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Abstract: We extend the concept of spatially synchronous dynamics in spin-lattice models to
the spatiotemporal domain to track segments within an image sequence. The method is related
to synchronization processes in neural networks and based on superparamagnetic clustering
of data. Spin interactions result in the formation of clusters of correlated spins, providing
an automatic labeling of corresponding image regions. The algorithm obeys detailed bal-
ance. This is an important property as it allows for consistent spin-transfer across subsequent
frames, which can be used for segment tracking. In the tracking process the correct equilib-
rium will, thus, always be found, which is an important advance as compared to other, more
heuristic, tracking procedures. In the case of long image sequences, i.e. movies, the algorithm
is augmented with a feedback mechanism, further stabilizing segment tracking. Model-free
tracking is important for solving tasks such as moving-object tracking and action recognition
in cases where no prior object knowledge is available.
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1. Introduction

How can me make sense out of a complex visual scene having no or only little prior knowledge about
its contents and the objects therein? Such problems occur for example if we wish to learn cause-effects
in an hitherto unknown environment. Vice versa, many object definitions are only meaningful within the
context of a given scenario and a set of possible actions.

Object tracking, i.e. the assignment of consistent labels to objects in different frames of a video, is
important for solving various tasks in the field of computer vision, including automatic surveillance,
human-computer interaction, and traffic monitoring [1]. Most object tracking algorithms require that
predefined objects of interests are detected in the first frame or in every frame of the movie. In an
unknown scenario however, the tracking of image segments, presumbably representing parts of objects,
allows to postpone object definition to a later step of the visual-scene analysis. Several approaches
for segment tracking have been proposed in the context of video segmentation [2,3,4,5,6,7,8,9]. Some
approaches rely on segmenting each frame independently, e.g. by classifying pixels into regions based
on similarity in the feature space, followed by a segment matching step based on their low-level features
[2,3,4,5]. Other methods use motion projection to link segments, i.e. the position of a segment in a future
frame is estimated from its current position and motion features [6,7,8,9].

In this paper, we group pixels based on a feature similarity criterium using a method based on the
superparamagnetic clustering of data. Tracking of segments is accomplished through simultaneous seg-
mentation of adjacent frames which are linked using local correspondence information, e.g. computed
via standard algorithms for optic flow [10]. Blatt et al. (1998) first formulated the segmentation prob-
lem in terms of Potts models of granular ferromagnets or spins [11]. In the superparamagnetic phase,
segments, i.e. ordered regions of aligned spins, appear naturally. To further accelerate the relaxation
of the spin system, Opara and Wörgötter (1998) introduced an energy-based cluster updating technique
(ECU), based on the cluster-updating method of Swendsen and Wang (1987) [12], and applied the algo-
rithm to the problem of image segmentation [13,14]. The relaxation processes which can be emulated in
spin-lattice models are often being used as approximations for synchronization processes within neural
assemblies [13,14,15,16,17,18].

The motivation for our choice is threefold. First, in superparamagnetic clustering the number of
segments is determined by the algorithm itself and thus does not need to be predefined. Second, the
method obeys detailed balance, ensuring that the algorithm converges to a stable solutation independent
of the initial conditions. Third, the concept of spin-relaxation can be easily extended to space-time by
allowing bonds to be formed between spins belonging to different movie frames. Thus, time, i.e. frame
number, just takes the role of additional dimensions in the spin-relaxation process, using only energy
minimization without further constraints.

The segmentation (or partition) of an image is sensitive to global and local changes of the image,
i.e. small changes in illumination, the appearance/disappearance of objects parts, causing the partition
to change from one frame to the next. By synchronizing the segmentation process of adjacent frames,
these kind of partitioning instabilities can be reduced. Furthermore, segment correspondences can be
established without having to employ segment matching. To further stabilize segment tracking in the
case of long image sequences, we developed a feedback control mechanism, which allows segmentation
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instabilities, e.g. sudden disappearences of segments, to be detected and removed by adjusting a control
parameter of the segmentation algorithm.

The main contribution of this paper is the development of a model-free tracking algorithm, i.e. no
prior object knowledge is required in order to track image segments from frame to frame. Potential
applications include model-free moving object detection and tracking, and action recognition and clas-
sification from movies [19].

