 1999) and are odor specific. 
Each glomerulus receives bilateral input 
from approximately 50 ORNs (25 per an- 
tenna) expressing identical receptors that 
synapse with approximately three PNs. 
However, each ORN is connected to all the 
PNs in a glomerulus (Vosshall et al., 2000).

The AL reduces the input noise by signal 
averaging (Laurent,  1999) and compresses 
the dynamic range of its projection neu-
ron output using widespread local inhibi-
tion (Stopfer, Jayaraman, & Laurent,  2003). 
The PNs show sporadic activity (Wilson, 
Turner, & Laurent, 2004) with their responses 
shaped by inhibitory neurons within the AL 
(Wilson & Laurent, 2005). Due to the broadly 
tuned PNs, odor encoding at the level of 
the antennal lobe’s output is combinato-
rial and thus inefficient for storage. Local 
neurons can be either inhibitory (gamma-
aminobutyric acid (GABA)ergic, n 100; Ng 
et al.,  2002) or excitatory (acetylcholinergic) 
(Shang, Claridge-Chang, Sjulson, Pypaert, 
& Miesenbock,  2007), and receive input 
from both ORNs and the projection neu-
rons (Wilson & Laurent, 2005). Another key 
chemical, nitric oxide, is known to disrupt 
olfactory discrimination upon blocking its 
production (Bicker, 2001).

The Mushroom Body (MB)

The Drosophila MB comprises approximately 
2,500 Kenyon cells (KCs) (Stocker, 1994) that 

receive olfactory information from the PNs 
(Wong, Wang, & Axel, 2002).

KCs show high morphological, pharmaco-
logical, and peptide variation across species 
(Strausfeld, Sinakevitch, & Vilinsky,  2003). 
The invariant circuitry of the lateral horn is 
thought to mediate innate behaviors (Jefferis 
et al., 2007), whereas the MB translates olfac-
tory sensory information into learned behav-
ioral responses. The projection neurons’ axons 
that innervate the MB terminate in large bou-
tons (Wong et al.,  2002) that form synapses 
on the KC (Butcher, Friedrich, Lu, Tanimoto, 
& Meinertzhagen,  2012). The KC synapses 
onto a relatively small number of extrinsic 
output neurons (Sejourne et al., 2011). The 
MB plays a critical role in general and asso-
ciative learning (Heisenberg, 2003; Strausfeld 
& Hildebrand, 1999) due to the olfactory and 
visual inputs. Learning and memory deficits 
have also been reported during abnormal MB 
development (Heisenberg, Borst, Wagner, & 
Byers, 1985).

Electrophysiological and optical imaging 
studies show that olfactory sensory systems 
create representations of olfactory stim-
uli as KC subpopulation activity (Stopfer 
et al.,  2003) such that each activated KC 
generates a few spikes. Compared to PNs 
(response probability  0.64), KCs demon-
strate a reduced response (response prob-
ability  0.11) to a given odor set (Wang 
et al., 2004) with near zero baseline activity 
(Perez-Orive et al., 2004) and odor response 
of approximately five spikes. Another study 
suggested that KC synapses are updated 
using the Hebbian learning rule (Cassenaer 
& Laurent,  2007). Additionally, odor rep-
resentation changes from dense (in AL) to 
sparse (in MB), thereby exhibiting “sparse 
coding” that has computational advantages 
for sensory representation and memory stor-
age (Perez-Orive et al., 2004). In other words, 
KC sparse encoding exhibits a high level of 
odor selectivity (Wang et al., 2004).

