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Abstract

Understanding and learning the semantics of complex manipulation actions

are intriguing and non-trivial issues for the development of autonomous robots.

In this paper, we present a novel method for an on-line, incremental learning

of the semantics of manipulation actions by observation. Recently, we had in-

troduced the Semantic Event Chains (SECs) as a new generic representation

for manipulations, which can be directly computed from a stream of images

and is based on the changes in the relationships between objects involved in

a manipulation. We here show that the SEC concept can be used to boot-

strap the learning of the semantics of manipulation actions without using any

prior knowledge about actions or objects. We create a new manipulation action

benchmark with 8 different manipulation tasks including in total 120 samples to

learn an archetypal SEC model for each manipulation action. We then evaluate

the learned SEC models with 20 long and complex chained manipulation se-

quences including in total 103 manipulation samples. Thereby we put the event

chains to a decisive test asking how powerful is action classification when using

this framework? We find that we reach up to 100% and 87% average precision

and recall values in the validation phase and 99% and 96% in the testing phase.

This support the notion that SECs are a useful tool for classifying manipulation

actions in a fully automatic way.
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1. Introduction1

One of the main problems in cognitive robotics is how to recognize and2

learn human demonstrations of new concepts, for example learning a relatively3

complex manipulation sequence like cutting a cucumber. Association-based or4

reinforcement learning methods are usually too slow to achieve this in an effi-5

cient way. They are therefore most often used in combination with supervised6

learning. Especially the Learning from Demonstration (LfD) paradigm seems7

promising for cognitive learning ([1, 2, 3, 4, 5]) because humans employ it very8

successfully. The problem that remains in all these approaches is how to rep-9

resent complex actions or chains of actions in a generic and generalizable way10

allowing inferring the essential “meaning” (semantics) of an action irrespective11

of its individual instantiation.12

In our earlier studies we introduced the “Semantic Event Chain” (SEC) as13

a possible descriptor for manipulation actions [6, 7]. The SEC framework ana-14

lyzes the sequence of changes of the spatial relations between the objects that15

are being manipulated by a human or a robot. Consequently, SECs are invariant16

to the particular objects used, the precise object poses observed, the actual tra-17

jectories followed, or the resulting interaction forces between objects. All these18

aspects are allowed to change and still the same SEC is observed and captures19

the “essence of the action” as demonstrated in several action classification tests20

performed by us [6, 7, 8, 9].21

In this paper, we address the problem of on-line, incremental learning of the22

semantics of manipulation actions observed from human demonstrations. We23

use the concept of SECs as the main processing tool to encode manipulations24

in a generic and compact way. Manipulations are continuous in the temporal25

domain but with event chains we discretize them by sampling only decisive key26

time points. Those time points represent topological changes between objects27

and the hand in the scene which are highly descriptive for a given manipula-28

tion. Our main intent here is to design a cognitive agent that can infer and29

learn frequently observed spatiotemporal changes embedded in SECs in an un-30

2



supervised manner whenever a new manipulation instance occurs. The learning31

phase is bootstrapped only with the semantic similarities between SECs, i.e. the32

encoded spatiotemporal patterns, without using any prior knowledge about ac-33

tions or objects. Since we use computer vision methods to derive event chains,34

our approach for incremental learning of semantics is highly grounded in the35

signal domain. To the best of our knowledge, this is the first attempt to apply36

reasoning at the semantic level, while being fully grounded at the signal level,37

to learn manipulations with an unsupervised method. Note, here – on purpose38

– we do not include any object- or other information to show the power of39

our methods to fully automatically and in an unsupervised way extract action40

and object information. Clearly, in praxis, it will often make sense to include41

whatever additional knowledge is available to further ease action understanding.42

The paper is organized as follows. We start with introducing the state43

of the art. We next provide a detailed description of each processing step;44

extraction of SEC representations and learning model-SECs for each observed45

manipulation. In the next section, we discuss experimental results from the46

proposed framework, which also includes validation and testing of the learned47

models. We finally conclude with a discussion.48

2. State of the Art49

Learning from Demonstration (LfD) has been successfully applied both at50

the control [1, 2, 10] as well as the symbolic level [3, 4, 5]. Although vari-51

ous types of actions can be encoded at the control level, e.g. trajectory-level,52

this is not general enough to imitate complicated actions under different cir-53

cumstances. On the other hand, at the symbolic level, sequences of predefined54

abstract action units are used to learn complex actions, but this might lead to55

problems for execution as many parameters are left out in a symbolic represen-56

tation. Although our approach with SECs is a symbolic-level representation,57

SECs can be enriched with additional decisive descriptors (e.g. trajectory, pose,58

etc.) and do not use any assumption or prior knowledge in the object or action59
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domain. Ideas to utilize relations to reach semantics of actions can be found as60

early as in 1975. For instance, [11] introduced the first approach about directed61

scene graphs in which each node identifies one object. Edges hold spatial in-62

formation (e.g., LEFT-OF, IN-FRONT-OF, etc.) between objects. Based on63

object movement (trajectory) information, events are defined to represent ac-64

tions. The main drawback of this approach is that the continuous perception65

of actions is ignored and is substituted instead by idealized hand-made image66

sequences. This approach, however, had not been pursued in the field any longer67

as only now powerful enough image processing methods became available from68

which object and action information can be extracted.69

Still there are only a few approaches attempting to reach the semantics of70

manipulation actions in conjunction with the manipulated objects [12, 13, 14,71

15, 16]. The work in [12] is one of the first approaches in robotics that uses72

the configuration transition between objects to generate a high-level description73

of an assembly task from observation. Configuration transitions occur when74

a face-contact relation between manipulated and stationary environmental ob-75

jects changes. The work presented in [13] represents an entire manipulation76

sequence by an activity graph which holds spatiotemporal object interactions.77

The difficulty is, however, that very complex and large activity graphs need78

to be decomposed for further processing. In the work of [14], segmented hand79

poses and velocities are used to classify manipulations. A histogram of gradients80

approach with a support vector machine classifier is separately used to catego-81

rize manipulated objects. Factorial conditional random fields are then used to82

compute the correlation between objects and manipulations. Visual semantic83

graphs (inspired from our scene graphs) were introduced in [15] to recognize84

action consequences based on changes in the topological structure of the manip-85

ulated object. In [16] activity trees were presented to recognize actions using86

a minimal action grammar. Recent works such as [17] modeled human activi-87

ties employing the human skeleton information as well as roles of manipulated88

objects. Although all those works to a certain extent improve the classification89

of manipulations and/or objects, none of them extracts key events of individ-90
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ual manipulations or learns a descriptive semantic model to represent different91

manipulation tasks.92

In this sense, to our best knowledge, our work is the first study to evaluate93

and learn the semantics of manipulations in an incremental and model free man-94

ner. The concept of semantic event chains has been successfully utilized and95

extended by others [18, 19, 20, 21, 22, 23] not only to represent manipulation96

actions but also to replicate them by robots. The work in [18] presented active97

