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Abstract Recurrent neural networks of the reservoir

computing (RC) type have been found useful in various

time-series processing tasks with inherent non-linearity and

requirements of variable temporal memory. Specifically for

delayed response tasks involving the transient memoriza-

tion of information (temporal memory), self-adaptation in

RC is crucial for generalization to varying delays. In this

work using information theory, we combine a generalized

intrinsic plasticity rule with a local information dynamics

based schema of reservoir neuron leak adaptation. This

allows the RC network to be optimized in a self-adaptive

manner with minimal parameter tuning. Local active

information storage, measured as the degree of influence of

previous activity on the next time step activity of a neuron,

is used to modify its leak-rate. This results in RC network

with non-uniform leak rate which depends on the time

scales of the incoming input. Intrinsic plasticity (IP) is

aimed at maximizing the mutual information between each

neuron’s input and output while maintaining a mean level

of activity (homeostasis). Experimental results on two

standard benchmark tasks confirm the extended perfor-

mance of this system as compared to the static RC (fixed

leak and no IP) and RC with only IP. In addition, using

both a simulated wheeled robot and a more complex

physical hexapod robot, we demonstrate the ability of the

system to achieve long temporal memory for solving a

basic T-shaped maze navigation task with varying delay

time scale.

Keywords Recurrent neural networks � Self-adaptation �
Information theory � Intrinsic plasticity � Temporal memory

1 Introduction

Reservoir computing (RC) is a powerful paradigm for the

design, analysis and training of recurrent neural networks

(Lukosevicius and Jaeger 2009). The RC framework has

been utilized for mathematical modeling of biological

neural networks (Maass et al. 2004) as well as applications

for non-linear time-series modeling (Shi and Han 2007),

robotic applications and understanding the dynamics of

memory in large recurrent networks in general (Büsing

et al. 2010). Traditionally the reservoir is randomly con-

structed with only the output connections trained with a

regression function. Although both spiking and analog

neurons have been explored previously, here we focus on

the Echo-state network (ESN) type (Jaeger and Haas 2004)

using sigmoid leaky integrator neurons.

Even though the generic RC shows impressive perfor-

mance for many tasks, the fixed random connections and

variations in parameters like spectral radius, leak-rate and

number of neurons can lead to significant variations in

performance. Approaches based on intrinsic plasticity (IP)

(Schrauwen et al. 2008) can help to improve such generic

reservoirs. IP uses an information theoretic approach for

information maximization at an individual neuron level in a

self-organized manner. The IP performance significantly

depends on the type of transfer function, degree of sparsity

required and the use of different probability distributions.

S. Dasgupta (&) � F. Wörgötter � P. Manoonpong

Bernstein Center for Computational Neuroscience (BCCN),

Department of Computational Neuroscience, University of

Göttingen, Friedrich-hund Platz 1, 37077 Göttingen, Germany

e-mail: s.dasgupta@physik3.gwdg.de

F. Wörgötter

e-mail: worgott@physik3.gwdg.de

P. Manoonpong

e-mail: poramate@physik3.gwdg.de

123

Evolving Systems

DOI 10.1007/s12530-013-9080-y

Author's personal copy



However the conventional IP method is still outperformed

by specific network connectivities like permutation matri-

ces, in terms of the memory capacity performance (Boe-

decker et al. 2009).

Here we overcome this, by first utilizing a new IP

method (Li 2011) based on a Weibull distribution for

information maximization. This is then combined with an

adaptation rule for the individual neuron leak-rate based on

the local information storage measure (Lizier et al. 2011,

2012). Transfer entropy is another measure for such an

adaptation rule. However conventionally this is more dif-

ficult to compute, and as it also maximizes input to output

information transfer, it is difficult to combine with an IP

rule. We achieve such a combination in a self-organized

way to guide the individual neurons for both, maximizing

their information content and their local memory based on

the incoming input signal. Subsequently through two

standard benchmark tasks and the robot maze navigation

tasks, we show that our adapted network has better per-

formance and memory capacity as compared to static and

only IP adapted reservoirs. All the tested scenarios involve

a high degree of non-linearity and requirement of adaptable

temporal memory. Specifically in robotics and engineering

control tasks with nonlinear dynamics and variational

inputs (in the time domain), our adaptation technique can

show significant performance.

This article is organized as follows. Section 2 describes

the self-adaptive reservoir framework together with the

network dynamics and the two adaptation rules, namely

intrinsic plasticity and the local information storage based

leak adaptation. Section 3 presents the experimental setup

and analysis. Section 4 presents the experimental results

and illustrates the performance of our network for standard

benchmark tests (NARMA-301 and delayed 3-bit parity)

and for the maze navigation task for both simulation and

real robot scenarios. Section 5 discusses the presented

framework in general along with biological relevance of

our network in terms of timing mechanisms in the brain

and memory guided behaviors. This is followed by the

conclusion in Sect. 6.

2 Self-adaptive reservoir framework

In this section we present the description of the internal

reservoir network dynamics and introduce (i) neuron local

memory adaptation based on active information storage

measure and (ii) the self-organized adaptation of reservoir

neurons inspired by intrinsic plasticity. These are carried

out as unsupervised rules as part of the pre-training phase

of the reservoir network. Subsequently, we combine both

mechanisms for a comprehensive adaptive framework.

2.1 Network description

The recurrent neural network (RNN) model based on the

reservoir computing framework is depicted in Fig. 1. To a

certain extend the model could be considered as an abstract

representation of the mammalian neo-cortex. The basic

framework can be divided into three layers: input, hidden

(or internal) and output layers. The internal layer has a large

recurrent neural network that is driven by temporal signals.

These driving signals are provided by the input layer. Due to

the dynamic reservoir, the network exhibits a wide repertoire

of nonlinear activity. This is then combined into desired

output signals at the output layer, using a suitable supervised

training of the reservoir neuron to output connectivity. The

firing activity of the dynamic reservoir at discrete time t is

described by the internal state activation vector xðtÞ: Each

neuron is connected to itself or other neurons via weighted

synaptic connections. Specifically Win are the K 9 N

connections from the K input neurons to the N reservoir

neurons, Wout are the N 9 L connections from the reservoir

neurons to the L output neurons and Wsys represents the

N 9 N dynamic reservoir recurrent connections.