Synaptic connections from the AL to the 
KC dendrites are sites of functional memory 
and ensure optimal sparse responses in the 
MB after sufficient odor presentations (Finelli, 
Haney, Bazhenov, Stopfer, & Sejnowski, 2008). 
The presynaptic plasticity between the KC 
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and the MB extrinsic neurons governs olfac-
tory memory (Menzel & Manz, 2005). Thus, 
the large number of KCs allows for the com-
putation of highly nonlinear classification 
schemes across projection neurons (Huerta, 
Nowotny, Garcia-Sanchez, Abarbanel, & 
Rabinovich,  2004) and increased theoretical 
capacity due to temporal complexity (Laurent 
et al., 2001). This organization of glomerular 
connections to the MB allows the fly to con-
textualize novel sensory experiences, a feature 
consistent with the role of this brain center in 
mediating learned olfactory associations and 
behaviors. Locust studies suggest the presence 
of a normalization negative feedback loop in 
the MB to maintain sparse output over a wide 
range of inputs (Papadopoulou, Cassenaer, 
Nowotny, & Laurent, 2011).

The GABAergic system acts as the major 
inhibitory neurotransmitter (Ren, Li, Wu, 
Ren, & Guo,  2012) in the central nervous 
system of Drosophila and was shown to be 
expressed in a pair of anterior paired lateral 
(APL) neurons that innervate the entire MB 
(Liu & Davis, 2009). The molecular mecha-
nism of the GABAergic system in modulating 
sparse coding in the MB is not clearly under-
stood. APL neurons provide direct feedback 
inhibition to the KCs (Stocker et al., 1997).

Prior Models of Olfaction 
in Fruit Flies

Most models of olfaction in fruit flies simulate 
associative learning. However, some models 
simulate olfactory memory, the role of the MB 
as a classifier, as well as odor discrimination. 
Below, we discuss these models in detail.

Models of Olfactory 
Associative Learning

Learning can be defined as a lasting altera-
tion in behavior or in behavioral poten-
tial due to experience through molecular 
level and neuronal architecture changes 
in the brain (Heisenberg,  2003; Keene & 

Waddell,  2007). Drosophila exhibit the 
conditioned approach to or avoidance of 
an odor that has been paired to an appe-
titive or aversive stimulus, such as sugar 
(Tempel, Bonini, Dawson, & Quinn,  1983) 
or shock (Tully & Quinn, 1985). The MB is 
known to be a site for spatial memory and 
navigation without olfactory cues (Cruse & 
Wehner, 2011). It has also been shown that 
altering the MB (Heisenberg et al., 1985), 
blocking synaptic activity (Heisenberg, 
2003; Krashes, Keene, Leung, Armstrong, 
& Waddell, 2007), and inhibitory silencing 
of the MB output/feedback neurons (Liu & 
Davis,  2009) cause learning, memory, and 
memory formation deficits, respectively. 
Importantly, aversive conditioning leads 
to changes in the antennal lobe, where 
the PNs change their odor responses for 3 
min postconditioning (Yu, Ponomarev, & 
Davis, 2004).

The associative learning paradigm in 
Drosophila relies on a differential Pavlovian 
conditioning procedure (Tully & Quinn, 
1985) where an odor (conditioned stimulus  
or CS ) is temporally paired with electric 
shocks (unconditioned stimulus or US) and a 
second odor (conditioned stimulus  or CS ) 
is presented without any punishment. The 
fly associates the odor with the punishment. 
As shown by numerous reports, Drosophila 
is able to establish simple forms of appetitive 
and aversive olfactory associations at both 
larval and adult stages (Pauls et al., 2010).

Second-order conditioning studies, wherein 
a previously conditioned stimulus (CS1) is 
associated with a second conditioned stimu-
lus (CS2) to elicit a conditioned response, 
involves pairing of CS1 with an unconditioned 
stimulus (US) followed by a second-order con-
ditioning session in which CS1 is paired sub-
sequently with a novel stimulus, CS2. Upon 
successful learning, the agent demonstrates a 
conditioned response to CS2 similar to CS1, 
even though it has not been exposed to the 
original US during CS2 and CS1 association 
(Tabone & de Belle, 2011).