learning of goal directed manipulation sequences, each was recognized using se-98

mantic similarities between event chains. Our scene graphs were represented99

with kernels in [19] to further apply different machine learning approaches. Ad-100

ditional trajectory information was used in [20] to reduce noisy events occur101

in SECs. Others [21, 22, 23] showed execution of various manipulations with102

different robots by using the key spatiotemporal points provided by SECs.103

3. Method104

In this method section we will present the core algorithmic components where105

are complex details will only be given in the Appendix. This should make106

reading easier, while still everything is present to implement this algorithm if107

desired.108

3.1. Data Acquisition109

In this work, we investigate eight different manipulation actions: Pushing,110

Hiding, Putting, Stirring, Cutting, Chopping, Taking, and Uncovering. Fig. 1 (a)111

shows a sample frame for each manipulation action. All movies used in this112

study can also be found at www.dpi.physik.uni-goettingen.de/~eaksoye/113

MANIAC_DATASET. The Pushing action shows how a hand can move objects114

around randomly. In the action of Hiding, some objects are made invisible by115

covering them with other objects. In the Putting action objects are taken from116

the supporting background and put on top of each other. The Stirring action117

represents a scenario in which a spoon is used to stir some liquid in a bucket. In118
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the Cutting action, a hand is cutting vegetables by moving a cutting tool back119

and forth. In the Chopping action, a cutting tool follows a straight trajectory120

to divide vegetables into parts. The Taking action represents a scenario where121

some objects are taken down and put on the supporting background. In the122

Uncovering action some objects are becoming visible after moving occluding123

objects away.124

We recorded 15 different versions for each of these manipulations by asking125

5 different individuals to demonstrate each manipulation 3 times with different126

objects in various scene contexts. Fig. 1 (b) depicts a sample frame from each127

Figure 1: Eight different real action scenarios: Pushing, Hiding, Putting, Stirring, Cutting,

Chopping, Taking, and Uncovering. (a) A sample original frame for each manipulation. (b)

A sample frame from each demonstration of the Cutting action performed by 5 different

individuals. (c) 30 different objects manipulated in all 120 manipulation demonstrations.
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individual demonstration of the Cutting action to give an impression of the dif-128

ferences in demonstrations. There are in total 30 different objects manipulated129

in all 120 demonstrations. All manipulated objects are shown in Fig. 1 (c).130

All manipulations were recorded with the Microsoft Kinect sensor which131

provides both color and depth image sequences. Colored objects are preferred132

to cope with the intrinsic limitations of the Kinect device. The central goal in133

these demonstrations is to learn a common archetypical SEC model for each134

manipulation including all possible variations in trajectory, pose, velocity, and135

object domains.136

3.2. Segmentation and Tracking137

The recorded image sequences are first pre-processed by a real-time image138

segmentation procedure to uniquely identify and track objects (including hands)139

in the scene. The segmentation algorithm is based on the color and depth in-140

formation fed from the Kinect device and uses phase-based optical flow [24] to141

track segments between consecutive frames. Data transmission between these142

different pre-processing sub-units is achieved with the modular system architec-143

ture described in [25]. Segmentation and tracking approaches are described in144

detail elsewhere [26, 27], therefore, details are omitted here.145

3.3. Extracting Semantic Event Chains (SECs)146

Each consistently segmented image is represented by a graph: nodes repre-147

sent segment centers and edges indicate whether two objects touch each other148

or not. By using the depth information we exclude the graph node for the back-149

ground segment, i.e. supporting surface, since it does not play any crucial role150

in the dynamics of the manipulation. By using an exact graph matching tech-151

nique, the framework discretizes the entire graph sequence into decisive main152

graphs. A new main graph is identified whenever a new node or edge is formed153

or an existing edge or node is deleted. Thus, each main graph represents a “key154

frame” in the manipulation sequence. All extracted main graphs form the core155

skeleton of the SEC, which is a matrix where rows are spatial relations (e. g.156
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touching) between object pairs and columns describe the scene configuration at157

the time point when a new main graph has occurred.158

Fig. 2 depicts the SEC representation with some sample key frames including159

original images, respective segments (colored regions), and corresponding main160

graphs for one of the Cutting action demonstrations. For instance, the first row161

represents the spatial relations between graph nodes 9 and 6 which are hand162

and knife, respectively. Note that, although the whole demonstration sample163

has approximately 1000 frames, it is now represented by a 3× 9 matrix.164

Possible spatial relations are Not touching (N), Touching (T), and Absence165

(A), where N means that there is no edge between two segments, i.e. graph166

nodes corresponding to two spatially separated objects, T represents objects167

that touch each other, and the absence of an object yields A. In the event168

chain representation, all pairs of objects need to be considered once, however,169

static rows which do not contain any change from N to T or vise versa are170

deleted as being irrelevant. For instance, the relation between the left and right171

Figure 2: SEC representation for a sample Cutting action where a hand is cutting a cucumber

with a knife. Each column corresponds to one key frame some of which are shown on the

top with original images, respective segments (colored regions), and main graphs. Rows are

spatial relations between object pairs, e. g. between the hand (9) and knife (6) in the first row.

Possible spatial relations are N , T , and A standing for Not touching, Touching, and Absence.
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hand is always N and never switches to T to trigger an event, therefore, the172

respective row is ignored in the event chain. In Appendix A we introduce a de-173

noising process to cope with spurious spatial (rows) and/or temporal (columns)174

information propagated from noisy segmentation and tracking.175

We note that there is no object recognition module included to identify176

graph nodes, i.e. segments, in the SEC framework. Event chains purely rely on177

spatial relational changes between segments in the temporal domain. The SEC178

extraction explained briefly in this section has been described in detail in [7].179

3.4. Learning of Model SECs180

The learning approach described next is an on-line unsupervised method to181

cluster observed SEC samples and to derive an archetypal SEC model for each182

cluster based on the semantic similarities between event chains. Each learned183

SEC model can then be used to describe a manipulation action.184

Fig. 3 shows an overview of the proposed framework. The learning phase185

is triggered when a new manipulation experiment is observed; for example, a186

Cutting manipulation sample is introduced as the first experiment in Fig. 3.187

The new observed sample is represented by an event chain to be compared with188

the already learned SEC models. If there is no model existing, as in the case189

for this very first manipulation observation, the currently observed SEC sample190

N is directly assumed as a new model M1. Once a new manipulation example191

is acquired, e.g. a Chopping sample as the second experiment in Fig. 3, the192

framework measures semantic similarities between the new SEC sample N and193

the known model M1 in the spatiotemporal domain. We provide a detailed194

explanation of the similarity measure in Appendix B.195

Semantic similarity values between the known models and the new sample196

are stored in a matrix, called the similarity matrix (ζsemantic), which is then197

converted into a histogram (H) representing the distribution of similarities.198

We apply the conventional Otsu’s method introduced in [28] to the normalized199

version of the histogram to further compute a threshold τ . See section 3.4.1200

for the details of the derivation of H and τ from ζsemantic. The gray box in201
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Figure 3: Overview of the proposed on-line learning framework.