The recurrent neural activity within the dynamic reser-

voir varies as a function of it’s previous activity and the

current driving input signal. As such, the discrete time state

dynamics of reservoir neurons is given as:

xðt þ 1Þ ¼ ðI� KÞhðtÞ þ KðWsyshðtÞÞ þWinvðtÞ; ð1Þ

yðtÞ ¼WoutxðtÞ; ð2Þ

Fig. 1 The Reservoir network architecture, showing the flow of

information from input to reservoir to output units. Typically only the

output connections Wout are trained. The input connections Win and

internal connections Wsys are set randomly. Feedback connections

Wback from the output to the reservoir neurons if provided, are

typically also set randomly. The highlighted section shows a zoomed

in view of a single reservoir neuron (only a subset of the reservoir

neurons depicted for the purpose of illustration)

1 NARMA-30 is the 30th order non-linear auto-regressive moving

average.
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ki ¼
1

Tc

� 1

1þ qi

�
; ð3Þ

where x(t) = (x1(t), x2(t),…, xN(t))T is the N dimensional

vector of dynamic reservoir state activation, v(t) =

(v1(t), v2(t),…, vK(t))T is the K dimensional time

dependent input that drives this recurrent network and

y(t) = (y1(t), y2(t),…, yL(t))T is the L dimensional vector of

output neurons. Each reservoir neuron has its own leak-

decay rate ki where K ¼ ðk1; k2; . . .; kNÞT is the collection

of these individual leak decay rates. These leak values are

inversely proportional to a leak control parameter, qi 2
f0; 1; 2; . . .; 9g and modulated by a global time constant

Tc [ 0. Most models use an uniform leak-rate or manually

adjust this to a fixed value. However here they are

determined by the local active information storage based

adaptation rule (Sect. 2.3). The firing rate of each reservoir

neuron is given by the vector h ¼ ðh1; h2; . . .; hNÞT ; where

hiðtÞ ¼ tanhðaixiðtÞ þ biÞ: ð4Þ

Here bi acts as the individual neuron bias value, while ai

governs the slope of the firing rate curve. We adapt these

parameters according to a stochastic learning rule based on

a generalized intrinsic plasticity mechanism, presented in

Sect. 2.2.

The output weights Wout (Eq. 2) can be computed as the

linear regression weights of the teacher outputs d(t) on the

reservoir states x(t). The basic objective of such supervised

training is to find a set of output weights such that the sum-

med squared error between the desired output and the actual

network output y(t) is minimized by changing the weights

incrementally in the direction of the error gradient. One way

to do this is by calculating the output weights Wout using the

collection of the desired output states D, and the pseudo-

inverse of the matrix S collecting the states of the reservoir

over a number of time steps as Wout = S?D (off-line train-

ing). We use an alternative approach (online training) with

no internal reservoir states being collected. Using the

recursive least squared algorithm (RLS) (Jaeger 2003), we

adapt the output weights at each time step. While the training

inputs v(t) are being fed into the dynamic reservoir. We

implement the RLS algorithm using a fixed forgetting factor

(kRLS \ 1). However as demonstrated in (Paleologu et al.

2008), it is possible to use an adaptive forgetting factor with

an additional error change detection module.

RLS algorithm for self-adaptive reservoir training:

Initialize: Wout = 0, exponential forgetting factor (kRLS)

is set to a value close to 1 and the auto-correlation matrix q
is initialized as q(0) = I/d, where I is unit matrix and d is a

small constant.

Repeat: At time step t

Step 1: For each input signal v(t), the reservoir state x(t) and

network output y(t) are calculated using Eqs. (1) and (2).

Step 2: Training error e(t) calculated as: eðtÞ  
dðtÞ �Woutðt � 1ÞxðtÞ:

Step 3: Gain vector K(t) is updated as:

KðtÞ  qðt�1ÞxðtÞ
kRLSþxT ðtÞqðt�1ÞxðtÞ :

Step 4: Update the auto-correlation matrix qðtÞ:
qðtÞ  1

kRLS

h
qðt � 1Þ � KðtÞxTðtÞqðt � 1Þ

i
:

Step 5: Update the instantaneous output weights Wout(t):

WoutðtÞ  Woutðt � 1Þ þ KðtÞeðtÞ:
Step 6: t t þ 1: Until: Maximum number of time

steps is reached

In order to further eleborate the working of the online

RLS learning, we take the example of a Sine wave trans-

formation function inspired from (Jaeger 2003). Starting

with a moderate network size of N = 50 reservoir neurons,

the inner network connections (Wsys) were scaled to a

spectral radius of 0.95 and the RLS learning rate was fixed

at kRLS = 0.998. For the auto-correlation matrix initiali-

zation, we set d = 10-5. All other network parameters

were fixed equal to the ones used by the remaining

experiments (Sect. 3.1). The input to the network is a

sinosoidal signal of the form vðtÞ ¼ sinðp
2
þ 5pÞ (see green

line Fig. 2a). Post training the network learns the output

weights from the inner reservoir neurons to a single output

neuron, such that it can produce a transformed sinosoidal

signal of the form dðtÞ ¼ 1
2

sin9ðp
2
Þ (see blue line in Fig. 2a).

In order to make the system robust to perturbations, white

noise with zero mean and standard deviation 0.001 was

added to all the reservoir neurons. This setup was run for a

total of 3000 time steps with the first 50 time steps used as

washout period, with the RLS learning switched off. After

this, the RLS learning was switched on for the next 500

time steps. The network was then allowed to generate the

desired output signal with the learnt output weights Wout:

The task is easily learned by the reservoir in the first 500

time steps as observed in Fig. 2a. Here the first 500 time

steps were used for teacher forcing with RLS output weight

learning. After this period, learning was stopped and the

learned weights were used to generate the desired output

signal. We randomly select four reservoir neurons in order

to display the convergence of the learned output weights.

From Fig. 2b it is observed that after the first 500 time

steps the output weights converge resulting in the network

generating the desired transformation along with the

incoming input signal, without further teacher forcing.

2.2 Generic intrinsic plasticity

Homeostatic regulation by way of intrinsic plasticity (IP) is

viewed as a mechanism for the biological neuron to modify

its firing activity to match the input stimulus distribution

(Turrigiano et al. 1994; Desai et al. 1999). In (Triesch
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2007) a model of intrinsic plasticity based on changes to

the neuronal non-linear activation function was introduced.

