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Abstract—Animals show remarkable capabilities in navigating
their habitat in a fully autonomous and energy-efficient way.
In many species, these capabilities rely on a process called
path integration, which enables them to estimate their current
location and to find their way back home after long-distance
journeys. Path integration is achieved by integrating compass
and odometric cues. Here we introduce a neural path integration
mechanism that interacts with a neural locomotion control to
simulate homing behavior and path integration-related behaviors
observed in animals. The mechanism is applied to a simulated six-
legged artificial agent. Input signals from an allothetic compass
and odometry are sustained through leaky neural integrator
circuits, which are then used to compute the home vector by
local excitation-global inhibition interactions. The home vector is
computed and represented in circular arrays of neurons, where
compass directions are population-coded and linear displace-
ments are rate-coded. The mechanism allows for robust homing
behavior in the presence of external sensory noise. The emergent
behavior of the controlled agent does not only show a robust
solution for the problem of autonomous agent navigation, but
it also reproduces various aspects of animal navigation. Finally,
we discuss how the proposed path integration mechanism may
be used as a scaffold for spatial learning in terms of vector
navigation.

I. INTRODUCTION

Animals have evolved a remarkable variability of naviga-
tional behaviors to survive in complex dynamic environments,
which is essential for finding vital locations, including food
and shelter. While lower-order animals, such as nematodes,
mainly navigate by directed walks using local cues, higher
evolved animals (e.g., mammals, social insects) achieve more
complex goal-directed navigation as well as path planning.
These behaviors not only rely on sensory information, but
also on internal representations from memory, and are often
accompanied by learning mechanisms [1]. The ability of self-
localization as well as acquiring and maintaining a metric
reference frame is required to successfully navigate complex
environments.

In order to maintain metric representations, animals inte-
grate angular and linear ego-motion cues over time in order
to maintain a vector representation of their current location
with respect to their starting point, which is called the home
vector. The underlying computation is termed Path Integration
(PI) [2] or dead reckoning, and it is mainly used for homing,

i.e., returning back to the home. PI has been observed in
many animals, including mammals [3], avians [4], fish [5],
amphibians [6], arthropods [7], and presumably cephalopods
[8]. It has been observed in different species of central place
foragers, that PI plays a key role in navigation by providing
local information to the agent when visual cues (e.g., land-
marks) are abundant. There are also navigational behaviors
mediated by PI. Searching patterns of desert ants have shown
to be influenced by PI. Furthermore, the homing behavior
after directionally biased outbound walks results in systematic
errors, in which the animal misestimate the home position by
a short distance located right in front of the actual nest. These
errors have been observed in several species in vertebrates and
invertebrates.

Neural substrates of PI have yet to be completely identified,
but previous findings of neural representations of compass cues
may provide essential information about how PI is achieved
in neural systems [9], [10]. The firing pattern of certain
neurons in the rat limbic system has been found to encode
the animal’s head orientations in the plane, independent of the
animal’s location in space [11]. These so-called head direction
(HD) cells are derived from motor and vestibular sensory
information by integrating head movements through space.
A similar neural representation has been found in migratory
insects. Cells in a central brain area, called central complex,
encode azimuthal directions of the insect, which are derived
from the polarization pattern induced by scattered sunlight
[12]. Thus, neural substrates of allothetic compass cues have
been found in both invertebrate and vertebrate species. These
cues provide input signals for a potential PI mechanism based
on the accumulation of azimuthal directions of the moving
animal as previously proposed by [13].

Most models of PI have favored a particular coordinate
system (Cartesian or polar) and reference frame (geo- or
egocentric) to perform PI based on theoretical and biolog-
ical arguments [14]. While some models [15], [16] include
behavioral data from navigating animals in order to argue
for their proposed PI method, other works [17], [18], [19]
have applied neurobiologically realistic network models to
investigate possible memory mechanisms for PI. Despite the
wide variety of models, none of these models have been
implemented on realistic embodied artificial agents in order
to provide results of their model in the ecological context of



animals. Furthermore, possible links between PI and naviga-
tional capabilities, including spatial learning and memory, have
largely been ignored.

This paper presents a neural mechanism for PI in embod-
ied artificial agents. The mechanism is based on population
encoding of heading directions in circular arrays, which are
modulated by the walking speed of the agent. In order to
perform PI, the head direction activity is accumulated by a
self-recurrent connection. The final home vector representation
is computed by local excitation-lateral inhibition connections,
which projects accumulated heading directions onto the array
of output neurons. Implemented on an embodied artificial
agent, the mechanism not only allows for robust homing
behavior in the presence of sensory noise, but also accounts
for other PI-related behaviors observed in animals, including
systematic errors, foraging and searching behaviors. Finally,
we discuss our findings in order to relate the computational
properties of our neural path mechanism to spatial learning
and memory of vector representations.