Fig. 3 depicts extracted ζsemantic and H in which the red dashed line indicates202

τ computed between the first two experiments.203

Threshold τ is used for two purposes: First, we merge already learned SEC204

models which have higher semantic similarities than τ . Second, we compare the205

currently observed SEC sample with the so far existing models. If the com-206
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parison yields a higher similarity than τ , then the best fitting (highest similar)207

model will be refined with the new SEC sample. Otherwise, a new model will208

be created based on the SEC sample.209

The comparison of the first two experiments N and M1 shown in the gray210

box in Fig. 3 yields 80% semantic similarity which is less than τ estimated as211

90% (See Appendix B). Therefore, the Chopping sample N is considered as a212

new SEC model M2. We repeat the same procedure, i.e. computing ζsemantic,213

H, and τ , once the next sample N , which is a Stirring experiment in this case,214

is observed. As depicted in the purple box τ drops below 80% which allows us215

to update M1 with M2 yielding M̃1. As the Stirring demonstration still has less216

similarities with any of the known models, a new model M3 is initialized with217

N .218

The threshold value is required to better assess the obtained semantic sim-219

ilarities between models and the observed sample. Therefore, whenever a new220

observation is available, the entire process of estimating a new τ by determin-221

ing ζsemantic and H is repeated to decide on the fly whether the current SEC222

sample belongs to one of the already learned manipulation models or whether it223

represents a new manipulation. This is summarized with the fourth experiment224

introduced as an Unknown demonstration in Fig. 3, the fate of which depends225

on three possible cases. Case 1 and 2 are respectively standing for the processes226

of refining the models M̃1 and M3 with N , whereas Case 3 is representing the227

initialization of a new model M4.228

In the following, we will describe how to compute the threshold and update229

a learned model with a new SEC sample.230

3.4.1. Computing the Threshold231

Let M be a set of learned SEC models at any observation time as232

M = {m1,m2, · · · ,mn} , (1)

where n is the total number of existing models. Semantic similarity values233
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between all learned models are stored in a matrix as234

ζsemantic =


ϕ1,1 ϕ1,2 · · · ϕ1,n

ϕ2,1 ϕ2,2 · · · ϕ2,n

...
...

. . .
...

ϕn,1 ϕn,2 · · · ϕn,n

 , 0 ≤ ϕi,j ≤ 100 and ϕi,j = ϕj,i ,

where ϕi,j holds the semantic similarity between models mi and mj and is235

computed as described in Appendix B.236

Semantic similarity matrix ζsemantic is then converted into a histogram H237

representing the distribution of similarities as238

H = {hk : k ∈ [1, · · · , λ]} , (2)

hk =
1

η

n∑
i=1

n∑
j=i

δi,j , (3)

δi,j =

 1 if
ϕi,j

φ is at bin k

0 else
, (4)

where λ is the total number of bins each has a size of φ which is chosen as239

10 in our experiments and η is the normalization factor. Note that, since the240

similarity matrix ζsemantic is symmetric, only half of the matrix is processed,241

thus, the value of j changes from i to n in Eq. (3) and η is defined as n(n+1)/2.242

The normalized histogram H is now used to calculate the required threshold243

using the conventional Otsu’s method introduced in [28]. For this purpose, we244

compute zero- and first-order cumulative moments of the normalized histogram245

at each bin as246
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ω(k) =

k∑
i=1

hi , (5)

247

µ(k) =

k∑
i=1

ihi . (6)

The total mean value of the histogram is calculated as248

µT =

λ∑
i=1

ihi . (7)

The variance of the histogram separability is then given by249

σ2
B(k) =

[µTω(k)− µ(k)]2

ω(k)[1− ω(k)]
. (8)

Otsu’s method yields a threshold value k∗ for that bin at which the variance250

σ2
B is maximal; that is,251

k∗ = arg max
1≤k<λ

(σ2
B(k)) . (9)

The threshold k∗ separates the histogram into two distinct regions. The252

left side of k∗ indicates low semantic similarity between models in M, and vice253

versa. As we are seeking for a threshold τ to group similar manipulations, we254

take the average of the similarities falling into the right side of k∗ as255

τ =
1

ηr

λ∑
i=k∗

hi , (10)

where ηr is the normalization term which is the total number of similarity256

values on the right side of k∗.257

3.4.2. Updating Model SECs258

Once the highest semantic similarity between a novel SEC sample and any259

of the known models is higher than the threshold τ , the one model with highest260

similarity to the new SEC is now updated with this new SEC sample. To update261

a model, the learning procedure just needs to search for all common rows and262

columns observed in the new SEC sample.263
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Each model is initially created by assigning weight value of 1 for each row.264

Once a new SEC sample is observed, weights of each row in the model that265

match to a row in the new SEC are incremented. This way existing common266

rows between the matched model and the novel sample are receiving increasing267

weights. In the case of having additional rows in the new SEC sample, the268

model is extended by these rows, each of which is initiated again by giving them a269

weight of one. As the next step, we search for the common temporal information270

embedded in the columns of the event chains by employing a procedure very271

similar to that applied for extracting common rows. Finally, the model SEC272

consists of only those rows and columns observed frequently in the observed273

new SEC samples. A detailed explanation of the model updating procedure is274

given in Appendix C.275

4. Results276

In this section, we will first show experimental results from our proposed277

incremental learning framework. We will then continue with enrichment of278

each learned SEC model with object information. Next, validation and testing279

processes of the learned models will be given.280

4.1. Learning281

We apply the incremental learning and clustering framework described above282

to 8 different manipulation actions each of which has 15 versions, yielding in283

total 120 samples, as introduced in section 3.1. Manipulation tasks have vast284

variations in terms of manipulated objects, their poses, and followed trajectories285

as depicted in Fig. 1. The framework is first tracking each segment in the scene286

and extracting the corresponding SEC representation from a randomly observed287

manipulation sample. While observing more samples, different SEC models are288

learned or updated based on the threshold value.289

When we let the framework run only once through 120 manipulation tasks290

by randomly choosing a sample at each time, it learns 22 model event chains.291
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Fig. 4 (a) shows the final computed semantic similarity matrix ζsemantic be-292

tween each of the learned models. Low similarities between models indicate293

how distinct those models are. The corresponding histogram representation H294

with derived thresholds k∗ and τ is depicted in Fig. 4 (b). The threshold k∗ sep-295

arates the histogram into two distinct regions as depicted with the gray shade296

and τ is then calculated as 72 from Eq. (10). In Fig. 4 (c), we can see the297

complete behavior of τ during the learning cycle with 120 observation samples.298

It is initiated with 100 and after updating with Eq. (10) at each observation it299

starts to converge to approximately 72.300

Fig. 5 (a) depicts all learned models with corresponding number of observa-301

tion samples employed for updating each. The green dashed line indicates the302

actual sample numbers as the ground truth. Although the framework learns in303

total 22 models, only 7 of them, those in the red box, contain more than 10304

samples and the rest hold at most 2 samples. Recalling the fact that the train-305

ing set has 8 manipulations, we can state as one central result that 7 of them306

are indeed found with high numbers of examples each. Cutting and Chopping307

models are merged, though, but we will explain below that this actually “makes308

more sense” than the naively (by us) assumed ground truth. Furthermore, we309

Figure 4: Thresholding. (a) Semantic similarity matrix ζsemantic computed between 22

learned SEC models. The scale bar on the right indicates the similarity values in percent.