A gradient rule for direct minimization of the Kullback–

Leibler divergence between the neuronal current firing-rate

distribution and maximum entropy (fixed mean) exponen-

tial output distribution was presented. Subsequently in

(Schrauwen et al. 2008) an IP rule for the hyperbolic tan-

gent transfer function with a Gaussian output distribution

(fixed variance maximum entropy distribution) was

derived. During testing the adapted reservoir dynamics, it

was observed that for tasks requiring linear responses (e.g

NARMA) the Gaussian distribution performs best. How-

ever on non-linear tasks, the exponential distribution gave a

better performance. In this work, with the aim to obtain

sparser output codes with increased signal to noise ratio for

a stable temporal memory task, we implement the learning

rule for IP using a Weibull output distribution as the target

distribution.

The Weibull distribution (Eq. 7) is a two parameter

continuous distribution where its shape parameter (a) can

be tweaked to generate a wide family of other popularly

used probability distributions. As such with appropriate

parameter choice, it can account for various shapes of the

neuron transfer function (Eq. 4). With the aim for a high

kurtosis number (sparser output codes) and generalization

to different neuron activation functions, we choose the
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Fig. 2 a Graph of the input

signal sinðp
2
þ 5pÞ (green)

plotted against the desired target

signal 1
2

sin9ðp
2
Þ (blue) and the

actual learned output (red) from

the reservoir network. b The

RLS algorithm learnt weight

convergence of four randomly

selected reservoir neurons
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shape parameter a = 3.5. This model was very recently

introduced in (Li 2011). However, the application of this

rule in the reservoir computing framework and its effect on

the network performance for standard benchmark tasks had

not been studied so far. Furthermore, in contrast to the

original model, we extend this for the tan-hyperbolic (tanh)

neuronal nonlinearity.

The probability distribution of the two-parameter Wei-

bull random variable h is given as follows:

fweibðh; b; aÞ ¼
a
b

h
b

� �a�1

exp� h
b

� �a
if h� 0

0 if h\0

(
ð5Þ

The parameters a[ 0 and b[ 0 control the shape and

scale of the distribution respectively. Between a = 1 and

a = 2, the Weibull distribution interpolates between the

exponential distribution and the Rayleigh distribution.

Specifically for a = 5, we obtain an almost normal

distribution. Due to this generalization capability it serves

best to model the actual firing rate distribution and also

account for different types of neuron non-linearities. The

neuron firing rate parameters a and b of Eq. (4) are

calculated by minimizing the Kullback–Leibler divergence

between the real output distribution fh and the desired

distribution fweib with a fixed mean firing rate b = 0.3.

Here the Kullback–Leibler divergence is given by:

DKLðfh; fweibÞ ¼
Z

fhðhÞlog
fhðhÞ

fweibðhÞ

� �
dh

¼ �HðhÞ þ 1

ba EðhaÞ � ða� 1ÞEðlogðhÞÞ

� log
a
ba

� �
ð6Þ

where, fhðhÞ ¼ fxðxÞ= oh
ox : This is for a single neuron with

input x and output h. HðhÞ ¼
R

fhðhÞlogfhðhÞdh is the

entropy and E represents the expectation values.

Differentiating DKL with respect to a and b (see

‘‘Appendix’’ for details) we get the resulting online sto-

chastic gradient descent rule for calculating a and b with

the learning rate g at each time step as:

Db ¼ �g 2hþ h�1ð1� h2Þ a
ba ha � aþ 1

� �� �
: ð7Þ

Da ¼ g
a
þ xDb ð8Þ

In general this type of intrinsic plasticity tries to

optimize the neuronal information content with respect to

the incoming input signal. By contrast, the neural local

memory adaptation rule (Sect. 2.3) tries to modulate the

neuronal leakage. This is based on a quantification of the

extent of influence that the past activity of a neuron has on

it’s activity in the next time step (immediate future).

Therefore we combine IP learning with the neuron memory

adaptation rule in series, such that the leakage adaptation is

carried out after the intrinsic adaptation of the neuron non-

linearity. This combination leads to a single self-adaptive

framework that controls the local memory of each neuron

based on the incoming input to the network, while

preventing runway dynamics (homeostasis).

2.3 Neuron memory adaptation: information storage

In case of neurons with a certain degree of leakage (applied

after the non-linearity) as introduced first in (Jaeger et al.

2007) for the leaky echo-state networks variant of reser-

voirs, the leakage rate k (see Fig. 1) determines how much

a single neuron depends on the actual net input it receives,

as compared to the influence of its own previous activity.

Since k varies between 0 and 1, 1 - k can be viewed as a

local neuron memory term. The lower the value of k, the

stronger the influence of the previous level of activation as

compared to the actual current input to the neuron. Hence if

k = 1, the neuron’s previous activation has no effect on its

present behavior or in other words the neuron has zero

internal memory.

In order to account for an adjustable neuronal leak rate

as a model of the leak in cellular membranes that works in

conjunction with the IP rule, we use the local active

information storage measure at each internal neuronal

state. Active information storage (see Fig. 3a) introduced

by (Lizier et al. 2012) refers to the amount of information

in the previous state of the neuron that is relevant in pre-

dicting its immediate future state. It measures the amount

of information stored in the current state of the neuron, that

provides either positive or negative information towards its

next state. Specifically, the instantaneous information

storage for a variable x is the local (or un-averaged) mutual

information between its semi-infinite past xt
(k) = {xt-

k?1,…, xt-1, xt} and its next state xt?1 at the time step t ? 1

calculated for finite-k estimations. Hence, the local infor-

mation storage is defined for every spatio-temporal point

within the network (dynamic reservoir). The local unav-

eraged information storage can take both positive as well as

negative values, while the active (average) information

storage AxðkÞ ¼ haxði; t; kÞit is always positive and boun-

ded by the average information capacity of a single neuron

state. Interestingly another information theoretic quantity,

namely excess entropy, also provides a measure of the

stored information. However it estimates the stored infor-

mation which will be used at some arbitrary point in the

future and not necessarily be the next time step t ? 1

(Lizier et al. 2011). It is due to this reason the local active

information storage serves as a more suitable measure of

the neuron local memory.