Information theoretic approaches have 
been applied to measure the Drosophila 
olfactory stimuli coding efficiency under 
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variable intensities (Faghihi, Kolodziejski, 
Fiala, Worgotter, & Tetzlaff, 2013). This study 
features an abstract model of the AL, the 
MB, and the feedback inhibitory circuitry for 
simulating mutual information exchange and 
information transmission efficiency between 
the olfactory environment (simulated in 
terms of different odor concentrations) and 
a subpopulation of the intrinsic MB neurons 
(KCs). The authors further showed the effect 
of different connectivity rates between olfac-
tory projection neurons and firing thresh-
olds of KCs. A linear relationship between 
the connectivity rate (linking AL and MB) 
and firing threshold of KCs to maximize 
mutual information for both low and high 
odor concentrations was observed. However, 
high odor concentrations cause a drastic, and 
unrealistic, decrease in mutual information 
for all connectivity rates compared to low 
concentration. Moreover, in the presence of 
MB feedback inhibition, mutual information 
transmission remains high independent of 
other system parameters. This finding points 

to a pivotal role of feedback inhibition in 
Drosophila information processing without 
which the systems efficiency is substantially 
compromised.

Memory (Brea, Urbanczik, & 
Senn, 2014)

One of the most important features in any 
behavior is the organism’s ability to identify  
the stimulus, associate it with a reward/
no reward/punitive outcome, remember-
ing this association and its history followed 
by utilization of the history information in 
future trials to maximize the total reward 
obtained. In Drosophila and other insects, 
the MB (n  2,500 neurons per hemisphere) 
governs olfactory memory (McGuire, Le, & 
Davis,  2001). The biggest challenge experi-
enced by the MB neurons is limited storage 
for a very large amount of olfactory stimuli. 
This problem was recently addressed by 
Brea et al. (2014) (see Fig. 15.2), where the 
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Figure 15.2  (A) Stochastic changes in the environmental state from punishing (p), neutral (n), and rewarding (r). 
The rate of changes of the environmental state are denoted by pn, np, m, and nr. (B) The belief (b) and policy 
changes in the environment. Belief influences the appetitive or aversive reaction, with appetitive action only 
updating the agent’s information about the environmental state. (C) Total reward obtained ± SEM for greedy and 
provident policy. Note that provident policy yields higher total reward than the greedy policy. (D) Conditioned 
response changes under two policies: with forgetting and without forgetting. Redrawn from Brea et al. (2014).
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authors presented a computational model 
of de-learning (forgetting) the association. 
The study was based on molecular studies 
from Shuai and colleagues (2010) and Berry, 
Cervantes-Sandoval, Nicholas, and Davis 
(2012), which assigned the de-learning phe-
nomena to G-protein Rac and dopamine. 
In this study, Brea et al. (2014) presented 
Drosophila with an odor, the approach-
ing of which led to reward or appetitive  
(R  1)/punishment (R 1)/no reinforce-
ment (R 0). The total reward received is 
the difference between the reinforcement 
obtained and the cost of response. The 
model also includes a belief module that 
represents the environmental state and com-
prises the belief probabilities for reward br , 
no reinforcement bn , and punishment bp  
with b b bn r p 1.

Upon receiving a punishment the sub-
sequent bp increases, with the fruit fly 
anticipating a higher punitive outcome. 
However, if the fly chose an aversive strat-
egy, the belief drifts toward a stationary 
value. Thus, the agent obtains knowledge 
of the environmental transitional rate 
through experience. The experimental 
paradigm did not allow for the estima-
tion of future rewards, hence the discount 
factor (γ)  0. Various choices of the 
environmental state transition probabil-
ity ( pn rn 4 15/ , nr np 1 30/ , θpr 

 θrp  0) were re-parameterized using 
r nr pn p rn npZ Z1 1 1

10
 and 

n rn pnZ 1 8
10

, where Z nr pn rn np

rn pn. It was proposed that alteration in 
the transition rates rn and pn  is sufficient 
for implementing the greedy policy; how-
ever, to incorporate the future rewards, 
a provident policy was employed, which 
leads to reward rate maximization with 
higher total rewards. The study also com-
putationally showed that spaced trials elicit 
a slower forgetting rate (a response inform-
ative of slow transitions); reversal learning 
showed a high forgetting rate (a response 
informative about fast transition).