(b) Respective histogram representation H with extracted k∗ and τ values. The threshold

k∗ separates the histogram into two distinct regions as depicted with the gray shade. (c)

Development of τ during the observation of 120 samples. τ is initiated with 100 and after

updating with Eq. (10) it starts to converge to 72.
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Figure 5: Number of learned models and clustering accuracy of observed samples. (a) Learned

22 SEC models with corresponding number of trained samples. The green dashed line indicates

the actual sample numbers as the ground truth. (b) Number of true and false positive samples

clustered in learned models with respect to the ground truth.

observe that only few demonstrated samples have either enormous variations or310

noise, i.e. less semantic similarities than τ with any other models, which leads311

to the generation of the additional models outside the red box. As mentioned,312

our framework produces a single model representing the Cutting and Chopping313

manipulations together due to having high semantic similarities. It is because314

both manipulations have the same fundamental action primitives, i.e. similar315

columns in the event chains, and the only differences are mostly in the followed316

trajectories and velocity of the movements which are not captured by SECs. See317

Fig. B.14 in Appendix B as an example of high semantic similarities between318

the Cutting and Chopping tasks. Thus, Fig. 5 (a) shows that without using any319

human intervention the proposed learning framework can automatically retrieve320

the demonstrated 8 manipulation types two of which are naturally merged.321

As addressed in section 3.4, all manipulation samples used for updating the322

same SEC model will have the same cluster label. In Fig. 5 (b), we show the323

number of true and false positive samples falling into the same model with re-324

spect to the ground truth. Except for the Cutting and Chopping manipulations,325

none of the given manipulation samples is wrongly clustered. This means, for326
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instance, a given Stirring demonstration is used only for updating the Stirring327

model, but not for the Pushing model, etc. However, since we have now only328

one SEC model for the Cutting and Chopping manipulations, samples from both329

manipulations will be used for the same model. As the ground truth expects330

two different models, high false positives are observed for both.331

Fig. 6 shows how the clustering results for all 120 manipulation samples are332

varying from observation to observation. Colors encode the cluster labels and333

the ground truth for each cluster is given on the left. Note that time is pro-334

gressing from left to right, thus the first observed sample is the one depicted335

in cyan in the Chopping manipulation. As a consequence of merging models336

with high semantic similarity, some clusters will merge once new observations337

become available. Black ellipses depict when a sample switches from one cluster338

to another. For instance, cyan clusters observed for the Chopping samples in the339

Figure 6: Clustering result of 120 manipulation samples. Colors encode the cluster labels and

the ground truth for each cluster is given on the left. Noisy clusters are indicated in black.

Black ellipses depict when a sample switches from one cluster to another.
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beginning are turned into red clusters originally created for the Cutting task.340

At the sample number 120 in the very right hand side we therefore observe 7341

different colored clusters each from one learned model. This figure illustrates342

that for some manipulations types the model is immediately converging to the343

optimal solution, whereas for other models certain number of samples are re-344

quired. Noisy clusters, which belong to the noisy models shown outside the red345

box in Fig. 5 (a), are indicated by black dots.346

To investigate the robustness of the framework, we repeat the same learn-347

ing experiment explained above 100 times independently from each other and348

compute differences between the learned models. In each trial, the framework349

produces at least 21 and at most 23 various models. However, when we com-350

pare all these models extracted in 100 trials, we see indeed 29 different ones, the351

distribution of which is shown in Fig. 7 (a). Among those 29 models, it is again352

the same 7 models introduced in Fig. 5 (a) which have high number of samples.353

Furthermore, as indicated in Fig. 7 (b) we still do not obtain any false positives354

among the clustered samples except for the Cutting and Chopping manipula-355

tions due to the same reason as clarified above. Note that the red bars depict356

the standard error of the mean for those which are not zero. Fig. 7 consequently357

Figure 7: Total number of learned models and clustering accuracy after 100 independent trials.

(a) Learned 29 SEC models with corresponding number of trained samples. (b) Number of

true and false positive samples clustered in learned models with respect to the ground truth.

Red bars depict standard error of the mean for those which are not zero.
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proves that the learning approach is always converging to the same 7 models no358

matter in which order the manipulation samples are provided.359

We can now take a close look at some of those 7 SEC models explored360

from demonstrated manipulation actions. Fig. 8 shows models for the Cutting361

& Chopping, Stirring, and Uncovering manipulations with all derived states362

introduced in Eq. (C.2) and the transition probabilities between each. States363

and arrows given in red color correspond to the most commonly observed event364

chain columns and their transitions with the highest probabilities as described365

in Eqs. (C.3) and (C.4), respectively. On the left side of each model, we also366

show weight values (W from Eq. (C.1)) for each row in the states. It can be367

Figure 8: Complete learned SEC models for the Cutting & Chopping, Stirring, and Uncovering

manipulations. Each state corresponds to one SEC column and arrows represent the transition

probabilities from one state to the next. Those in red color correspond to the most commonly

observed states, their transitions having the highest probabilities. Weight values W on the

left indicate how often each row in the states is obtained in the trained samples.