The local information storage for an internal neuron

state xi is given by:
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axði; t þ 1Þ ¼ lim
k!1

log2

 
PðxðkÞi;t ; xi;tþ1Þ

PðxðkÞi;t ÞPðxi;tþ1Þ

!
; ð9Þ

where ax(i, t ? 1, k) represents finite-k estimates and

Ax ¼ limk!1 log2 AxðkÞ: k = 1 is the natural starting

choice for calculations of the estimates. However with

increasing values of k ? ?, the estimates tend towards the

actual active information storage value, with a saturation

point reached for a certain finite k-value. Beyond this point

with an increase in k there is no significant change in the

finite-estimate of the information storage quantity (see

Fig. 3b, c). Using epochs(/) with finite history length

k = 8, the active information storage measure at each

neuron adapts the leak control parameter ai as follows :

qi ¼
qi þ 1 if Axði;/Þ � Axði;/� 1Þ[ �
qi � 1 if Axði;/Þ � Axði;/� 1Þ\�;

�
ð10Þ

where � ¼ 1
4

log2 N and 0 \ ai \ 9.

After each epoch, qi and ki (Eq. 3) are adjusted and

these values are used for the subsequent epoch. Once all

training samples are exhausted, the pre-training of the

reservoir is completed and ki is fixed. The information

storage measure was implemented using the Java based

information dynamics toolkit (Lizier 2012). The toolkit

was used as a wrapper class with Matlab.

Note that it can be observed from Eq. (1) that the res-

ervoir time-scale is controlled by the leak(K) matrix. Thus,

the adaptation of the individual leak-rates can be observed

as the tuning of neuronal time-constants. Since this is

governed by the change in information storage of each

neuron based on the incoming input, the reservoir speeds

up or slows down its dynamics depending on the time

scales of input signal.

3 Experimental setup and analysis

The performance of our self-adaptive reservoir network on

delay temporal memory tasks is evaluated first by testing it

on two benchmark tests, namely the NARMA-30 time

series modeling task, and a delayed 3-bit parity task. These

have been used as standard for comparison of memory

performance by the reservoir computing community. By

taking the inherent non-linearity and the requirements for a

extended temporal memory into account, both of these are

complex signal processing tasks. In the second part of our

experiments we use a classic delay temporal memory

scenario of robot navigation through a T-shaped maze. This

is evaluated for a simple simulated wheeled robot as well

as a complex physical walking machine AMOS II. By

generalizing between both small and long mazes, this task

clearly demonstrates the potential application of our net-

work for solving real robotic tasks with variable delay

period between memory storage and retrieval.

3.1 Experimental setup

In all experiments here, the internal reservoir weights Wsys

were drawn from an uniform distribution over [-1, 1] and

were subsequently scaled to a spectral radius of 1.2 (note

that, intrinsic plasticity allows a spectral radius greater than

unity and hence the reservoir network contains a wide

spread distribution of neural signals). Input weights and

output feedback weights (if provided) can be randomly

generated in general. Here they were drawn from an uni-

form distribution over [-0.5, 0.5]. The firing rate param-

eters were initialized as a = 1 and b = 0. The learning

rate for the stochastic gradient descent algorithm was

fixed at g = 0.0008. Weibull IP and individual neuron leak
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Fig. 3 Pictorial representation of active information storage (AIS)

calculated for a single neuron state x and its immediate future state x0

(solid circle present and next time step states of the neuron, dotted
circle previous states of the same neuron). b Active information

storage convergence: plot of estimated AIS versus the history length

k. c Plot of the change in local active information storage values

(unaveraged) for 100 neurons with baseline history length k = 1

versus k = 4. Here, a concentration of points in the upper left corner
of the graph, clearly depicts higher local AIS values for increasing

k value, as compared to the baseline estimate. Typically some neurons

capture much higher information storage values as compared to

others, due to their difference in activation (colormap represents the

different neurons (1–100) (color figure online)
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adaptation were carried out in 10 epochs of 1000 time

steps, in order to determine the optimal parameters ai, bi

and ki for each neuron. Performance evaluation was done

after the neuron leak and transfer function parameters had

been fixed. For all the standard benchmark tests the internal

reservoir network was constructed using N = 200 leaky

integrator neurons initialized with a 10 % sparse

connectivity.

3.1.1 Dynamic system modeling with 30th order NARMA

The dynamics of the nth order non-linear auto-regressive

moving average is given by:

zðt þ 1Þ ¼ 0:2zðtÞ þ 0:004zðtÞ
Xn�1

i¼0

zðt � iÞ

þ 1:5vðt � ðn� 1ÞÞvðtÞ þ 0:001 ð11Þ

Here n = 30 for the 30th order modeling scenario and

z(t) is the output of the system at time ‘t’. v(t) acts as the

input to the system at time ‘t’, and is uniformly drawn from

the interval [0,0.5]. The task is to output z(t) based on v(t).

In general this task is quite complex considering that the

current system output depends on both the current time step

input as well as its own previous n - 1 time steps history.

Consequently, we use feedback connections (Wback) from

the output neurons to the internal neurons with Eqs. (1) and

(2) modified to:

xðt þ 1Þ ¼ ðI� KÞhðtÞ þ KðWsyshðtÞÞ þWinvðtÞ
þWbackyðtÞ ð12Þ

yðt þ 1Þ ¼Wout½xðtÞ; yðtÞ� ð13Þ

The main goal of the NARMA task is to evaluate the

ability of the reservoir to model a highly non-linear system

where the system state depends on the incoming input as

well as its own history. Due to this inherent dependence on

its own previous history this task requires extended

temporal memory with increasing complexity for higher

orders of the system. The training, validation and testing

were carried out using 1,000, 2,000 and 3,000 time steps

respectively. Five fold cross-validation was used with the

training set. Here the first 50 steps were used to warm up

the reservoir and were not considered for the training error

measure. The network setup consisted of a single input

neuron, feeding the input v(t) to the reservoir network and

just one output neuron. We evaluated the network

performance in this task using the normalized root mean

squared error between the desired signal d(t) and the actual

network output signal y(t):

NRMSE ¼
 
hðdðtÞ � yðtÞÞ2i
hðdðtÞ � hyðtÞiÞ2i

!1
2

ð14Þ

3.1.2 Delayed n-bit parity task

The delayed n-bit parity task functions over input

sequences t time steps long, and determines for n bits, if

sþ n! s time steps in the past are active. Here s repre-

sents the delay period. The input consists of a temporal

signal v(t) drawn uniformly from the interval [-0.5, 0.5].