Insects navigate (identify the target, per-
form path integration, and determine the 
velocity/distance/direction information in 
a complex environment) to obtain food and 
avoid obstacles (Wehner,  2009). Together 
with the visual scene the directional infor-
mation is intimately associated (and remem-
bered) to obtain complete information of 
the visual surroundings. Drosophila mela­
nogaster, similar to its insect counterparts 
is able to determine size, color, and contour 
orientation. However, a close inspection of 
the neural substrates attributed the olfactory 
processing only to the MB and not to the cen-
tral complex that is known to play a crucial 
role in orientation behavior and multisensory 
integration (Ofstad, Zuker, & Reiser,  2011). 
It was also shown that MB silencing leads to 
impaired odor learning. However, silencing 
the ellipsoid body did not affect the olfac-
tory learning but had a significant effect on 
impairment of visual place learning.

Decorrelation and 
Integration Dynamics of 
the Antennal Lobe (AL) 
(Muezzinoglu, Huerta, 
Abarbanel, Ryan, & 
Rabinovich, 2009)

ORNs provide extensive information about 
the odors presented. However, large time 
constants and highly variable signals make 
quick and accurate information processing 
difficult. AL perform quick and accurate 
information processing due to their ability 
to perform filtering and serve as a mem-
ory unit, attributed to an excitatory (PN) 
and inhibitory (LN) pool. AL output when 
passed onto the MB leads to the identifi-
cation and discrimination of the signal. In 
their study Muezzinoglu et al. (2009a) pre-
sent a model of antennal lobe dynamics that, 
using the raw data from the sensors, is able 
to encode the odor-specific information 
for the classifier to classify (see Fig.  15.3).  
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The model comprises a sensory layer (anal-
ogous to the ORN), dynamical layer (analo-
gous to the antennal lobe), and a classifier 
(analogous to the MB). The dynamical 
unit comprises excitatory and inhibitory 
neurons.

The neural activity for NE neurons in the 
PN pool is given by x ti , where i 1 2, , , 
N E. Similarly, the activity for NI neurons in 
the LN neuron pool is given by y ti , where 
i N I1 2, , , . The S ti

E  and S ti
I  from 

receptors along with their weighted sum 
serve as inputs to the dynamical layer. 
The time constant (β) is determined using 
Wilson–Cowan dynamics in  Eq. 15.1 and 
Eq. 15.2.
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where, E and I are excitatory and inhibitory 
neurons, w X Y E Iij

XY; ,, [ ] are weights from Y 
to X, S ti

X  is the input from the odor sen-
sors, ginp

X  is the weight for the S ti
X , Y

iµ  is the 
noise, and Θ is a unit ramp activation func-
tion that is given in Eq. 15.3.
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The weights  (Eq. 15.4) are chosen as 
follows:
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(Eq. 15.4)

where g 0 is the coupling strength and pXY  is 
a model parameter. The neurons are not self-
excitatory or self-inhibitory wii

XX 0 .
Outputs from the dynamic layer are sent 

to a support vector machine classifier with a 
linear kernel to classify the odors.

The model reduces within-class variance  
and increases between-class variance. The tem-
poral nature of the model imparts the model a 
short-term working memory, thus allowing 
efficient odor discrimination during the early 
odor period. One of the limitations of the 
model is the nonbiologically realistic classifier.
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Classi�er Odor

identity

SnapshotDynamical
Antennal lobe

model

Sensor
array

1

2

3

⫶

32

Figure 15.3  Overall schema of the model. The odor is detected by sensory array, which passes on the 
information to the antennal lobe model. In the antennal lobe the slow and noisy signals are refined by the 
excitatory and inhibitory neurons. The classifier then receives this information and discriminates the signals to 
respective odors. Redrawn from Muezzinoglu et al. (2009a).
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Figure 15.4  Model for classifying the 
antennal lobe outputs by mushroom 
body neurons. The weights between the 
antennal lobe neurons to calyx are 
initially randomly set, and are updated 
based on the binary reward signal. 
Redrawn from Muezzinoglu et al. (2009b).