19



seen that in all 3 models some rows are quite commonly obtained in the trained368

samples since their weights are close to 1, whereas this is not the same for369

the state transitions. For instance, in the Cutting & Chopping model, there370

exist three more states given in gray color which are particularly observed in371

the second half of the action and cause drop of some state transitions to 0.28.372

This is because even though each subject grasps a tool and cuts or chops an373

object in the same temporal order, they leave the scene in different orders; for374

example, one subject first removes the hand supporting the object to be cut375

and then withdraws the hand holding the cutting tool whereas another subject376

either does it the other way around or removes both hands at the same time.377

Another reason of having extra states, thus smaller transition probabilities,378

is the noise propagated from the segmentation and tracking components as379

observed in the Stirring model. Nevertheless, we can now extract all these380

variations that occurred due to the nature of manipulation or noise and pick381

the most often observed states, i.e. states in red, as a representative model for382

each manipulation action. Note that the learning process never ends and is open383

to refine models incrementally whenever new samples are provided, just like the384

assimilation process that happens in humans [29].385

4.2. Enriching Learned Model SECs386

In this section, we will show how learned SEC models can be enriched with387

additional object information.388

During the updating process of model SECs, we determine correspondences389

between rows of event chains as explained in section 3.4.2. Since each row in390

an event chain holds relational changes between segments in the scene, the row391

correspondences can also be used to calculate matchings between segments in392

two event chains. We refer the interested reader to [7] for details of the segment393

matching method. We now use this technique to extract segments, i.e. objects,394

that play the same role in different versions of the same manipulations observed395

during the learning phase.396

Fig. 9 (a) shows the learned Cutting & Chopping model, columns of which397
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are the states indicated in red in Fig. 8. The framework now estimates which398

segment is used as a main tool and which one as an object to be cut or chopped399

in each observation. As explained in Appendix A, we refer to the hand as400

the manipulator and to the object interacting with the hand as the primary401

object, e.g. a knife or a cleaver. Other objects which are combined with the402

primary object are called secondary objects like the cucumber to be cut. Note403

that the second hand is almost always used to help the manipulator, hence it is404

called the supporter. Fig. 9 (a) illustrates all matched primary and secondary405

objects used for training of the Cutting & Chopping model. Fig. 9 (b) shows406

the primary and secondary objects for the Stirring model. In this case, not407

only a spoon but a knife and a spatula are also selected by subjects as the408

primary object used for stirring. The secondary object is the stirred liquid and409

the buckets are the supporters. As learned model SECs are refined with every410

new observation, all these variations of the different objects will be attached to411

the model, simultaneously. Note that segments representing the manipulator412

and supporter are also matched, however, are not shown due to lack of space.413

It is important to underline that the proposed framework is not utilizing any414

object recognition method, hence, we are here strictly at the level of segments.415

For the sake of simplicity, object images are shown instead of segments in Fig. 9.416

It is evident that this unsupervised segment categorization process could be417

coupled to object models, thus, providing access to object categorization, too.418

Figure 9: Learned Cutting & Chopping and Stirring models enriched with object information.

Each column in the SEC model corresponds to one state indicated in red in Fig. 8. Primary

and secondary objects are extracted from observed manipulations during the learning process.
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4.3. Validation and Testing419

A validation process of the learned 7 SEC models is performed with the420

classification of all 120 training samples according to their semantic similarities421

with the learned models. This step is required to show the clustering accuracy of422

the training data but nothing unexpected will be observed here. We note that423

the main and critical evaluation is then shown by the next following testing424

experiment with a set of novel and complex manipulation sequences.425

We label each SEC model as a different class and introduce a static threshold426

chosen as 72 which is the converging value (τ) obtained during the learning427

phase as depicted in Fig. 4 (c). Once the highest semantic similarity between428

a training sample and any of the known models is higher than this threshold,429

the sample is assigned to that class. The classification method has also a class430

type called Unknown to detect samples that have low similarities with all known431

models.432

Fig. 10 (a) shows the confusion matrix depicting the classification accuracies433

of the complete training data set with respect to the learned models. The434

first impression that the figure conveys is that there is no misclassification of435

any training data; for instance, 87% of the Hiding training manipulations are436

Figure 10: Confusion matrix showing (a) the classification accuracy for the complete training

data set including in total 120 samples and (b) the usage rate of different objects primarily

manipulated in the learned models.
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correctly classified in the model Hiding and the rest is assigned as Unknown.437

As there is only one representative SEC model existing for both Cutting and438

Chopping manipulations, training samples from those are assigned within the439

same model Cutting & Chopping. The validation phase of the complete training440

set leads to 100% average precision and 87% average recall.441

As addressed in section 4.2, we can also extract objects which are manipu-442

lated in a similar manner in different demonstrations of the same manipulation443

type. Fig. 10 (b) indicates the primary object types frequently manipulated in444

each classified training data. It is observed that objects like Knife, Cleaver, and445

Spatula are manipulated often in the Cutting & Chopping model class, whereas,446

due to its size, Bowl is the only preferred object in the Hiding manipulation to447

cover other objects. Fig. 10 consequently proves the high success rates of the448

discriminative and descriptive features of the learned 7 SEC models and their449

direct relations with manipulated objects.450

To further evaluate the performance of the learned model SECs, we create451

a new testing set with 20 long chained actions which consist of in total 103452

different versions of the learned single manipulations such as Cutting, Stirring,453

and Pushing. We also introduce a new manipulation type called Pouring to454

measure the responses of the learned SEC models against a novel manipula-455

tion. In each chained action the subject has a certain task, e.g. “making a456

sandwich”, which involves execution of multiple single manipulations in various457

orders, either sequentially or parallelly. Fig. 11 depicts sample frames from two458

different chained action sequences in which subjects are performing the same459

task “making a sandwich” by using novel objects in various ways to increase the460

complexity of the scenes. We here apply an unsupervised, probabilistic method461

that measures the frequency of the changes in the spatial relations embedded462

in event chains to extract the main manipulator, e.g. hand, and to decompose463

the long chained actions into their primitive action components according to464

the spatiotemporal relations of the manipulator. Hence, also the decomposition465

process is model free and automatic. Since the decomposition issue is not in the466

core of the proposed framework, we omit the details here and refer the interested467
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Figure 11: Sample frames from two different long chained manipulation sequences which

are used to test the learned SEC models. In these demonstrations subjects are performing

the same task “making a sandwich” by using novel objects in various ways to increase the

complexity of the scenes.

reader to [30].468

Each single decomposed manipulation action is again analyzed as a classifi-469

cation task as described in the validation phase. Fig. 12 (a) indicates the highly470

successful classification results of decomposed manipulations with respect to the471

learned models. We receive minimum 83% accurate classification rate which is472

for the Stirring manipulation and maximum 10% misclassification rate as ob-473

served only for the Pushing manipulation. It is also significant to note that474

the novel Pouring manipulation is never confused with any of the known SEC475

models. In this testing phase, average precision and recall values are measured476

as 99% and 96%, respectively.477

Fig. 12 (b) shows the most often manipulated primary object types in each478

classified test data. Compared to the results obtained in the training phase,479

the major difference here is the high usage rates of the object type Food in the480

Hiding, Taking, and Putting models. This is because making a sandwich by481
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Figure 12: Confusion matrix showing (a) the classification accuracy for the complete testing

data set including in total 103 samples and (b) the usage rate of different objects primarily

manipulated in the learned models.