Using n = 3 bits, the desired output signal is calculated as

the PARITY check ðvðt � sÞ � vðt � s� 1Þ � vðt � s� 2Þ
for increasing time delays of 0 B s B 400. Since the parity

function (XOR) is not linearly separable, this task is quite

complex and requires the ability to recall long spans of

memory. The network setup consisted of a single input

neuron, the internal reservoir network with 200 neurons

and 400 output units. We evaluated the memory capacity of

the network as the amount of variance of the delayed input

signal recoverable from the optimally trained output units

summed over all delays. This measure was first introduced

by (Jaeger 2001). For a given input signal delayed by k

time steps, the net memory capacity is given by:

MC ¼
X

k

MCk ¼
X

k

cov2ðyðt � kÞ; dðtÞÞ
varðyðtÞÞvarðdðtÞÞ ð15Þ

where cov and var denote covariance and variance

operations, and as before y(t) and d(t) represent the desired

and actual output signals.

3.1.3 Robot T-maze navigation

In order to demonstrate the temporal memory capacity of

our system, we employ a variable delay temporal memory

task of navigation through a T-shaped maze. The experi-

ments are carried out first in simulation using a simple

wheeled robot NIMM4 (Fig. 4) and then finally with a

more complex physical walking robot AMOS-II (Fig. 5).

In case of the simulation task a reservoir size of N = 200

neurons was used, while the reservoir size for the real robot

experiment was considerably larger with N = 500 neurons.

This was fixed, keeping in mind the extended delay

memory required for the T-maze in the real robot experi-

ments. However, in both cases the reservoir has 10 %

sparse connectivity. The simulated robotic task was per-

formed using 6 input neurons (number of sensors) and 2

output neurons (number of actuators). In case of the real

robot experiment, we use 4 input neurons and 2 output

neurons with the reservoir network (see Fig. 7).

The primary objective of this task is to let the robots

move from the starting position until the end of the maze

while making the correct turn at a recall zone (see Figs. 6a,

b, 7c). While walking along the corridor, the robot receives

a cue signal (a bright light activation in case of AMOS-II or

the presence of a spherical object in case of simulation)
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either to their left or right side. This provides information

to the robots regarding the required turning behavior at the

T-junction. On reaching the end of the corridor the robots

should make the correct turn depending on this previously

applied cue signal.,

In order to demonstrate the generalization capability of

the system to longer time delays, we divided the task into

two mazes (see Fig. 6a) of different lengths. Maze B

requires a longer temporal memory (larger delay between

cue and recall) as compared to maze A. Furthermore, in

case of the simulated wheeled robot, we had a more con-

trolled environment with a much smaller delay timescale

(seconds) while in the hexapod robot, the actual maze is

considerably big with larger delay timescale (minutes).

Here the robot has to learn both the reactive behavioral task

of turning at the T-junction as well as remembering the cue

signal shown much before, to negotiate the correct turn. As

such conventional methods, like landmarks to identify the

T-junction, are not needed.

Complex physical walking robot AMOS II: AMOS II

(successor to AMOS robot (Steingrube et al. 2010)) is a

biologically inspired hardware platform (Fig. 5) having six

identical legs similar to an insect. Each leg has three joints.

The morphology of these multi-jointed legs is modeled on

the basis of a cockroach leg but with the tarsus segments

ignored. The body of AMOS II consists of two segments: a

front segment where two forelegs are installed and a central

body segment where the two middle and the two hind legs

are attached. They are connected by one active backbone

joint inspired by the invertebrate morphology of the

American cockroach’s trunk. This backbone joint is for up-

and downward bending, which allows it to climb over

obstacles. All leg joints including the backbone joint are

driven by digital servomotors.

The size of AMOS II is 30 cm wide, 40 cm long, 22 cm

high. The weight of the fully equipped robot (including 19

servomotors, all electronic components, sensors, and a

mobile processor) is approximately 4.5 kg. AMOS II has a

Fig. 4 Model of the simulated wheeled robot NIMM4 showing the

sensors (LIR, RIR, LIRR, RIRR) and actuators (U0,U1). The red ball
in front of the robot represents its goal

US1

US2

LDR
LDR

1

LDR2

PDA

Backbone joint

(a) (b)

Fig. 5 a Biologically inspired six-legged walking machine AMOS II.

b Leg structure of AMOS II inspired from a cockroach leg (showing

the three different leg joints) (color figure online)
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Fig. 6 a Screenshots of the robot successfully navigating through the

long maze B (left) and the short maze A (right). Yellow ball is cue to

turn right at the T junction, red ball marks delay time between cue

and the recall zone. b Performance on the large maze B simulation

task after 80 trials for static reservoir versus our self-adapted

reservoir. Our network outperforms by 10 %. c Performance of the

robot in the simulation task with the two mazes (maze A shorter than

maze B) measured in terms of the percentage of correct times the robot

took the proper trajectory (left/right turn at the T-junction) to reach the

end point. 5 % noise is considered on all sensors (color figure online)
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total of 17 sensors. For the maze-navigation experiments

we only make use of the two light dependent resistor

sensors (LDR1,2) on the left and right sides of the front

body part, and the front two ultrasonic sensors (US1,2).

These act as the sensory inputs to the reservoir network for

the T-maze navigation task. We use a Multi-Servo IO-

Board (MBoard) installed inside the body to digitize all

sensory input signals and to generate a pulse-width-mod-

ulated signal to control servomotor position. The MBoard

is connected to a personal computer (PC) via an RS232

interface. Electrical power supply is provided by batteries:

one 11.1 V lithium polymer 2,200 mAh for all servomo-

tors, two 7.4 V lithium polymer for the electronic board

(MBoard) and for all sensors. For more information of

AMOSII, please refer to (Ren et al. 2012; Manoonpong

et al. 2013b).