II. CLOSED-LOOP CONTROL ARCHITECTURE FOR
NAVIGATION

The neural path integration (PI) mechanism is implemented
in a modular closed-loop architecture (Fig. 1a) embedded into
a simulated, embodied artificial agent based on the six-legged
walking robot AMOS II (Fig. 1b, [20]. The mechanism inter-
acts with a CPG-based locomotion controller, which generates
directed walking behavior based on the output signal of the
PI mechanism. The CPG-based locomotion control has been
presented in previous work [20]. Therefore, here we describe
only its main function, while the neural PI mechanism is
discussed in detail in the following section.

The CPG-based locomotion control consists of modular
neural networks generating a variety of periodic patterns and
coordinating all leg joints of the agent, thereby leading to a
multitude of different behavioral patterns and insect-like leg
movements. The resulting behaviors include omnidirectional
walking and insect-like gaits [20], which can be controlled
manually or autonomously driven by exteroceptive sensors,
such as a camera [21], a laser scanner [22], or infrared sensors
[20]. All neural networks in the CPG-based locomotion control
are modeled using a discrete-time non-spiking neuron model
with different activation functions (see [20] for details).

III. NEURAL PATH INTEGRATION MECHANISM

In this paper, we propose a neural path integration mech-
anism (Fig. 2) for embodied artificial agents. It consists of
multiple circular arrays that act as processing layers, where the
final layer’s activity pattern represents the home vector. Our
mechanism applies circular arrays of neurons with population-
coded compass information and rate-coded linear displace-
ments. Incoming signals are sustained through leaky neural
integrator circuits, and they compute the home vector by local
excitatory-lateral inhibitory interactions.

A. Sensory input

The sensory input to our mechanism consists of two
sensors that perceive angular and linear motion cues for path
integration. As in social insects, angular cues are derived
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Fig. 1. Closed-loop control architecture and experimental setup for adaptive
vector navigation in embodied artificial agents. (a) The architecture consists
of the neural path integration (PI) mechanism and CPG-based locomotion
control, which are implemented on a simulated, embodied artificial agent. The
PI mechanism receives input from a compass sensor and odometry (A). Layers
of circular arrays in the PI mechanism compute directional representations of
the current head direction (B) and the home vector (C-E). The output signal
(F) is the difference between current head direction and home vector direction,
and controls the turning of the agent during locomotion. Note that the capital
letters correspond to the subsections describing the Neural Path Integration
Mechanism (Section III). The CPG-based locomotion control generates motor
signals for directed walking behavior interacting with the environment. (b)
Lpzrobots framework [23] containing the Modular Robot Control Environment
and the simulated artificial agent based on the six-legged walking robot AMOS
II [20]. The agent has six legs (R0, R1, R2, L0, L1, L2) and each leg has three
joints: the thoraco-coxal (TC) joint enables forward and backward movements,
the coxa-trochanteral (CTr) joint enables elevation and depression of the leg,
and the femur-tibia (FTi) joint enables extension and exion of the tibia. The
agent also contains a multitude of proprio- and exteroceptive sensors. In this
paper, we use a compass sensor, a walking speed sensor, and infrared (IR)
sensors.

from an allothetic compass sensor which measures the angle
φ of the agent’s orientation. In insects, this information is
derived from the combination of sun- and skylight compass
information [10]. Odometry is provided by a speed sensor
measuring the walking speed s of the agent. For the hexapod
robot, the walking speed is computed by accumulating steps
and averaging over a certain time window. These step counting
signals are derived from the motor signals.
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Fig. 2. Processing layers of the Neural Path Integration Mechanism. Each
neuron encodes a particular preferred direction enclosing the full range of 2π.
Note that the figure depicts only six neurons for simplicity. A) Sensory input
from a compass sensor (φ) and walking speed sensor (s) is provided to the
mechanism. B) Neurons in the head direction layer encodes the sensory input
from a compass sensor using a cosine response function. C) Head direction
signals are modulated by the walking speed of the agent. D) The memory layer
accumulates the signals by a self-recurrent connection. E) A cosine weight
kernel decodes the accumulated directions to compute the output activity
representing the home vector. F) The difference in home vector direction and
current head direction is used to compute the homing signal.