taking and putting cheese or bread slices on top of each other naturally results482

in occlusions as expected by the Hiding model.483

Note that all results shown in Figs. 10 and 12 are acquired in a fully auto-484

mated, unsupervised manner and show that the learned SEC models are highly485

accurate and discriminative to recognize manipulation actions which can even486

be embedded in the long and complex chained demonstrations performed with487

novel objects under different circumstances.488

5. Discussion489

The main contribution of our paper is a novel method for incrementally490

learning the semantics of manipulation actions by observation. The proposed491

learning framework is bootstrapped with the semantic relations (SECs) between492

observed manipulations without using any prior knowledge about actions or493

objects while being fully grounded at the sensory level (image segments). To494

our best knowledge this is one of the first attempts in cognitive robotics to infer495

descriptive semantic models of observed manipulations in a fully automated and496

unsupervised manner.497

One of the most fundamental advantages of the proposed framework is that498
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during the learning, when a new sample is observed, it is not compared with499

all previously acquired samples, which is an exhausting operation, but instead500

is compared only with the already learned models which are then updated ac-501

cordingly. This is of importance to allow the cognitive agent to use its memory502

in a more efficient way for lifelong learning, which is known as “Assimilation503

Process” in human cognition as originally defined by Piaget [29].504

The proposed framework can be easily enriched with object information since505

event chains naturally group objects considering only their performed roles in a506

manipulation. As a strong contribution, we showed that objects, i.e. segments,507

can be categorized based on how an object is being manipulated, rather than508

by knowing what type of object it is. As shown in our previous works [9, 23],509

not only object but pose and the followed trajectory information can also be510

embedded into the SEC representations as further enrichment.511

In this paper, we also introduced a new manipulation action data set with512

8 different manipulation tasks (e.g. Cutting, Chopping, Stirring, etc.), each of513

which consists of 15 different versions performed by 3 different human actors.514

This data set was used to learn an archetypal SEC model for each manipu-515

lation action. To further quantitatively evaluate the learned SEC models, we516

extended our data set with 20 long and complex chained manipulation sequences517

(e.g. “making a sandwich” or “preparing a breakfast”) which consist of in to-518

tal 103 different versions of these 8 manipulation tasks performed in different519

orders with novel objects under different circumstances. These data sets are520

publicly available and could be used for action/object benchmarking also of521

other methods.522

In contrast to other well-known data sets, our new benchmark set captures523

manipulation activities from the subjects’s own point of view with a static RGB-524

D camera since we are interested in understanding the spatiotemporal interac-525

tions between the manipulated objects and hands. The conventional data sets,526

however, employ the entire human body configurations and movements as main527

features and therefore either do not involve hand-tool features [31, 17, 32] or528

are not rich to provide enough recordings required for the learning [15, 16].529
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The observed high accuracy of our method when classifying the unknown530

(long-sequence) test-data set support that the learned models are indeed dis-531

criminative and descriptive of these actions (and objects). The here shown532

experimental results also exhibit a similar behavior to that of the ontologies533

presented in [33, 15]. In these both studies manipulation actions were classified534

into six distinct structural categories (e.g. Rearrange, Destroy, Break, etc.) in535

which Cutting and Chopping manipulations were subsumed in the same category536

as the learned single Cutting & Chopping model in our framework.537

As mentioned in the introduction, additional information, if available about a538

given action, will further improve action understanding. This notwithstanding,539

we believe that the current study strongly supports the power of the Semantic540

Event Chain framework, because here we have “pushed it to an extreme” by541

fully relying on model-free, unsupervised algorithms for clustering and classifi-542

cation. Therefore, we would hope that this study might stimulate the research543

community to adopt this framework in the future.544

Appendices545

We here provide three appendices each describes details of individual algo-546

rithmic steps in details. The first appendix introduces the de-noising process547

to filter out noisy spatiotemporal relations in the event chains. In the next ap-548

pendix, the detailed description of the similarity measure between event chains549

is given. The last appendix highlights the updating process of a learned SEC550

model with a novel SEC sample.551

Appendix A. De-noising of SECs552

Due to some early vision problems such as illumination variations or occlu-553

sions observed in the segmentation and tracking phases, extracted event chains554

can contain noisy spatial (rows) and/or temporal (columns) information. To555

prevent noisy event chain elements to propagate further to the next learning556

stage, we apply a de-noising process to the extracted raw SECs. The de-noising557
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process is based on reasonable action descriptive assumptions (rules) introduced558

in [33], which are as follows:559

1. only single hand manipulations are considered;560

2. the hand can manipulate, i.e. touch, only one object at a time;561

3. the manipulation can take place at the touched object itself (the one mentioned562

in rule 2) or only one other object can be a target, with which the first one563

interacts, i.e. touches;564

4. before and after the manipulation the hand is free and not-touching anything;565

5. before and after the manipulation the hand is not in the scene.566

The first two rules guarantee that there is only one hand and at most one567

object interacting with the hand, which we call manipulator and primary object,568

respectively. Other objects, which are combined with the primary object, are569

called secondary objects. The third rule assures that manipulator, primary and570

secondary objects are the only ones having direct interaction with each other571

affecting the dynamics of the manipulation. The last two rules define the natural572

start and end points of the manipulation.573

The de-noising process checks whether all those rules are satisfied in the574

SEC representation. For instance, the first two rules require that the event575

chain must have a row holding spatial relations between the manipulator and576

primary object and last three rules define these relations as:577

manipulator , primary object
[
A N T · · · T N A

]
, (A.1)

where the manipulator is first absent (A) in the scene (rule 5), then appears578

but does not touch (N) the primary object (rule 4). Next, the manipulator579

touches (T) primary object to apply a certain task on it (rule 3). Depending580

on the manipulation, the temporal length of the touching (T) relation can vary.581

Finally, the manipulator releases (N) the primary object (rule 4) and leaves (A)582

the scene (rule 5).583

Since segments, i.e. graph nodes, are not identified as objects in event chains,584

we do not know which segment corresponds to the manipulator or primary585
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object. Therefore, we apply a probabilistic reasoning to estimate segment roles586

in the manipulation. Probability values for each segment are assigned based on587

similarities of their relations with Eq. (A.1) and the frequency of their touching588

relations. See Appendix B for similarity calculation between SEC rows. In this589

regard, all rows in the event chain are compared with Eq. (A.1) and the most590

similar one is taken as the best candidate for the manipulator and the primary591

object.592

Fig. A.13 (a-b) shows a noisy raw event chain with corresponding key frames593

extracted from a Putting manipulation sample where a hand is putting a cup on594

a box. For instance, the first and second rows of the SEC given in Fig. A.13 (b)595

are similar to Eq. (A.1), however, the second row has a higher probability to be596

a better candidate due to having more touching relations. Therefore, segments597

4 and 1 in the second row have the highest likelihood to be the manipulator598

Figure A.13: SEC representation for a sample Putting action where a hand is putting a cup

on a box. (a) Extracted 8 key frames with original images, corresponding segments (colored

regions), and main graphs. (b) Respective SEC where each key frame corresponds to one

column. Rows are spatial relations between object pairs, e. g. between the hand (4) and box