The experiment consisted of three parts. In the first part

dataset acquisition was done using human controlled nav-

igation of AMOS II through the maze and the sensor and

steering signal (see Fig. 7a, b) readings were recorded.

Twenty runs with different starting positions for both, left

and right turn cues were carried out. This was done for
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Right light sensor (LDR2) 

Left light sensor (LDR1) 

Front ultra-sonic sensor (US1)

Front ultra-sonic sensor (US2)

Fig. 7 a Plots of the sensor signals from AMOS II recorded during

the experiment, which act as the four inputs to the reservoir network.

The signals shown are from a single run where the cue signal (light

source) was applied to the left, while walking along the corridor

(LDR1 � LDR2). The two ultrasonic sensors become active at the

same time when AMOS-II reaches the T-junction (cue recall zone).

b Plots the trained reservoir network outputs (solid-line learned

behavior, dotted-line desired behavior). Here the left steering signal is

active (?1) while the right steering signal is inactive (-1) and the

robot makes a left turn (behavior learned at the same time step of the

activation of the US1 and US2 sensors indicating the recall zone.

c Pictorial representation of the T-shaped maze setup. While walking

along the long corridor, a cue in the form of a light signal is applied

either to the left or right side of AMOS II. The robot needs to recall

this cue at the recall junction and execute the corresponding turning

behavior. The temporal delay between the time of presentation of cue
and the end of the corridor (T-junction) is the total memory span. This

can vary with different delay times for small and long mazes. The

screenshots (right) from the experiment show the actual behavior of

the hexapod while walking along the corridor
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both, small and long time delays, between cue and recall

zone. This data was then used for the training of the res-

ervoir network. Finally online testing was carried out with

the trained steering signals being fed into the AMOS II

controller.

Simulated wheeled robot NIMM4: The simulation robot

NIMM4 consists of four infrared sensors (LIR, LIRR, RIR,

RIRR), a relative distance sensor (D), a relative angle of

deviation sensor (A) and four actuators to control the

desired turning and speed. The experiment consists of data-

set acquisition, training of our adapted RC and off-line

testing. During the first phase using the simulator, we

manually controlled the robot movement through the maze

using simple keyboard instructions and recorded the sensor

and actuator values. We recorded 80 examples in total with

different initial starting positions. 40 % of these were used

for training and 60 % for testing purposes. After the first

phase, the self-adapted RC was trained using imitation

learning on the collected data with the actuator values from

manual control as desired output. Finally we performed

off-line testing using the remaining set of recorded data.

Simulations were carried out using the C?? based LPZ-

Robot simulator.2

4 Results

In Table 1. we summarize the standard benchmark tests

results of our self-adaptive reservoir network in compari-

son to the performance obtained by a static RC and RC

with only Gaussian distribution based intrinsic plasticity

(Schrauwen et al. 2008). All the parameters for the com-

pared RC’s were set to their critical values, such that they

operated at their optimal regime of performance (Berts-

chinger and Natschläger 2004). Our network clearly out-

performs the other two networks, both in terms of lowest

normalized root mean squared error (0.362) for the 30th

order NARMA task, as well as an extended average

memory capacity of 47.173 for the delayed 3-bit parity

task. Non-normal networks (e.g. a simple delay line net-

work) have been shown to theoretically allow extensive

memory (Ganguli et al. 2008) which is arguably not pos-

sible for arbitrary recurrent networks. However our self-

adaptive RC network shows considerable increase in the

memory capacity (with 400 reservoir neurons), which was

previously shown to improve only in case of specifically

selected network connections (permutation matrices as

internal network weight configurations) (Boedecker et al.

2009).

We further test the delay memory capability of the self-

adapted reservoir with the robot maze navigation tasks. In

Fig. 6a we show screenshots of the simulated robot per-

forming the maze navigation task and successfully making

the correct turn at the T-junction for both long (left image)

and short (right image) mazes. The turn depends on the

prior input appearing while driving along the corridor. The

robot NIMM4 can have different speeds while moving

through the maze. In general the robot has a faster speed in

the corridor and a comparatively slower speed while

negotiating turns. Our network with the leak adaptation

method can easily deal with this situation and as such

successfully learns this task. It only uses the sensor data to

drive along the corridor and outputs the desired actuator

values to move along the correct trajectory while turning at

the T-junction. The off-line testing results in the form of

the percentage of correct turns from the total test set for

both mazes are shown in Fig. 6c. In case of the shorter

maze A (smaller delay between cue and recall) we achieve

average performance of 92.25 % (±2.88 standard devia-

tion). A good generalization capability for the longer maze

B is also observed with the average performance of

78.75 % (±3.11 standard deviation), both for right turn.

This is quite high as compared to previous results obtained

by (Antonelo et al. 2008) for a similar task with a static

Echo-state network. Furthermore in Fig. 6b one can see

that the adapted reservoir network clearly outperforms a

static RC for the same task by a margin [10 %. Here we

compare the two reservoirs based on the performance only

for the longer maze B, as this required a much larger delay

memory capacity. The overall performance can be further

enhanced if additional sensors were available to the robot,

owing to the availability of additional information and

more inputs to the reservoir network.

In comparison to the simulated task the maze navigation

scenario with the physical robot AMOS II is more complex

in terms of the much larger time scale of delay memory

required. In simulation the largest maze B required a

maximum of 50 time steps delay (time scale in seconds)

between the cue and the recall, while the experiments with

Table 1 Normalized root mean squared error (NRMSE) and average

memory capacity performance for the NARMA-30 and 3-bit parity

tasks, comparing the basic RC (ESN) model, the RC model with a

intrinsic plasticity method using Gaussian probability density and our

self-adapted RC (SRC) network using Weibull probability density

(optimal values in italics)

Dataset Measure RC (ESN) IP (GAUSS) SRC

NARMA-30 NRMSE 0.484 0.453 0.362

SD 0.043 0.067 0.037

3-bit Parity MC 30.362 32.271 47.173

SD 1.793 1.282 1.831

2 It is based on the Open Dynamics Engine (ODE). More details of

the LPZRobot simulator can be found at http://robot.informatik.

uni-leipzig.de/software/.
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AMOS II had a three times larger delay of 1,500 time steps

(time scale 9 100 ms) between cue and recall (Fig. 7a).