The paper is structured as follows: In Section II, we extend the method of superparamagnetic clus-
tering in spin models to the temporal dimension and introduce the controller algorithm. In Section III,
we first verificate the core algorithm using short image sequences because these are more suitable to in-
troduce and test the method. We further investigate the sensitivity of the algorithm to system parameters
and noise. Then, we demonstrate that segment tracking can be achieved for real movies. In Section IV,
the results are discussed.

2. Algorithmic framework

Segment tracking can be roughly divided into the following subtasks: (i) image segmentation, (ii)
linking (tracking), and (iii) stabilization. The third point acknowledges that segments, unlike objects, are
not per se stable entities, but are sensitive to changes in the visual scene. Subtasks (i-ii) will be solved
using a conjoint spin-relaxation process emulated in an n-dimensional (n-D) lattice, which defines the
core algorithm (Section II.A). Local correspondence information for linking is obtained using standard
algorithms for either stereo or optic flow [10,20]. The conjoint segmentation approach has the advantage
that the spin-relaxation processes of adjacent images synchronize, reducing partioning instabilities.

Since simultaneous segmentation of long image sequences is practically impossible due to the high
computational costs, we usually split the image sequence into a sequence of pairs. For example, the
subsequent frames t0, t1 and t2 are split into two pairs {t0, t1} and {t1, t2}, where the last frame of
previous pair is identical to the first frame of the next pair. If a segment of the last frame of {t0, t1}
and a segment of the first frame of {t1, t2} occupy the same image region, we can assign the same
segment label to both segments. This way segments can be tracked through the entire sequence. Since
the algorithm preserves detailed balance (Section II.B), spins can be transferred from one frame to the
next, greatly reducing the number of iterations required to achieve a stable segmentation.

We further stabilize segment tracking by introducing a feedback controller (Section II.C). In long
image sequences, partioning instabilities are likely to arise at some point during the tracking process.
Thus, segments may be lost due to merging or splitting of segments. The feedback controller detects
these kind of instabilities and adjust a control parameter of the core algorithm to recover the original
segments.

2.1. Core algorithm

The method of superparamagnetic clustering has been previously used to segment single images [13,
14,18]. Applying this framework to image sequences requires spin interactions to take place across
frames. Due camera and object motion the images undergo changes during the course of time. To
connect different frames, the mapping from one frame to the next needs to be known at least in some
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approximation. We solve this problem in the following way: Point correspondences, derived using
algorithms for disparity or optic-flow computation, can be incorporated into the Potts model by allowing
spins belonging to different frames of the image sequence to interact if the respective pixels belong to
locally corresponding image points. Then, spins belonging to the different frames of the sequences are
relaxed simultaneously, resulting in a synchronized segmentation of the images of the sequence. The
inter-frame spin interactions cause the spins of corresponding image regions to align, and, thus, they
will be assigned to the same segment. Since the formation of segments is a collective process, the point
correspondences do not have to be very accurate nor does the algorithm require point correspondences
for each pixel. It is usually sufficient if the available correspondences capture the characteristics of the
scene only roughly.

The aim of this work is to find corresponding image regions in image sequences, i.e. stereo pairs
and motion sequences. The segment tracking task is formulated as follows. Given an image sequence
S containing points p(x, y, z) with coordinates (x, y, z) as elements, where x and y label the position
within each image, while z labels the frame number, then we want to find a partitioning P = P1, .., PM

of S in M groups such that

(i) Pi ∩ Pj = 0 and Pi 6= Ø for all groups

(ii) if point p ∈ Pi, then s(p, Pi) > s(p, Pj), where s is a function measuring the average distance of a
point to the elements of a group

(iii) if p(xi, yi, zi) ∈ Pr, then p(xi +4xi, yi +4yi, zi + 1) ∈ Pr, where 4xi and 4yi are the shifts of
point p(xi, yi, zi) along the x and y axes, respectively, from frame zi to frame zi + 1.

To perform this task, we assign a spin variable σi (or label) to each pixel (or site) i of the image se-
quence. To incorporate constraints in form of local correspondence information, we distinguish between
neighbors within a single frame (2D bonds) and neighbors across frame (n-D bonds). We create a 2D
bond (i, k)2D between two pixels within the same frame with coordinates (xi, yi, zi) and (xk, yk, zk) if

|(xi − xk)| ≤ ε2D (1)

|(yi − yk)| ≤ ε2D (2)

zi = zk , (3)

where ε2D is the 2D-interaction range of the spins, a parameter of the system. Across frames, we create
a n-D bond (i, j)nD between two spins i and j if

|(xi + dx
ij − xj)| ≤ εnD (4)

|(yi + dy
ij − yj)| ≤ εnD (5)

zi 6= zj (6)

aij > τ , (7)

where εnD is the n-D interaction range. The values dx
ij and dy

ij are the shifts of the pixels between frames
zi and zj along the axis x and y, respectively, obtained from the optic-flow map or disparity map. The
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parameters aij are the respective amplitudes (or confidences), and τ is a threshold, removing all local
correspondences having a small amplitude.