(3) in the first raw. Possible spatial relations are N , T , and A standing for Not touching,

Touching, and Absence, respectively. (c) De-noised SEC after applying action descriptive

rules. First and last rows as well as repetitive key frames, shown in blue frames, are removed

from the raw SEC in (b).
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and the primary object. Since rule 5 constrains the manipulator to appear in599

the scene later, we choose segment 4 as the manipulator and segment 1 as the600

primary object.601

Once the manipulator and primary object are estimated, the de-noising pro-602

cess is concluded by examining the second and third rules once more. Since603

the second rule does not allow the manipulator to interact with any other ob-604

ject other than the primary object, such rows can be considered as noise to be605

omitted. In this manner, the first row in the SEC given in Fig. A.13 (b) can606

be ignored as the manipulator (segment number 4) is also touching the box607

(segment number 3) which is not the primary object. Note that the hand is608

here accidentally touching the box while putting the cup. Recalling the third609

rule, we can ignore any segment which does not have any interaction with the610

manipulator or primary object. In this sense, the forth row of the SEC in611

Fig. A.13 (b) is omitted because segment 6 and 7 represent the spoon which is612

occluded by the manipulator and primary object and not playing any role in the613

manipulation. Fig. A.13 (c) shows the final de-noised SEC representation for614

the Putting action in Fig. A.13 (a). Note that de-noised event chain includes less615

columns since redundant duplicate (repetitive) columns observed after deleting616

noisy rows (indicated in blue frames in Fig. A.13 (a)) are also removed.617

It is important to underline that the de-noising process considers temporal618

interactions between entire segments in the manipulation to solve illumination or619

occlusion based early vision problems which can not be solved without reasoning620

at a higher level.621

Appendix B. Measuring Semantic Similarity622

Once event chains are extracted in the observation phase, their semantic sim-623

ilarities need to be compared to further explore whether they describe the same624

type of manipulation. In [7], we introduced a method to measure semantic sim-625

ilarities and here we describe an updated version which is more robust against626

noisy spatiotemporal information coming from the early vision stage. To better627
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explain the semantic comparison we will use sample demonstrations from the628

Cutting and Chopping manipulations which are shown in Fig. B.14 (a-b) with629

extracted de-noised SECs including some sample key frames with respective630

segments and graphs. Note that even though those two samples have different631

perspectives and contain different number and types of objects, the dimensions632

of the event chains are accidentally the same. This is of no importance as our633

proposed method does not rely on dimensions, allowing to compare arbitrarily634

long manipulations.635

To calculate the semantic similarity between two manipulations, spatial and636

temporal aspects are being analyzed in two separate steps. In the first step,637

we compare spatial information, i.e. relational changes in each row, and in the638

following second step the temporal information, i.e. the order of columns, is639

considered. In both steps we apply a standard sub-string search algorithm. To640

achieve this, we first perform a data-compression on the original chain (ξo) by641

simply scanning each row of ξo from left to right and substitute “changes” by642

combining their values into a two-digit format. For example a change from643

Not touching to Touching, hence from N to T , is now encoded by NT . When644

nothing has changed, a double digit like TT , is removed. This compressed event645

chain, represented by ξc, lost all temporal information and is used only for the646

spatial-relational analysis in the first step. The original chain (ξo) will then be647

used for the temporal analysis in the second step. ξo and ξc of the Cutting and648

Chopping actions are given in Fig. B.14 (a-d).649

Let ξ1c and ξ2c be the sets of rows for the two manipulations, written as a650

matrix (e.g. Fig. B.14 (c) and B.14 (d)):651

ξ1c =


r11,1 r11,2 · · · · · · r1

1,γ1
1

r12,1 r12,2 · · · r1
2,γ1

2

...
...

. . .
...

r1m,1 r1m,2 · · · · · · · · · r1m,γ1
m

 ,

and652
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Figure B.14: Two sample manipulation action scenarios: “Cutting a cucumber with a knife”

(on the left) and “Chopping a sausage with a cleaver” (on the right). (a-b) Extracted de-

noised SECs (ξo) with some sample original key frames including respective segments and main

graphs. (c-d) Corresponding compressed SECs (ξc). Colored arrows show row matchings.

Figure B.15: Similarity matrices between the Cutting and Chopping samples given in

Fig. B.14. (a) Spatial similarity matrix ζspatial indicates possible correspondences between

rows (see colored arrows in Fig. B.14). (b) Temporal similarity matrix ζtemporal with LCS

matchings indicated in red circles shows correspondences between columns.
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ξ2c =


r21,1 r21,2 · · · · · · · · · · · · r2

1,γ2
1

r22,1 r22,2 · · · · · · r2
2,γ2

2

...
...

. . .
...

r2k,1 r2k,2 · · · · · · · · · r2
k,γ2

k

 ,

where ri,j represents a relational change between a segment pair653

ri,j ∈ {AN,AT,NA,NT, TA, TN} ,

where A, N , and T stand for Not touching, Touching, and Absence, respec-654

tively. The lengths of the rows are usually different and given by indices γ.655

The first step is comparing the rows of the compressed event chains (ξ1c and656

ξ2c ) accounting for a possibly shuffling of rows in different versions of the same657

manipulations. Therefore, each row of ξ1c is compared with each row of ξ2c in658

order to find the highest similarity. The comparison process searches for equal659

entries of one row against the other using a standard sub-string search, briefly660

described next. Assume that we compare the ath row of ξ1c with the bth row of661

ξ2c . If row a is shorter or of equal length than row b (γ1a ≤ γ2b ), the ath row of ξ1c662

is shifted γ2b − γ1a + 1 times to the right. At each shift its entries are compared663

with the one of the bth row of ξ2c and we get as a result set Fa,b defined as:664

Fa,b = {ft : t ∈ [1, γ2b − γ1a + 1]} ,

ft =
100

γ2b

γ1
a∑

i=1

δi , (B.1)

where γ2b is the normalization factor and i is the row index and with665

δi =

 1 if r1a,i = r2b,i+t−1

0 else
, (B.2)
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where the set Fa,b represents all possible similarities for every shift t, given by666

ft, which holds the normalized percentage of the similarity calculated between667

the shifted rows.668

As usual for sub-string searches, we are only interested in the maximum669

similarity of every comparison hence we define:670

Ma,b = max(Fa,b),

For the case γ1a > γ2b , a symmetrical procedure is performed by interchanging671

all indices of Eqs. (B.1), (B.2) above.672

Spatial similarity values between all rows of ξ1c and ξ2c are stored in a matrix673

ζspatial with size m× k as674

ζspatial =


M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,k

 .