Mushroom Body as Classifier 
(Muezzinoglu et al., 2009b)

As discussed earlier in “Decorrelation and 
Integration Dynamics of the Antennal Lobe,” 
the employed classifier is not biologically rele-
vant. In the follow-up study, Muezzinoglu and 
colleagues (2009b) present a biologically rel-
evant model of MB for AL output identifica-
tion (see Fig. 15.4). Muezzinoglu et al. (2009a) 
and Muezzinoglu et al. (2009b) share identical 
model design as described in Fig.  15.3. The 
main focus of this study was to classify the 
previously obtained AL outputs. In this model 
the authors used a nonlinear expansion of the 
AL output to MB, with the addition of a gain 
term to have uniform KC activity, a Hebbian 
learning rule to update the KC to output 
neuron connections, and a learning signal to 
update the output neuron’s synapses.

The activity patterns in the locust showed 
that the AL output is discretized through 
feedforward inhibition onto MB calyces 
(Perez-Orive et al.,  2002). Therefore, KC 
neurons were designed as McCulloch–Pitts 
neurons (with neural outputs as 0 for no 
spike and 1 for a spike) given in Eq. 15.5.

	
j

i

N

ji i KC

E

c x j N
1

1 2KC , , , ,
 

� (Eq. 15.5)

where, x is the output from PN of AL and 
x ( , , );x x x cij1 2 0 1NE [ ], which is the 
connectivity matrix of N N sizeE KC ; KC is 
the firing threshold, and Φ(∙) is a Heaviside 

function. To reduce the instability only 20% 
of the top n NKC KC /5 neurons that receive 
the most excitation in the x are admitted.

The output neurons of MB are mod-
eled as McCulloch–Pitts neurons. zl

wlj jj
NKC LB

1 , l NLB1 2, , , . The LB 

denotes the MB lobes. Similar gain control 
(the neuron that receives the highest input 
fires) is employed. The synaptic weights are  
updated using the Hebbian rule, w nlj 1

 H z w nl j lj, , , where H z w w( ), , 1  
when z 1, 1 and 0 otherwise. Synaptic 
strength is strengthened with probability p  if 
the presynaptic and postsynaptic neurons fire 
together. Learning is terminated when opti-
mal performance is reached.

Self-organization in the 
Olfactory System (Nowotny, 
Huerta, Abarbanel, & 
Rabinovich, 2005)

In this model the insect olfactory system 
was modeled using random connectivity and 
self-organization (see Fig.  15.5). The model 
features a robust learning algorithm with 
local learning and competition and without 
the need to hard code special connectivity 
patterns or process the input information. 
The map model comprises spiking neu-
rons with a discrete time dynamical map. 
The membrane voltage (V) of the neuron is 
given in Eq. 15.6.
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where Vspike 60 mV, 3, 2 64.  MΩ  
(input resistance of the cell), and 2 468. .  
These map model neurons had a response 
similar to the Hodgkin–Huxley model. All 
neurons except PN (which are modeled as 
input pattern-based, short, square voltage 
pulses at spike times) were modeled as map 
neurons. The synapses are modeled as:

I t t g S t V V tsyn syn rev post( 	 (Eq. 15.7)

where, Vrev is reversal potential with Vrev
0 mV for excitatory and Vrev 92 mV for 
inhibitory synapses, Vpost is the postsynaptic 
neuron membrane potential.
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/ eerwise

� (Eq. 15.8)

In Eq. 15.8, S(t) is the amount of neurotrans-
mitter at postsynaptic receptors. A small 
amount of neurotransmitter, δ, is released 
within Δt and is exponentially decreased at 
the rate of t syn/  when the presynaptic neu-
ron is firing.