We define for every bond on the lattice the distance

4ij = |gi − gj| , (8)

where gi and gj are the gray (color) values of the pixels i and j, respectively. The mean distance 4̄ is
obtained by averaging over all bonds. We further define an interaction strength

Jij = 1−4/4̄ . (9)

The spin model is now implemented such a way that neighboring spins with similar color have the
tendency to align. We use a q-state Potts model [11] with the Hamiltonian

H = −
∑

〈ik〉2D

Jikδ(σi − σk)−
∑

〈ij〉nD

Jijδ(σi − σj) . (10)

Here, 〈ik〉2D and 〈ij〉nD denote that i, k and i, j are connected by bonds (i, k)2D and (i, j)nD, respec-
tively. The Kronecker δ function is defined as δ(a) = 1 if a = 0 and zero otherwise. The segmentation
problem is then solved by finding clusters of correlated spins in the low temperature equilibrium states
of the Hamiltonian H . The total number M of segments is then determined by counting the computed
segments. It is usually different from the total number q of spin states, which is a parameter of the
algorithm. Note that the local correspondences used in the algorithm to create n-D bonds are precom-
puted and are not altered or optimized when computing the equilibrium state. The computation of local
correspondences is not the aim of this paper.

We solve this task by implementing a clustering algorithm. In a first step, “satisfied” bonds, i.e. bonds
connecting spins of identical spins σi = σj , are identified. Then, in a second step, the satisfied bonds
are “frozen” with a some probability Pij . Pixels connected by frozen bonds define a cluster, which are
updated by assigning to all spins inside the same clusters the same new value [12]. In the method of
superparamagnetic clustering proposed by Blatt et al. (1996) [18] this is done independently for each
cluster. In this paper, we will employ the method of energy-based cluster updating (ECU), where new
values are assigned in consideration of the energy gain calculated for a neighborhood of the regarded
cluster [13,14]. A schematic of the spin system of an image sequence is depicted in Fig. 1A.

The ECU algorithm computing the equilibrium of H consists of the following steps:

1. Initialization: A spin value σi between 1 and q is assigned randomly to each spin i. Each spin
represents a pixel of the image sequence.

2. Computing bond freezing probabilities: If two spins i and j are connected by a bond and are in the
same spin state σi = σj , then the bond is frozen with a probability

Pij = 1− exp(−0.5Jij/T ) . (11)

Negative probabilities are set to zero.
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Figure 1: A The spin states (upward and downward pointing arrows) of pixels i, k, and j are shown before
and after a spin update for two adjacent frames t and t + 1 of an image sequence. The white and black circels
indicate pixels of small and large gray values, respectively. Pixel i interacts with pixels k and j in its 2D and
3D neighborhood (shaded areas), respectively, which are in the same spin state. B Pairwise (3D) segmentation of
movies. A feedback controller detects segmentation instabilities and adjusts the control parameter T of the core
algorithm (3D segmentation) to recover lost segments.
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3. Cluster identification: Pixels which are connected by frozen bonds define a cluster. A pixel be-
longing to a cluster u has by definition no frozen bond to a pixel belonging to a different cluster v.

4. Cluster updating: We perform a Metropolis update [12,21] that updates all spins of each cluster
simultaneously to a common new spin value. The new spin value for a cluster c is computed
considering the energy gain obtained from a cluster update to a new spin value wk. This is done
by considering the interactions of all spins in the cluster c with those outside the cluster, assuming
that all spins of the cluster are updated to the new spin value wk, giving an energy

E(W c
k) =

∑

i∈c

[−
∑
〈ij〉2D
ck 6=cj

ηJijδ(σi − σj)−
∑
〈ij〉nD
ck 6=cj

ηaijJijδ(σi − σj)
]

(12)

where 〈ik〉2D, ck 6= cj and 〈ij〉nD, ck 6= cj are the noncluster neighborhoods of spin i, and W c
k

symbolizes the respective spin configuration. Here, N is the total number of pixels of the image
sequence. The constant η is chosen to be 0.5.