Furthermore while the simulated task was performed in a

controlled environment with the network tested off-line,

the real robot experiments are carried out in an online

setup. Note that AMOSII locomotion is driven by modular

neural control (see Steingrube et al. 2010 for more details).

Here the reservoir outputs are used to steer the robot by

using the modular neural controller. In Fig. 7a we plot the

sensor signals, that act as the input to the reservoir. The

onset of LDR1 triggers the left turn cue, while the simul-

taneous onset of both the front ultrasonic sensors US1,2

signals at the recall zone. A high dimensional convolution

of these signals reverberate as neural traces inside the

reservoir network (a subset of these diverse set of signals is

plotted in Fig. 8b). The local active information storage

(Fig. 8a) for individual neurons shows that the two events

of cue and recall are recognized as high information con-

tent regions (500 time step and 1,500 time step) while the

neurons have a low local AIS value during the remaining

time steps. This leads to the modulation of neuronal leak,

with most neurons having a low leak (high local memory)

at the time of left turn cue and then again at the end of the

corridor (Fig. 7c) when recall signals get triggered. During

the remaining time steps, the reservoir neurons have a

higher leak-rate (low local memory). As the individual

neuron leak-rates act as their local time scales and col-

lectively control the timescale of the reservoir. This

mechanism leads to a slowing down of the reservoir

dynamics at high information content regions (cue and

recall) and speeding up during the rest of the time. Using

online learning, the reservoir network successfully learns

the correct turning behavior. In this case due to the pre-

viously applied left turn cue, only the left steering signal is

active while the right steering signal remains inactive and

the robot makes a left turn. It is important that the robot

starts turning at the correct time in order to prevent an early

turn or crashing into the wall at the end of the corridor.

This is clearly achieved as seen from the near perfect

coincidence between the desired and actual outputs

(Fig. 7b)3.

The reservoir outputs are post-processed to get rid of

signal noise before being feed into the modular neural

controller of the robot. Averaging over 20 runs for both left

and right turn scenarios, we achieved a performance of

80.23 %, for which the robot was able to successfully make

the correct turn. In all cases the output signals were per-

fectly reconstructed. This performance was significantly

higher as compared to a static reservoir network, which

succeeded in making the correct turn on 62.54 % of cases.

Without leak adaptation, in case of the static reservoir

AMOS II showed a wall following behavior with turning

being triggered much too early or the output signals

reconstructed without threshold crossing (\1).

A suitable measure for the richness of the reservoir is

believed to be the Average state entropy (ASE), with the

instantaneous values showing how diverse the reservoir

signals are in time. Moreover as mentioned in (Ozturk

et al. 2007). ASE provides a measure for the volume of the

reservoir manifold spanned by diverse signal trajectories.

Using an approximation of the Renyi’s quadratic entropy,

the instantaneous state entropy for the reservoir states

x(t) = x1t, x2t, …, xNt can be calculated using a Gaussian

kernel (r) as follows:

HðxÞ ¼ �log

"
1

N2

X
j

X
i

rðxj � xiÞ
 !#

ð16Þ

Here we calculated the instantaneous state entropy

values using a Gaussian kernel with radius 0.3. In Fig. 8c

we clearly observe that the self-adaptive reservoir network

achieves considerably higher average state entropy as

compared to the static reservoir. Furthermore, as the

spectral radius of the reservoir weight matrix increases

there is a gradual increase in ASE values in both cases.

However our network shows high ASE values for a spectral

radius greater than unity, which is in sharp contrast to

previous observations with static reservoirs like Echo state

networks. This can be attributed to the intrinsic plasticity

mechanism in the network, which allows for increased

spectral spread of the network connectivity, with the higher

ASE values indicating a much richer repertoire of activity

within this network. In general keeping task independent

performance in mind, it is desirable to have a large

reservoir manifold volume. Here our adapted network

clearly outperforms the static case.

5 Discussion and biological relevance

In this work we have presented and evaluated a self-

adaptation mechanism for the reservoir computing network

based on the information dynamics of the internal recurrent

neural layer. This mechanism successfully combines an

intrinsic plasticity rule using a generic probability distri-

bution (Weibull) with a neuron leak adjustment rule based

on local information storage measure. The neuron leak rate

not only governs the degree of influence of local memory

but also acts as the neuronal activity time-constant. Due to

feedback connections in such recurrent networks, chaotic

or runaway activity had been previously observed in the

works of (Sompolinsky et al. 1988) and (Sussillo and

3 The real robot experiment showing the cue signal activation and the

corresponding turning behavior is demonstrated in a video clip at

http://manoonpong.com/STM/AMOSII_stm.wmv
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Abbott 2009). The intrinsic plasticity mechanism ensures

information maximization at each neuron output while

homeostatically regulating the network activity and pre-

vents such runaway dynamics. In general, our mechanism

allows minimal parameter tuning, with two of the impor-

tant network parameters leak-rate, shape and scaling

properties of neurons transfer function adjusted on the fly.

In contrast most static reservoirs pre fix these parameter

values or adapt them based on output error gradients that

do not take into account difference in time scales of the

input signal.

The ability to precisely track and tell time is critical for

the learning of ordered motor behaviors as well as the

underlying cognitive process, in all living creatures.

However, the mechanism by which the brain tells time is

still not clearly understood. Although it is still debated

whether dedicated or intrinsic mechanisms underlie the

timing process, some experimental and theoretical studies

have validated the concept of neural circuits being inher-

ently capable of sensing time across time scales (Tetzlaff

et al. 2012). Large recurrent neural networks like these

reservoir systems could be considered as an abstraction of

the mammalian cortex. Accordingly (Buonomano and Laje

2010) suggested the concept of population clocks, where

time is encoded in the time varying patterns of activity of

neuronal populations, which emerge from the internal

dynamics of the recurrent network. It is important to note

that continuous input signals to these recurrent networks or

the brain, in general can contain many different time

scales. In order to account for varying time scales of input

patterns to such networks, classically they have been setup

in a hierarchical arrangement with different pre-determined

time scales for each layer of hierarchy (Jaeger 2007; Ya-

mashita and Tani 2008). However, monkey experiments

(Bernacchia et al. 2011) have shown that individual neu-

rons can have different time scales of reward memory

correlated with the actual behavior. As such it is highly

plausible that neurons in a single recurrent network can

adjust or tune there individual time constants to account for

a multi-time scale input in contrast to a hierarchical

arrangement with different fixed time scales. As observed

in Figs. 7a and 8a, high local active information storage

regions in the network correspond to significant events in

time. According to the learning rule from Eqs. (3) and (10)

the individual neuron leak rates (time constants) have been

adjusted according to the change of their AIS values with

respect to a predefined threshold. In other words we were

able to incorporate a self-adapting non-uniform leak rate in
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Fig. 8 a Plot of the local active information storage values for 300

reservoir neurons at different time steps (color coding corresponds to

the local active information storage values at different time steps).