φ ∈ [0, 2π) (1)
s ∈ [0, 1] (2)

B. Head direction layer

The first layer of the neural network model consists of head
direction (HD) sensitive cells with activation functions

xHD
i (φ(t)) = cos(φ(t)− φi), (3)

φi =
2πi

N
, i ∈ [0, N − 1], (4)

where the compass signal is encoded by a cosine response
function with N preferred directions φi ∈ [0, 2π). The coarse
encoding by the cosine ensures high resolution and optimizes
information transfer [24].

C. Odometric modulation of head direction signals

The second layer acts as a gating mechanism (G), that
modulates the neural activity using the walking speed signal
s (∈ [0, 1]). Thus, it encodes in its activity, the travelled
distances of the agent. The gating layer units decrease the HD
activities by a constant bias of 1, so that the maximum activity
is equal to zero. A positive speed increases the signal linearly.
The gating activity is defined as follows:

xG
i (t) = f(δijx

HD
j (t)− 1 + s), (5)

f(x) = max(0, x) (6)

where δij is the Kronecker delta, i.e., the first and second
layer are connected one-to-one, and f is the linear rectifier
transfer function. The linear rectifier function only transmits

positive signals. Examples of different speed-modulated gating
activities are shown in Fig. 3.
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Fig. 3. Example of speed modulation using a gating mechanism with 36
neurons. The agent’s heading direction is φ = 135◦ and the speed s is set to
(a) 0.25, (b) 0.5, and (c) 1.0.

D. Memory layer

The third layer is the so-called memory layer (M), where
the speed-modulated head direction activations are temporally
accumulated through a self-excitatory connection:

xM
i (t) = δijx

G
j (t) + (1− λ)xM

i (t− 1) (7)

where λ is a positive constant defined as the integrator leaking
rate, which indicates the loss of information over time.

E. Decoding layer

Finally, the fourth layer decodes the activations from the
memory layer to generate a vectorial representation of the
home vector which is the output of the mechanism (also called
PI state):

xPI
i (t) = wijx

M
j (t) (8)

wij = cos(φi − φj) (9)

where wij is a cosine kernel that decomposes the projections
of the memory layer activations. The resulting home vector is
encoded by the average position of maximum firing in the array
(angle θ) and the sum of all firing rates of the array (length l).
See Fig. 4 for example output activities of the decoding layer
neurons.

F. Homing signal

In order to apply the home vector information for homing
behavior, the vector simply needs to be rotated by 180◦. The
angular error between the current heading direction φ and the
current inverted home vector direction θ−π is used for steering
the agent towards home. The agent applies homing by error
compensation, which defines the motor command

ε = sin(θ − φ− π). (10)

As a result, positive and negative errors induce right (ε < 0)
and left turns (ε > 0), respectively, reducing the net error at
each step.

IV. SIMULATION RESULTS

In order to evaluate our path integration mechanism pro-
posed in the previous section, we carry out a series of
experiments that test the capabilities and robustness of the
mechanism under behaviorally relevant conditions. We provide
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Fig. 4. Neural activities of the PI neurons for an example (random) walk.

results using two different experimental platforms. A two-
dimensional point process simulation is used for the main
analysis of our control mechanisms. It can efficiently carry
out large number of experimental trials, which is required
to evaluate our models in a time-efficient manner. The sec-
ond platform is an embodied artificial agent simulated using
the robotic simulation framework called Lpzrobots [23]. The
biomechanics of the agent are based on the six-legged walking
robot AMOS II [20]. Its biomechanical similarities with insects
enables an appropriate embodied model for the study of insect-
inspired navigation control.

We test the proposed path integration mechanism in two
different experimental setups. First, we let the agent run out-
bound from an initial home position with two segments of fixed
orientations. These runs are referred to as L-shaped runs, where
the angle α defines the angle between the two segments. L-
shaped runs are applied under different noise levels to evaluate
robustness to noise, and to account for the observed systematic
errors observed during homing. Futhermore, we tested our
mechanism in a second experimental setup, in which the agent
runs outbound in random orientations. In animals, this foraging
behavior serves as an exploration mechanism to find goals in
the environment when no indicating stimulus is available.

A. Homing behavior

Here we evaluate the capabilities of our mechanism for
outbound runs with fixed orientations of the agent. Each
run consists of two straight legs in a prefixed direction of
α1 = 3π

2 and α2 = π, respectively. Both path segments
have the same length of 5. Fig. 5 shows the performance of
homing behavior for different levels of sensory noise added
to the path integration mechanism. For noise levels up to 5%,
the path integration mechanism provides reliable estimates of
the home position. The estimated home is indicated by the
looping behavior of the agent, which results from the sine
error compensation for homing [14].