Similar to a Gibbs sampler, the selecting probability P (W c
k ) for choosing the new spin value to be

wk is given by

P (W c
k ) = exp(E(W c

k ))/

q∑

l=1

exp(E(W c
l )) . (13)

5. Iteration: The new spin states are returned to step 2 of the algorithm, and steps 2-5 are repeated,
until the total number of clusters stabilizes.

6 Segments are defined as groups of correlated spins and can be extracted using a thresholding
procedure. All pairs of pixels connected by a bond (i, j) with c(σi, σj) > θ are considered as
friends. The function c computes the correlation of the spin states of i and j over several iterations.
Then, all mutual friends are assigned to the same segment. Finally, M is determined by counting
the total number of segments. In practice, we find it sufficient to take the clusters found in the last
iteration as segments.

In an earlier study we had provided evidence that this algorithm obeys detailed balance. The full proof
shall not be repeated here and can be found in [13]. Detailed balance assures that the proposed algorithm
computes an equilibrium spin configuration, i.e. the segmentation, which minimizes the energy function
on the labels, and that this is Boltzmann distributed.

The consequence of detailed balance is that spin states can be transferred across image pairs, where
spins are being calculated for one pair (the first pair) and then pixels in the next two frames (the second
pair) are just assigned these spins from where on a new relaxation process starts (see Fig. 5 for an
example). Hence, the relaxation process for the second pair (and all to follow) is much faster when
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using spin transfer and the system will always arrive at the correct final thermodynamic equilibrium
making spin-transfer based segmentation concordant across frames. Note, this property allows consistent
segment tracking across many frames without additional assumptions (see Fig. 5), which requires more
effort with other methods. This makes this algorithm a possibly very useful and fast enough tool for
model free segment tracking applications as will be shown by one example in Fig. 7.

2.2. Feedback control

Segmentation instabilities arising during the tracking process can be partly removed by adjusting the
temperature parameter of the core algorithm. The temperature choice affects the formation of segments,
hence, a segment which has been lost in a previous frame can sometimes be recovered by increasing the
temperature for certain period.

The feedback controller tracks the size of the segments and reacts if the size of a segment changes
suddenly. The first controller function

P j
C(t) =





1 if 4Sj(t) < τ1,

exp [−4Sj(t)/α] /β otherwise,
(14)

measures the probability of change of segment j, where Sj(t) is the size of segment j at frame t and
4Sj(t) = Sj(t)−Sj(t−1), and α, β, τ1 are parameters. The history of segment j in terms of occurrence
is captured by the second controller function

P j
H(t) = 0.4Hj(t− 1) + 0.3Hj(t− 2) + 0.2Hj(t− 3) + 0.1Hj(t− 4) , (15)

with Hj(t) = 1 if Sj(t) > 0 and zero otherwise.
Segmentation instabilities may cause a segment to be lost, for example through segment merging or

splitting. We define two threshold parameters τ2 and τ3. An unexpected segment loss is detected by the
controller if the conditions

Sj = 0 , (16)

PC < τ2 , (17)

and PH > τ3 (18)

are fulfilled. An unexpected segment appearance is detected by the controller if the conditions

PC < τ2 (19)

and PH < τ3 (20)

are fulfilled. The identities of the affected segments are stored by the controller. The temperature of the
core algorithm is varied using predefined temperature steps 4T . The segmentation is repeated at the
new temperature T +4T for the affected frames. If the lost segments can be recovered at one of these
temperatures, the affected segments are relabeled accordingly.

A schematic of the entire system, i.e. core algorithm with feedback control, is presented in Fig. 1B.
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3. Results

We apply the algorithm to various synthetic and real image sequences. Unless otherwise indicated,
the following parameter values q = 10, ε2D = 1, and εnD = 0 are used. In Section III.A, the core
algorithm is applied to short image sequences and a sensitivity analysis is performed. Temperatures in
the range of T = 0.05 − 0.3 are chosen for segment tracking, as suggested by the sensitivity analysis.
Then, in Section III.B, feedback control is added and the algorithm is applied to movies.

3.1. Verification of core algorithm

We first use stereo image pairs and a three-frame motion sequence to test and verificate the core
method (Section II.A) before applying the algorithm to long image sequences, i.e. movies. Stereo
images are more suitable to illustrate the basic properties of the algorithm. In the following figures we
use spin states instead of cluster labels to limit the total number of colors in the color-coded images to a
maximum value of q. Please note that the spin states are not identical to the cluster labels. Spins which
belong to the same clusters are always in the same spin state, however, the reverse is not always true.
The spin states have to be observed over several iterations to identify clusters as groups of correlated
spins.