The final similarity value (ψspatial) between the rows of two compressed675

event chains is calculated by taking the mean value of the highest similarities676

across both rows and columns of ζspatial as677

ψspatial =
1

m

m∑
i=1

max
j

(Mi,j), j ∈ [1, · · · , k], (B.3)

if678

max
j

(Mi,j) = max
t

(Mt,j), t ∈ [1, · · · ,m] . (B.4)

The spatial similarity matrix ζspatial indicates possible correspondences be-679

tween rows of ξ1c and ξ2c used to compute temporal similarity in the second step.680

Note that there can be more than one correspondences between each row and681

all existing permutations need to be considered in the second step, separately.682

If there is a size differences between event chains, extra rows with no correspon-683

dences will be omitted here, but penalty values will then be applied at the end684

of the second step.685
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The complete similarity matrix (ζspatial) between the Cutting and Chopping686

samples (ξ1c and ξ2c ) is given in Fig. B.15 (a) which shows that first row of ξ1c ,687

i.e. 1, 5, corresponds to the second row of ξ2c , i.e. 4, 6. The same reverse relation688

exists between the second row of ξ1c and the first row of ξ2c . Therefore, rows of689

the second event chain will be resorted by simply interchanging first and second690

rows to initiate the second step, i.e. temporal analysis of the method.691

In the following second step, we use the time sequence, encoded in the order692

of columns in the original event chains, to find the best matching permutation693

and thereby arrive at the final semantic similarity. To this end we will now694

compare columns of resorted ξ2o with that of ξ1o . Note that by contrast to rows,695

columns of event chains are never shuffled unless they represent different types696

of actions. Therefore, the column orders of type-similar event chains have to697

be the same. The comparison procedure of columns is very similar to the one698

for the rows. Since the lengths of the columns are the same, no shift-operator699

is required and columns are directly compared index-wise. Similarity values700

between all columns of ξ1o and ξ2o are stored in a matrix ζtemporal with the size701

of u× v as702

ζtemporal =


θ1,1 θ1,2 · · · θ1,v

θ2,1 θ2,2 · · · θ2,v
...

...
. . .

...

θu,1 θu,2 · · · θu,v

 ,

where u and v are the lengths of columns in ξ1o and ξ2o .703

Once similarities between columns are calculated, we use “Longest Common704

Subsequence, (LCS)” in order to guarantee that the order of columns is the705

same. LCS is generally used to explore the longest sequence existing in both706

input samples sequences. Columns of event chains are used as sequences for this707

task and LCS matching is computed based on similarities in ζtemporal. Since708

the number of sequences is constant, the problem is solvable in polynomial time709

by dynamic programming. Fig. B.15 (b) shows ζtemporal with LCS matchings710

indicated in red circles for the Cutting and Chopping samples ξ1o and ξ2o .711
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The temporal similarity value ψtemporal between the columns of two event712

chains is then calculated by taking the mean value of the similarities given by713

LCS matching Li as714

ψtemporal =
1

u

u∑
i=1

Li , (B.5)

Li =

 100 if θi,j = 100

0 else
, (B.6)

where i and j are the matching column indices between ξ1o and ξ2o .715

Note that due to noisy segmentation and tracking, size of ξ1o and ξ2o can be716

different. Therefore, size differences between event chains are used as a penalty717

to prevent false similarities. The final semantic similarity is then computed as718

ψfinal =
r1c1ψtemporal

r1c1 +
r2c2 − r1c1

ρ

, r1 < r2 and c1 < c2 , (B.7)

where ρ is the penalty value and r1, c1, r2, and c2 are the number of rows and719

columns of ξ1o and ξ2o , respectively. The final ψfinal value between the Cutting720

and Chopping samples in Fig. B.15 is calculated as 78% by using Eqs. (B.7),721

(B.6), and (B.7) with ρ = 1. The best matching permutation is further used for722

categorizing objects as described in [7].723

Appendix C. Model Updating724

Let ξm and ξn be two matrices representing a SEC model and a new SEC725

sample with sizes of p × q and k × l, respectively. The two matrices can be726

written as727
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ξm =


rm1,1 rm1,2 · · · rm1,q

rm2,1 rm2,2 · · · rm2,q
...

...
. . .

...

rmp,1 rmp,2 · · · rmp,q

 and ξn =


rn1,1 rn1,2 · · · rn1,l

rn2,1 rn2,2 · · · rn2,l
...

...
. . .

...

rnk,1 rnk,2 · · · rnk,l

 ,

where ri,j ∈ {A,N, T} is representing the spatial relations between each728

segment pair as described in section 3.3.729

Each model ξm is initially assigned with a set of weights W as730

W = [w1, w2, · · · , wp]T , (C.1)

for representing the appearance frequency of each row, which leads to ex-731

traction of all common rows observed in most of SEC samples. Each weight732

value wi is initialized to 1. We first compare each row of ξn with each row of733

ξm to find identical matches and to further increment the corresponding weight734

values of the matched rows again by 1. This step is required since rows can be735

shuffled in the new observation sample ξn. While comparing rows, we search736

for only equal relational changes rather than temporal lengths of relations as737

explained in Appendix B. In the case of k > p, all novel rows observed in ξn738

will then be appended to ξm with weight values {wp+1, · · · , wk} initialized to 1.739

Common rows are then those with weights higher than |W|2 . Next, the order of740

rows in ξn is resorted considering the order of their best matches with common741

rows in ξm. The sorting process yields the same row numbers in ξn and ξm,742

which is required for analyzing columns as described next.743

The following step covers the temporal information embedded in the columns744

of ξn and ξm, and is similar to the previous approach explained for rows. We745

here assume that each column in an event chain is a state defining one action746

primitive. Hence, we seek for all primitives derived from new observations and747

compute the transition between them. Let Sm be a set of existing states in the748

current model ξm :749
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Sm = {s1, s2, · · · , sq} , (C.2)

where each si = {rmj,i : j ∈ [1, · · · , p]} . We now compare each state, i.e.750

column, in the sorted version of ξn with those in ξm by employing the same751

approach as defined for the temporal analysis in Appendix B. In the case of752

having more states in ξn, i.e. l > q, all novel states are appended to Sm, and753

then transitions between each state are calculated. We assign a probability754

value Pi,j defining the transition from si to sj , which is incremented when two755

states are consecutive, i.e. sj = si+1 in ξn.756

Following state transition calculation, the learned model ξm is refined with757

the new states Ŝm having the maximum transitions between each; that is,758

Ŝm = {sα1 , sα2 , · · · , sαl
} , (C.3)

αt+1 = arg max
j

(Pαt,j) , (C.4)

where α0 = 1 is for the initial state and Pi,j = 0 is the termination condition759

of the state sequence.760

Note that in the process of creating a new model, Ŝm will directly be equal761

to the states of ξn. In the case of merging similar models, i.e. those with high762

semantic similarity, one of the models will be assumed as ξn to employ the same763

refinement procedure explained above. It is also important to note that all SEC764

samples used for updating the same model ξm will be assigned with the same765

cluster label which yields self-clustering of observed SEC samples.766
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