The external KC (eKC) neurons are all-to-
all mutually inhibitory. The iKCs-eKC syn-
apses are updated as Eq. 15.9 and Eq. 15.10.
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where, g0, graw, a , a , τ, decay, shift , , , 
y0, y , and y  are constants, gmax is maximal 

synaptic strength, and 
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raw mid
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The model is able to successfully classify the 
input odor patterns through a self-organizing 
model design. iKC and eKC connectivity 
did not affect the performance, iKC is ver-
satile for a range of gains and gain control 
improves performance for significantly over-
lapping classes.

Mushroom body
iKC

Mushroom body
Lobes
eKC

PPN,iKC

PiKC,eKC

PiKC,eKC
active

Lateral Horn
Interneurons

Antennal
Lobe

Figure 15.5  Overall model design: the 
antennal lobe is connected to lateral 
horn interneurons and the mushroom 
body by all-to-all excitatory connections 
containing inhibitory Kenyon cells (iKC). 
Lateral horn neurons connect to iKC by 
all-to-all excitatory connections. iKC is 
connected to the excitatory Keynon cells 
(eKC). Within the eKC all the connections 
are all-to-all inhibitory. Redrawn from 
Nowotny et al. (2005).
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Compound Odor 
Discrimination (Wessnitzer, 
Young, Armstrong,  
& Webb, 2012)

Insects are able to distinguish a mixture 
of complex odors. To our knowledge, 
the Wessnitzer et al. (2012) model is the 
only one presented that is able to distin-
guish multiple odors. In this model, a sin-
gle odor activates only one set of glomeruli, 
but a multiple odor combination activates 
a combined glomeruli set (see Fig.  15.6). 
One of the striking features of this modeling 
approach is that the KC synaptic strength 
(and not its number) plays a crucial role in 
multi-odor detection. The model imple-
ments a spike timing-dependent plasticity 
(STDP) with neurotransmitter-based signal-
ing in the unconditioned stimulus. Similar 
to other models this model comprises ORN 
that project to the MB (comprising PN and 
LN), the outputs from PN are projected to 
the KC, which in turn project to the extrinsic 
neurons (EN). DA modulates plasticity in the 
KC–EN synapse. In this model the neurons  

are modeled as Izhikevich neurons with 
change in membrane potential (v) as follows:

	

Cv k v v v v u I Nr t� 0,

� (Eq. 15.11)

	
�u a b v v ur 	 (Eq. 15.12)
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where, u is the recovery current (Eq. 15.12), 
a, b, c, d, and k are model parameters,  
C( 4) is the capacitance, vr ( )85  is the 
resting membrane potential, vt ( )25  the 
instantaneous threshold potential, and ξ is 
the Gaussian noise term. The synaptic inputs 
(I) are modeled as Eq. 15.15.

	 I gS v vrev 	 (Eq. 15.15)

v
mV excitatory synapse

mV inhibitory synapserev
0

92
 

� (Eq. 15.16)

ORN

LN

KC

DA

EN

PN

FBI

+

+

+
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+
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Figure 15.6  The model overview containing the connections from olfactory receptor neurons’ (ORN) 
convergence to antennal lobe projection neurons (PN) and projection neurons’ divergence to the Kenyon  
cells (KC). The model employs a global reinforcement signal using dopamine (DA) to enforce spike timing-
dependent plasticity (STDP). The output of the Kenyon cell is sent to the extrinsic neurons (EN). Redrawn  
from Wessnitzer et al. (2012).
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A small amount of neurotransmitter 
0 5.  is released post presynaptic spike as 

described in Eq. 15.17.

	
�S s t t

syn
pre

	
(Eq. 15.17)

where, syn is synaptic timescale.
An odorant (O) comprises various ligands 

L L L1 2 20, , . In this model the authors 
chose two to six ligands for discrimination. 
The instantaneous firing rate R for ligand L is 
given in Eq. 15.18.

	
R K
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j
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1
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(Eq. 15.18)

where Ki
Lj  is the ith receptor binding affin-

ity to Lj. Lj  is ligand concentration, and 
molecular Hill equivalent (m)  1.