Illustrating example: artifical solid square

We first demonstrate the algorithm for a synthetic scene which contains a single, solid square, which
is shifted by a disparity value of 40 pixels along the x axis, resulting in an image sequence containing
two frames, labeled left and right (see Fig. 2A, left and right panel). Each image is of size 100 × 100

pixels2. We estimate the disparity of the pixels by applying a stereo algorithm [20], which returns a
disparity map D and an amplitude map A, shown in Fig. 2B-C, respectively. The disparities and the
respective amplitudes determine whether a pixel in the right frame is a neighbor of a pixel in the left
frame. Clustering is performed with T = 0.01. The spin states of the spin system are initialized to
randomly chosen discrete values between 1 and 10, as depicted in Fig 2D, left and right panel. Then, the
system is evolved using the energy-based cluster update algorithm described in the previous section. The
spin states after 2, 5, 9, 17, 33, 65 iterations of the algorithm are shown in Fig. 2E. The process of cluster
formation can be easily followed through the iterations. At iteration step 65, the pixels belonging to the
square in both the left and the right frame have been assigned to the same cluster, despite incomplete
disparity information.

Sensitivity analysis

We investigate the sensitivity of the algorithm in dependence of the parameter T for different levels
of Gaussian white noise that we add to the solid-square stereo pair. In Fig. 3A, the ratio of the averaged
number of clusters after 100 iterations, computed from 10 runs of the algorithm, and the total number of
pixels is plotted as a function of the temperature T for four different realizations of Gaussian noise with
standard deviations from the absolute gray-value difference of object and background of 0%, 1%, 10%,
and 20%, depicted in red, blue, black, and green, respectively. For this sequence, a perfect segmentation
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Figure 2: Solid-square stereo pair. A The input image consists of a square which is shifted by a disparity value of 40
pixels from one frame to the other, labeled left and right. B By applying a stereo algorithm, the disparity map D of
the stereo pair could be computed, returning reliable disparity values at the edges. C The corresponding amplitude
map A reflecting the confidence in the computed stereo values is shown. D The spin states are initialized randomly
to values between 1 and 10. E The spin states after 2, 5, 9, 17, 33, and 65 iterations are shown. Progressive
agglomeration of clusters of aligned spins can be observed until a stable configuration is reached.
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Figure 3: Sensitivity analysis. A The ratio of the total number of clusters Nc divided by the total number of
pixels N is plotted as a function of the parameter T for different realizations of Gaussian noise, having standard
deviations from the absolute gray-value difference of object and background of 0%, 1%, 10%, and 20%. The
segmentation results are shown for T = 0.3 and different noise levels. B The ratio Nc/N is plotted as function of
the noise level using the ground-truth disparity map (red line) and the disparity computed with a phase-based stereo
algorithm [20] (black line). C Percentage of wrongly assigned image points as a function of the mean segment
length for the Cones stereo pair (left image see inset). D Total percentage of wrongly assigned image points as a
function of the density of erroneous disparities.
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is achieved for Nc = 2, corresponding to Nc/N = 10−4. For a noise level of 0%, the performance
of the algorithm is only weakly sensitive to changes in temperture (red line). However, when adding
noise to the images, the algorithm becomes more sensitive to changes in temperature (blue line), but
fast saturates for increasing noise levels (black and green line). For each noise level, the segmentation
results are depicted for T = 0.3. To establish the 3D neighborhood of image pixels here, the ground-
truth disparity map of the image pair was used. However, usually, when adding noise, the quality of
the disparity map decreases. Consequently, we also investigated the performance of the algorithm when
computing the disparity map with a phase-based stereo algorithm. In Fig. 3B, the ratio of the number of
clusters and the total number of image pixels is depicted as a function of the noise level at temperature
T = 0.1 (black line). The ratios when using the ground truth disparity is plotted for comparison (black
line). In this example, the performance is independent of the quality of the disparity map.