In Fig. 6, we show the density map of the estimated home
position using our path integration mechanism with respect to

different sensory noise levels. Increasing noise levels leads to
larger uncertainty in determining the current position of the
agent. For noise levels up to 5%, the agent estimates the home
position with high probability (indicated by the red color) near
to actual home (green circle). This demonstrates the noise
robustness of our mechanism, which offers useful applications
for physical mobile robots dealing with a high degree of noise
in sensing and actuation.

Figure 7 shows that the PI mechanism is able to effectively
deal with deviations in the homing direction. This is tested
by placing an obstacle in the way of the initial homing
trajectory. As the agent approaches the obstacle, the infrared
(IR) sensors attached at the front of the agent detect the
obstacle and drive obstacle avoidance behavior. After obstacle
avoidance, the agent has deviated from the initial homing
trajectory and the resulting home vector direction has changed.
However, since the PI mechanism runs continuously, it can
compensate for such deviations and allow the agent to reach
the desired home position. A similar compensation during PI-
driven homing behavior has also been observed in animal
experiments [3], [10]. The video clip of this experiment can
be seen at www.manoonpong.com/IJCNN15/S1.mp4.

B. Systematic errors in homing experiments

Many inveretebrate and vertebrate species exhibit system-
atic error during homing after following an L-shaped outward
journey (reviewed in [3]). Müller and Wehner [15] have
examined these errors in desert ants by measuring the angular
deviation with respect to the angle of the L-shaped course. In
order to show that our mechanism is able to reproduce these
errors, we fit our model against the desert ant data from [15],
[25] using the leaking rate λ (Eq. 7) of the path integration
memory layer as control variable (see Fig. 8). Using a leaking
rate of λ ≈ 0.0075 resulted in angular errors most consistent
with behavioral data. The idea of leaky integration producing
systematic errors has also been previously proposed by [26],
[14]. Thus, here our mechanism not only provides a robust
solution for homing, but it also reproduces behavioral aspects
observed in animals.

C. Foraging experiments

In order to find resources, animals explore their environ-
ments in seemingly randomized patterns. In order to test that
our mechanism can also perform under these conditions, we
carried out homing experiments after random outbound runs
of the agent. Random exploration was achieved by using a
gaussian distribution with zero mean and standard deviation
0.15 for the turning rate dφ

dt . We tested the performance in
terms of angular deviation from actual home with respect to
two important model parameters, namely, sensory noise and
number of neurons. The experiments were averaged over 1000
trials. Fig. 9 shows the effect of different degrees of sensory
noise on the performance of path integration for a fixed number
of 360 neurons per layer. For noise levels up to 5% (equal to
18◦), the observed mean angular error is below 5◦ incidating
the robustness of our path integration mechanism. Here, the
coarse population coding of heading directions directly results
in reduction of noise from incoming sensory signals.

In Fig. 10, we varied the number of neurons in the circular
arrays of the path integration mechanism keeping the sensory
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Fig. 5. L-shaped outbound runs and homing behavior using a path integration mechanism for six different levels of sensory noise: (a) 0%, (b) 1%, (c) 2%, (d)
5%, (e) 10%, and (f) 20%. The multi-colored trajectory is the agent’s position over time. The green-colored trajectory indicates the estimated positions retrieved
from the path integration mechanism. The actual prefixed directions α1, α2 are indicated in (a) for ease of understanding.

a) b) c)

Fig. 6. Density maps of estimated home positions using a path integration mechanism for three different levels of sensory noise: (a) 1%, (b) 5%, (c) 10%.
The green circle corresponds to the home position with radius rhome < 0.2.

noise level fixed at 5%. The low and relatively stable mean
angular error clearly indicates that the mechanism can produce
fairly accurate home vector estimates even with 100 neurons.
This is again mainly due to the coarse coding of heading
directions.

V. CONCLUSION AND DISCUSSION

In this paper, we presented a neuro-inspired mechanism
capable of performing path integration. The mechanism is
fed by inputs from an allothetic compass and an odometer