b Reservoir activations for a randomly selected subset of the neurons.

c The plot of average state entropy for different spectral radius values

of the reservoir connectivity matrix. Significantly higher entropy

values observed for our adaptive network as compared to static

reservoirs. Optimal spectral radius for static reservoir is between 0.9

and 1.0, while for the adaptive reservoir, optimal state entropy is

reached at spectral radius of 1.2 (color figure online)
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the network that can account for varying time scales in the

input stream as well as encode timing of events. As such in

this work we not only present a mechanism to achieve a

self-adaptive reservoir that can achieve a high degree of

delayed memory capacity. From a biological perspective,

we show that time is not only encoded in the internal

recurrent dynamics but also single neurons may adjust their

time-constants in order to account for high relevance

events in the input data.

6 Conclusion

In this work we present a self-adaptive reservoir (RNN)

framework such that using an information theoretic

approach we have successfully adapted the local neuron

(dynamic reservoir) time constants via it’s leak rate, while

at the same time the network maintains homeostasis

through the generic intrinsic plasticity mechanism. The

evaluated performance on the two standard benchmark

tasks demonstrates that our adaptation mechanism clearly

outperforms static reservoirs. Furthermore we demonstrate

the application of our network to the control of autonomous

robotic agents through the maze navigation experiments.

Here our network is effective not only in reconstructing the

original trajectories but can also cope with the variable

temporal delay memory problem. It has been widely

accepted that timing of events and memory guided

behavior are intrinsically related. Specially for memory in

the shorter time-scale of seconds to minutes (working

memory Ungerleider et al. 1998), the system needs the

ability to recognize important events in time. We achieve

this in our network via the leak-adaption that allows the

neurons to speed up or slow down their dynamics based on

the incoming input, while at the same time encode highly

relevant events using the active information storage mea-

sure. Both the simulation and real robot experiments

demonstrate such memory guided behavior with the res-

ervoir adapted according to the incoming sensory signals.

As a future direction more memory intensive tasks like

simultaneous localization of multiple cue signals and

cascading different temporal delays will be tested. Due to

the universal computing power of recurrent neural net-

works, this type of adaptive reservoir can not only be used

for temporal memory tasks, but also prove useful in

generic signal processing requiring functional approxi-

mation of multi-time scale signals. Furthermore, we also

aim to integrate our network with reinforcement learning

techniques (Manoonpong et al. 2013a) requiring varying

time scales of reward related memory for effective

behavioral control of autonomous agents. Specifically on

partially observable markov decision process (POMDP)

problems which require a rich memory content for

effective solution, our self-adaptive network offers

potential applications.
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Appendix

The activation of each reservoir neuron with a tanh non-

linearity with slope(a) and shape(b) parameters can be

represented as h ¼ tanhðaxþ bÞ: The activations are time

dependent as shown in Eq. (4), however here we neglect

the time variable for mathematical convenience. The tanh

non-linearity can be represented in an exponential form as

follows:

h ¼ tanhðaxþ bÞ ¼ e2ðaxþbÞ � 1

e2ðaxþbÞ þ 1
ð17Þ

Differentiating this w.r.t x, a and b and representing in

terms of h we get the following set of base equations:

oh
ox
¼ að1� h2Þ;

oh
oa
¼ xð1� h2Þ;

oh
ob
¼ ð1� h2Þ

ð18Þ

The probability distribution of the two-parameter

Weibull random variable h is given as follows:

fweibðh; b; aÞ ¼
a
b

h
b

� �a�1

exp� h
b

� �a
if h� 0

0 if h\0

(
ð19Þ

Inorder to find a stochastic rule for the calculation of the

neuron transfer functin parameters a and b, we need to

minimize the Kullback–Leibler (KL) divergence between

the real output distribution fh and the desired distribution

fweib. The KL-divergence (DKL(fh, fweib)) is given by:

D ¼ DKLðfh; fweibÞ ¼
Z

fhðhÞlog
� fhðhÞ

fweibðhÞ
�

dh

¼
Z

fhðhÞlogfhðhÞdh� ða� 1Þ

�
Z

fhðhÞlogðhÞdh

þ 1

ba

Z
fhðhÞhadhþ C ð20Þ
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Using the relation fhðhÞ ¼ fxðxÞ
oh
ox

for a single neuron with

input x and output h and representing the integrals in terms

of the expectation(E) quantities, the above relation can be

simplified to (here C is a constant):

D ¼� E log
oh
ox

� �� �
þ E½logfxðxÞ� þ

1

ba EðhaÞ

� ða� 1ÞEðlogðhÞÞ þ C ð21Þ

Using the partial derivatives from Eq. (18) and

differentiating D w.r.t the parameter b yields:

oD

ob
¼ E 2hþ a

ba ha�1ð1� h2Þ � ða� 1Þh�1ð1� h2Þ
� �

¼ E 2hþ h�1ð1� h2Þ a
ba ha � aþ 1

� �� �
ð22Þ

Similarly differentiating D w.r.t the parameter a results

in:

oD

oa
¼ E 2hxþ xh�1ð1� h2Þ a

ba ha � aþ 1

� �
� 1

a

� �
ð23Þ

From the above equations we get the following on-line

learning rule with stochastic gradient descent with learning

rate g

Db ¼ �g
h
2hþ h�1ð1� h2Þ

� a
ba ha � aþ 1

�i
: ð24Þ

Da ¼ g
a
þ xDb ð25Þ

Note: This relationship between the neuron parameter

update rules (Da and Db) is generic and valid irrespective

of the neuron non-linearity or target probability

distribution.
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