We further investigate the performance of the algorithm with respect to establishing correspondences
on the example of the Cones stereo pair (URL: vision.middlebury.edu/stereo/). The left frame of the
Cones stereo pair is shown as an inset of Fig. 3C. The percentage of wrongly assigned image points
was computed independently for every segment, and the average percentage of wrongly assigned image
points was plotted as a function of the mean length of the segments (Fig. 3C). A segment of length
l contains l2 image points. The plot demonstrates that the performance of the algorithm is higher for
large segments than for small segments, confirming our expectation that color segmentation works best
for large uniform image regions. In textured areas, corresponding to very small segment sizes, the
performance of the algorithm decreases rapidly.

We also investigated the influence of errors in the precomputed disparity on the performance of the
algorithm by replacing disparity values of the ground-truth map randomly by erroneous values ranging
from 0 to n, where n is the width of the image. In Fig. 3D the total percentage of wrongly assigned image
points (taken from all segments) is plotted as a function of the density of erroneous disparity values. As
expected, the performance decreases with increasing error in the disparity map. In summary: one finds
that the errors are in general small and the error curves flat for larger segments corresponding to non-
textured regions. It is evident that all gray (color) difference based segmentation algorithms in general
do not capture textured regions and the increasing errors for small segments reflect this situation. On
the other hand, it is very assuring that those segments, which follow from larger consistent gray (color)
value similarities, are indeed only little affected by errors in the (stereo-)correspondence map.

Real stereo pair

This stereo pair shows two views of a scene of cluttered objects, i.e., paper boxes, a trash can, and a
white Styrofoam object (Fig. 4A, left and right panel). Each image is of size 180 × 380 pixels2. This
stereo pair is demanding because of the amount of occlusion, the light reflexions, shadows, and the large
disparities, which lead to perspective distortions, posing a problem to approaches based on segment
matching. The stereo algorithm returns reliable disparity values at the edges (Fig. 4B-C). Otherwise,
the amplitude is zero (Fig. 4C). However, when performing clustering with T = 0.2, the algorithm is
still able to segment most of the boxes into their composite surfaces (Fig. 4D-E). Some of the surfaces
are partly shattered though, due to light reflexions and shadows, breaking the uniformity of the surfaces.
Both the spin states after 150 and 176 iterations are shown to allow easier identification of correlated
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Figure 4: Cluttered-objects stereo pair. A Stereo image pair showing a cluttered scene containing a variety of
objects. B-C The dense stereo algorithm returns mainly disparity information the edges of the objects. D-E The
spin states computed by the clustering algorithm are shown after both 150 and 176 iterations for easier visual
identification of the segments.
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spins through visual inspection.

Real motion sequence

So far we had been validating our method using synthetic and real stereo pairs. Now we demonstrate
that spatiotemporal synchronization of spins enables segments to be tracked through the frames of real
movies.

We apply the core algorithm to three frames of a motion sequence showing a woman walking from
the right to the left. The frames are of sizes 118 × 158 pixels2 (Fig. 5A). To compute optic flow, any
standard algorithm can be used [10], e.g. a differential technique by Lucas and Kanade [22]. Here we
used a method proposed in [23]. The performance of the segmentation is only weakly sensitive to the
quality of the optic-flow estimation. The optic-flow fields, coding the mapping from the frame t0 to
frame t1, and from frame t1 to frame t2, are depicted in Fig. 5B. The spin states after 100 iterations are
shown in Fig. 5C. The algorithm successfully segmented the legs, the arms, a part of the head, and parts
of the background, which thus can be tracked from frame to frame. For the highly textured area in the
background, no stable 3D clusters could form since the gray-value similarity of neighboring pixels is too
low. However, texture could be treated by performing segmentation based on texture similarity instead
of color similarity.

When analyzing long motion sequences, it is inefficient to apply the algorithm to all frames at once
because the computational costs increase with the number of pixels. Hence, we split the sequences in
pairs of two frames at a time, where the last frame of the previous sequence is identical with the first
frame of the next sequence. Then, we initialize the spin states of each sequence with the final spin
states of the previous sequence. The spin states for the first sequence containing frame t0 and t1 after
100 iterations are shown in Fig. 5D. Then, the algorithm is applied to the next pair, containing frame
t1 and t2, where the spin states of both frame have been initialized to the final spin states of frame
t1 of the previous sequence. The spin states after 13 iterations are shown in Fig. 5E, demonstrating
that the number of iterations required to achieve a satisfying segmentation result is greatly reduced by
this technique. The number of clusters for the first sequence and the second sequence are displayed as a
function of the iteration number in Fig. 5F, dashed and solid line, respectively. The number of clusters for
the second sequence is plotted as a function of the iteration number at a different scale (Fig. 5G). Initially,
the number of clusters decreases slightly and then approaches a stable state. In a motion sequence, the
number of clusters is expected not to change much from one frame to the next. Mainly the boundaries
of the clusters reorganize during the first iterations.