providing sensory modalities similar to insects. The home
vector is computed and represented in circular arrays of
neurons where heading angles are population-coded and linear
displacements are rate-coded. This neural representation of
spatial knowledge is also found in insects [12]. The coarse
encoding of orientation using cosine responses was previously
applied by other models [18], [19]. Contrary to these works,
our model integrates the walking speed signal as an additive
factor, instead of a multiplicative factor. Temporal integration
of the speed-modulated head direction signals is achieved by
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Fig. 7. Multiple, overlayed frames of PI-mediated homing and obstacle avoidance in an embodied artificial agent. (a) The agent runs out from its home position
(white-colored sphere) and (b) keeps its head direction at a fixed angle, (c) before turning right by 90◦. After the L-shaped outward run, (d) the agent performs
homing behavior provided by the neural PI mechanism. (e) An obstacle is placed in the way of the homing trajectory and the agent performs obstacle avoidance
driven by its IR sensors. (f) The PI mechanism runs continuously and can therefore adjust the homing direction compensating the detour of avoiding the obstacle.
See www.manoonpong.com/IJCNN15/S1.mp4 for the video clip of this experiment.
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leaky neural integrator circuits, which are modeled by simple
self-recurrent loops. Biologically these recurrent connections
can be interpreted as positive feedback within a group of
neurons with the same preferred direction. From a theoretical
point of view, we apply this simplified mechanism to avoid
random drifts, which are observed in more complex attractor
networks [27] proposed in previous path integration models
[17], [28]. Finally, the home vector is computed by local
excitatory-lateral inhibitory interactions using a cosine weight
kernel. This has been previously applied in [29] and it provides
the mathematically correct decomposition of the projections
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Fig. 9. Mean angular errors (± S.D.) in path integration with respect to
sensory noise levels averaged over 1000 trials (fixed number of 360 neurons
per layer).

of each direction. Furthermore, in constrast to many exist-
ing works, we analyzed the effects of sensory noise on the
accuracy of our path integration mechanism. We show that
the noise robustness of our path integration mechanism allows
the implementation on realistic embodied artificial agents for
testing it in the ecological context of animals.

Path integration is a fundamental, but yet challenging com-
putation done by the animal nervous systems. It is employed
by central place foragers, such as social insects, to locate its
current position with respect to its nest. In rodents and other
vertebrates, path integration is useful when visual information
is abundant. The underlying neural basis of path integration
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has not been fully understood neither in invertebrates, nor in
vertebrates. However, the findings of the main neural pathways,
as well as the neural coding of sensory cues required for path
integration have shed light onto how animals might process
angular and linear self-motion cues [10], [11], [12].

Application of our proposed neural mechanism clearly
demonstrates the ability to successfully navigate a two-
dimensional point agent as well as the simulated physical robot
back to its home position. The leakage parameter λ provided a
single free parameter to succesfully fit our model to behavioral
data from desert ants [15]. Other models also provided this
evidence [15], [16], [17], however in our model, memory
decay is seen as the reason for the observed systematic errors
[14], [26]. The extensive analysis of multiple simulations with
random foraging revealed that path integration accumulates
errors over time. In the presence of noise, the path integration
mechanism is still capable of producing accurate estimates
of the home vector. We would like to emphasize the appli-
cation of our mechanism to an embodied legged agent. This
experimental platform provides a valid biomechanical model of
insects for modelling spatial behavior, such as path integration
and homing under similar conditions as in nature. To our
knowledge, existing models of PI mechanisms have hitherto
not been tested on legged robots. Although we have demon-
strated robust homing behavior using a simulated robot, in
future work, we plan to extend this to a physical walking robot
AMOS II [20]. We consider the use of an inertial measurement
unit (IMU), with an integrated accelerometer, gyroscope, and
magnetometer, serving as compass input to our path integra-
tion mechanism. Robust sensory preprocessing using reservoir
computing [30] allows for compensating noisy or missing
sensory information from the IMU. Future experiments will
also involve testing our path integration mechanism in more
complex environments with irregular terrain. In such a terrain,
accurate path integration requires the estimation of ground-
projected paths [31]. This is possible by including the agent’s
inclination as a modulatory signal to the gating layer of our
mechanism. Navigating in complex, real-world environments
creates the need for robust and adaptive locomotor behaviors,
which have been previously presented on AMOS II [32], [33].
Furthermore, we will apply an acoustic source and bio-inspired
auditory sensors for the localization of goals.

Besides homing being an obvious behavior mediated by
path integration, it can also act as a necessary scaffold for

spatial learning [34]. By providing a metric representation of
the space, the path integrator state may be associated with
a reward received at certain locations, such as feeding sites,
and help the learning of visually-guided landmark responses.
A recent study [35] suggest a shared representation of goal
direction and head direction using multivoxel pattern analysis
of fMRI measurements, which supports the hypothesis that
representations of goal directions may be learned by storing
head direction-accumulated path integration states. In future
work, we will test this hypothesis by combining the neural PI
mechanism with a reward-modulated associative learning rule
for spatial learning of goal locations. The learned represen-
tations of goals are global vectors based on the PI state ex-
perienced at the goal location. Furthermore, such mechanisms
can be linked to complex adaptive vector navigation including
decision making [36] and route learning [37] based on local
vectors.
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