For antennal lobe dynamics the authors 
used a standard self-organizing map algorithm 
(Kohonen, 1990). The KC, which act as coin-
cidence detectors, connect randomly to the 
calyx.

	
Pr

KC is active

PN

PN

CA
T 	

(Eq. 15.19)

Pr is the probability of KC activity, APN is the 
number of active projection neurons, TPN is 
the total number of projection neurons, and 
C is KC’s coincidence threshold. KC only 
fires when three to six coincident inputs out 
of 10 PN fire together. A low gPN-KC threshold 
is insufficient for KC excitation. The output 
is obtained through a single EN.

Learning is governed by the neurotrans-
mitter released as in Eq. 15.20.

	 �g cd 	 (Eq. 15.20)
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where g is synaptic conductance, c is the syn-
aptic tag is modified using STDP, δ(t) is Dirac 
delta function, c is the time constant, and 
STDP is as follows:

	

(Eq. 15.22)

where, t pre and t post  are spiking timings of 
pre- and postneurons, respectively.

The model also had a measure of perfor-
mance through learning index (LI) given 
in Eq. 15.23.

	 LI spikes spikesX Y 	 (Eq. 15.23)

Functionally the antennal lobe integrates 
multiple ORN inputs and normalizes the PN 
response.

Conclusions and  
Future Work

The Drosophila olfactory system has been 
studied by neurobiologists for more than 13 
years. These intensive studies have enriched 
human knowledge on neuroanatomy, elec-
trophysiology, and information process-
ing principles of olfaction in Drosophila. 
Drosophila’s ability to learn, memorize, and 
recall stimulus, and associate it with reward, 
along with small manageable organism size 
with fewer neurons and simple odor circuitry 
make it a model organism in odor stud-
ies. The large structural homology between 
insect and vertebrate olfactory systems ena-
bles researchers to apply mechanistic and 
behavioral principles observed in the “mini-
brains” of insects to humans.

Additionally, sparse coding in the MB and 
dentate gyrus is another feature that the 
memory centers of vertebrates and inverte-
brates have in common. Sparse coding and 
sparse spiking are involved in efficient input 
pattern separation and encoding. Sparse cod-
ing and sparse spiking have received due at- 
tention from computational and theoretical 
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A e for t t
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pre post
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0
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researchers to explore and propose novel 
hypotheses that cannot currently be studied 
with experiments.

Computational models of the olfactory sys-
tem provide valuable insights into the inter-
action between various neural substrates 
involved in processing and discriminating 
various odors. All the models discussed 
above show high performance due to the 
limited number of neural structures involved 
but are unable to distinguish a large number 
of unique odors, and are unable to learn, for-
get, and adapt to the stimulus as quickly as 
the real fruit fly. This inability is partly due 
to the fact that connections between various 
neural substrates are developed over numer-
ous exposures to different stimuli over the 
course of the fruit fly development. Recent 
findings suggest that Drosophila individu-
als are able to identify odor intensities (de 
Bruyne, Foster, & Carlson,  2001; Stopter 
et al., 2003) and the temporal profile of an 

odor (de Bruyne et al.,  2001). The tempo-
ral intensity variation helps the organism 
identify not merely the presence or absence 
of reward but also the reward location and 
influences chemotaxis (Gomez-Marin, 
Stephens, & Louis,  2011). Future research 
efforts might be directed toward a compre-
hensive model of the olfactory system that is 
able to distinguish a large number of odors 
along with their intensities to present a more 
realistic picture of ongoing computations in 
odor processing. This could lead to new the-
ories and hypotheses about the computations 
performed by the neural system. To achieve 
these goals, the main challenge is to explore 
neural circuits underlying input–output pro-
cessed (even simplistic models) in flies. Some 
efforts have been successful in showing the 
possibility of developing such bio-inspired 
artificial systems in robotic control systems 
(Hart, Kreinar, Chrzanowski, Daltorio, & 
Quinn, 2015).
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