The segments of adjacent image pairs are connected as follows. Two segments belonging to the
segmentation of frame t1 of pair {t0, t1} and frame t1 of pair {t1, t2}, respectively, are assigned the same
label if they occupy the same region in image frame t1. This way we can track the segment through the
whole sequence.

3.2. Segment tracking with feedback stabilization

We add feedback control (see Section II.C) with parameters α = 200 pixels, β = 0.8, τ1 = 50 pixels,
τ2 = 0.9, and τ3 = 0.6 to the core algorithm with temperature T = 0.05 and apply the algorithm to long
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Figure 5: A Three frames of a walking sequence, labeled t0, t1, and t2, respectively. B Optic-flow vectors coding
the mapping from frame t0 to t1, and t1 to t2. C Spin states after 100 iterations. D Spin states for a sequence
consisting of frames, t0 and t1. E Spin states for a sequence consisting of t1 and t2. F The number of clusters as a
function of the iteration number for the first sequence containing frame t0 and t1 (dashed line) and for the second
sequence containing frame t1 and t2 (solid line). G Enlarged plot of the second sequence.
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Feedback control activated

Red apple (no feedback)

Red apple (with feedback)

Orange (no feedback)

Orange (with feedback)

A

B

Figure 6: Feedback control for segmentation stabilization. A A few frames of a movie showing a hand taking a
red apple from a plate are shown together with the results of the core algorithm without and with feedback control
(upper, middle, and lower panel, respectively). B The segment size is plotted as a function of the frame number for
the segments representing the red apple and the orange without and with feedback control, depicted as red, blue,
brown and green lines, respectively. At frame number 45 the segment sizes of the red apple and the orange drop
unexpectedly to zero (red and blue lines), and the feedback control is activated, increasing the temperature T until
the original segments are recovered (brown and green lines).
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image sequences. The first movie shows a hand taking a red apple from a plate with several fruits. A
few frames of the movie are depicted in the upper panel of Fig. 6A. If the core algorithm is applied at
constant temperature without feedback control, the red segment and the light pink segment, representing
the respective parts of the red apple and the orange, are lost at frame number 45 due a segmentation
instability: The red segment and the light pink segment merge and form a new segment, colored in light
blue (see Fig. 6A, middle panel). If feedback control is included, this segmentation instability is detected
and the original segments can be recovered by increasing the temperature in steps of 4T = 0.15. As
a consequence, the segments can be continuously tracked, as shown in Fig. 6A (lower panel). The
segments representing the cup could be recovered using the same mechanism.

The work of the feedback controller is further illustrated in Fig. 6B, where the segment size is plotted
as a function of the frame number for the segments representing the red apple and the orange without
and with feedback control, depicted as red, blue, brown and green lines, respectively. At frame number
45 the segment sizes of the red apple and the orange drop unexpectedly to zero (red and blue lines), thus
indicating a segmentation instability (see Section II.C). As a consequence, the feedback controller is
activated and the temperature of the core algorithm is increased until the original segments are recovered
(brown and green lines). The results for the whole movie are shown in Fig. 7A.

We further applied the algorithm to another movie, showing the filling of a cup with sugar (Fig. 7B).
The movie is challenging because it contains light reflexions and changing shadows. However, the
algorithm is capable of tracking the main segments of the movie, i.e. the two cups and the hand.

We obtained similar segment-tracking results for other real movies, e.g. Moving Object, Making
Sandwich, Opening a Book. These results can be found at http://www.nld.ds.mpg.de/ eren/Movies/Movies.html.

4. Discussion

We presented an algorithm for model-free segment tracking based on a novel, conjoint framework,
combining local correspondences and image segmentation to synchronize the segmentation of adjacent
images. The algorithm provides a partitioning of the image sequence in segments, such that points in a
segment are more similar to each other than to points in another segment, and such that corresponding
image points belong to the same segment. We tested the method on various synthetic and real image
sequences, and showed stable and reliable results overall, thus fulfilling the most important requirement
of segmentation algorithms. The method leads to the formation of stable region correspondences despite
largely incomplete disparity or optic-flow maps. Similar algorithms for the extraction of region corre-
spondences could potentially be constructed using other image segmentation algorithms, i.e. methods
based on agglomerative clustering [24,25]. We decided to use physics-based model for its conceptual
simplicity which allowed us to integrate local correspondence information in a straightforward way. It
further has the advantage that the interacting parts are inherently converging to the equilibrium state
and thus are not being trapped in local extrema (detailed balance). As a consequence, the result is
independent of the initial conditions, allowing us to apply the algorithm to long image sequences via
spin-states transfer. This allows for consistent segment tracking across many frames without additional
assumptions, which is most of the time not immediately possible with other methods. In addition, no
assumptions about the underlying data are required, e.g. the number of segments, leading to a model-
free segmentation. This has the consequence that a single pixel of distinct gray value (compared to its
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A
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Figure 7: Segment tracking for real movies. A The algorithm (with feedback control) is applied to a movie showing
a hand taking an apple from a plate (upper panel). The corresponding segment-tracking results are depicted below.
B The results of the algorithm (with feedback control) for a movie showing the filling of a cup are shown. Segment-
tracking results for other real movies can be found at http://www.nld.ds.mpg.de/ eren/Movies/Movies.html
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neighbors) might define a single segment. In algorithms, which partition the image into a fixed and usu-
ally small number of segments, this phenomenon does not occur. This, however, is a problem as in all
realistic situations one never knows how many segments exist and self-adjustment of the total number of
segments is, thus, usually desired as compared to a pre-defined maximal number.

We further introduced a feedback controller which allows to detect segmentation instabilities, i.e.
merging and splitting of segments. The feedback controller adjusts the control parameter of the core
algorithm in order to recover the original segments. This allows to keep track of segment even in long
movies.

Segment tracking has been performed previously in the context of video segmentation [2,3,4,5,6,7,
8,9]. Our method differs from these approaches in the choice of the segmentation algorithm, the way
linking is achieved, and the addition of a feedback controller which detects segmentation instabilities.
Superparamagnetic clustering allows a model-free unsupervised segmentation of the image sequences,
including a self-adjustment of the total number of segments. Linking is introduced trough local cor-
respondence information which synchronizes the spin-relaxation process of adjacent images. This ap-
proach has the advantage that the partitions of adjacent images are less prune to partitioning instabilities.
Further, our method does not require corresponding regions to fulfill any segment similarity criterium.
Finally, feedback controll allows segmentation instabilites occuring in long sequences to be removed by
assuming that “good” segments change their size in a continuous “predictable” manner.

There have been a few other approaches combining image segmentation with correspondence infor-
mation. The work by Toshev et al. [26] uses a joint-image graph containing edges representing intra-
image similarities and inter-image feature matches to compute matching regions. Joint segmentation has
also been employed by Rother et al. [27] using histogram matching.

Vision problems have been formulated in terms of energy minimization in many ways before. The
major challenge of these approaches lies in the computation of the global minimum, which is often
difficult in particular for interesting energy functions. Various techniques have been proposed, such
as variational methods [28], graph cuts [29,30,31,32,33,34,35,36], dynamic programming [37], simu-
lated annealing [38], or relaxation labeling [39,40,41]. Superparamagnetic clustering has been shown to
equilibrate to a global minimum for the Potts model used in this work [13]. The work of [42], which
computes disparities by minimizing energy functions through an inference algorithm defined on graph
partitions, shows some similarities to the core algorithm proposed in this paper, even though it has been
applied to a different problem, i.e. stereo matching. However, in the algorithm of Barbu and Zhu (2005)
the number of segments is a parameter to the algorithm. Unlike in superparamagnetic clustering, it is
assumed that there is a natural set of labels (disparities), and a data penalty function, which makes some
pixel-label assignments more likely than others. These assumptions will lead to a violation of detailed
balance and spin-transfer is not possible in this framework.

The algorithm has potential applications in model-free moving object detection and tracking by merg-
ing coherently moving segments (Gestalt law of common fate). The method is further applicable to
action-recognition tasks, where certain characteristic action patterns are inferred from the spatiotempo-
ral relationships of segments. First results for this problem are reported in [19]. In the future, texture
cues may be incorporated into the algorithm to allow tracking of segments defined by texture.

The algorithm is not yet working in real time. However, we are currently working on a parallel
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implementation of the algorithm on GPUs to achieve real-time segment tracking for robot applications.
Our goal is the development of a vision-front end for real-time video segment tracking on top of which
other algorithms, i.e. moving-object detection/tracking and action recognition, can be applied.
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