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Abstract. Efficient segmentation of color images is important for many
applications in computer vision. Non-parametric solutions are required in
situations where little or no prior knowledge about the data is available.
In this paper, we present a novel parallel image segmentation algorithm
which segments images in real-time in a non-parametric way. The algo-
rithm finds the equilibrium states of a Potts model in the superparamag-
netic phase of the system. Our method maps perfectly onto the Graphics
Processing Unit (GPU) architecture and has been implemented using
the framework NVIDIA Compute Unified Device Architecture (CUDA).
For images of 256 × 320 pixels we obtained a frame rate of 30 Hz that
demonstrates the applicability of the algorithm to video-processing tasks
in real-time1.

1 Introduction

Image segmentation, i.e. the partitioning of an image into disjoint parts based on
some image characteristics, such as color information, intensity or texture is one
of the most fundamental tasks in computer vision and image processing and of
large importance for many kinds of applications, e.g., object tracking, classifica-
tion and recognition [1]. As a consequence, many different approaches for image
segmentation have been proposed in the last twenty years, e.g. methods based
on homogeneity criteria inside objects of interest [2, 3], clustering [26, 27, 22],
region-based growing [1, 5], graph cuts [4, 15] and mean shift segmentation [28].
We can distinguish between parametric (model-driven) [4, 15] and nonparamet-
ric (data-driven) techniques [1, 5, 26, 27, 22, 28]. If little is known about the data
being segmented, nonparametric methods have to be applied. The methods of
superparamagnetic clustering is a nonparametric method which solves the seg-
mentation problem by finding the equilibrium states of the energy function of a
1 By real-time we understand processing of a full frame at 25Hz or faster.
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ferromagnetic Potts model (without data term) in the superparamagnetic phase
[19–22]. By contrast, methods which find solutions by computing the minimum of
an energy function usually require a data term – otherwise only trivial solutions
are obtained. Hence, the equilibrium-state approach to the image segmentation
problem has to be considered as fundamentally different from approaches which
find the minimum energy configuration of energy functions in Markov random
fields [24].

The Potts model [19], which is a generalization of the Ising model [23], de-
scribes a system of interacting granular ferromagnets or spins that can be in q
different states, characterizing the pointing direction of the respective spin vec-
tors. Depending on the temperature, i.e. disorder introduced to the system, the
spin system can be in the paramagnetic, the superparamagnetic, or the ferro-
magnetic phase. In the ferromagnetic phase, all spins are aligned, while in the
paramagnetic phase the system is in a state of complete disorder. In the super-
paramagnetic phase regions of aligned spins coexist. Blatt et al. (1998) applied
the Potts model to the image segmentation problems in a way that in the super-
paramagnetic phase regions of aligned spins correspond to a natural partition of
the image data [21]. Finding the image partition corresponds to the computation
of the equilibrium states of the Potts model.

The equilibrium states of the Potts model have been approximated in the
past using the Metropolis-Hastings algorithm with annealing [25] and methods
based on cluster updating, which are known to accelerate the equilibration of the
system by shortening the correlation times between distant spins. Prominent al-
gorithms are Swendsen-Wang [26], Wolff [27], and energy-based cluster updating
(ECU) [22]. All of these methods obey detailed balance, ensuring convergence of
the system to the equilibrium state. However, convergence has only been shown
to be polynomial for special cases of the Potts model.

In this paper, we investigate opportunities for achieving efficient performance
of superparamagnetic clustering using the Metropolis algorithm with anneal-
ing [25], and propose a real-time implementation on graphics processing units
(GPU). For images of size 256× 320 pixels the Metropolis procedure on GPU is
160 times faster than on CPU. Furthermore, a novel short-cut, consistent with
a mixing procedure of the Metropolis algorithm, is introduced for fast cooling.

The remainder of the paper is organized as follows: Section 2 describes the
proposed segmentation algorithm. In Section 3, segmentation results for several
test images are presented and the respective processing times on GPU and CPU
are reported. In Section 4, the results are discussed and directions for future
work are given.

2 The segmentation algorithm

The overall algorithm consists of several major steps as illustrated in Fig. 1.
First, a parallel Metropolis procedure is developed and used to partition the
image into disjoint regions (see 2.1). To reduce the total number of required
Metropolis iterations, we developed a parallel algorithm that distinguishes be-
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tween true object boundaries and boundaries caused by domain fragmentation
(this is: uniform areas are split into meaningless sub-segments, see 2.2). The
corresponding true segments are then relabeled (see 2.3), and the Metropolis
algorithm is reapplied (see 2.4) for another short relaxation process after which
steady state is achieved.

Find object
 boundaries

Input image Metropolis Labeling Metropolis
Final

 segments

Fig. 1. Block diagram of the proposed segmentation method.

2.1 Metropolis algorithm

In the Potts model, a spin variable σk, which can take on q discrete values
v1, v2, . . . , vq, called spin states, is assigned to each pixel of the image. The
energy of the system is described by

E = −
∑
<ij>

Jijδij , (1)

with the Kronecker sign

δij =
{

1 if σi = σj ,
0 otherwise. (2)

where σi and σj are the respective spin variables of two neighboring pixels i
and j. The function

Jij = 1− |gi − gj|/∆ (3)

is a coupling constant, determining the interaction strength, where gi and gj are
the respective color vectors of the pixels, and

∆ = α · (
∑

<i,j>

|gi − gj|/
∑

<i,j>

1) (4)

computes the averaged color vector difference of all neighbors < i, j >. The
factor α ∈ [0, 10] is a system parameter.

The Metropolis algorithm allows generating spin configurations S which obey
the Boltzmann probability distribution [6]

P (S) ∼ exp [−βE(S)] , (5)

where β = 1/kT , T is the temperature parameter, and k is the Boltzmann
constant.
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Initially, values are assigned randomly to all spin variables. According to
the Metropolis algorithm, each spin-update procedure consists of the following
steps [7]:

1. The system energy EA of the current spin configuration SA is computed
according to Eq. 1.

2. A pixel i with spin variable σi in spin state vl is selected and for each possible
move to a new spin state σi 6= vl the energy EB of the resulting new spin
configuration SB is computed according to Eq. 1. The number of possible
moves is (q − 1).

3. Among all new possible configurations we find the configuration with the
minimum energy

Enew = min(E1, E2, . . . , Eq−1) , (6)

and compute the respective change in energy

∆E = Enew − EA . (7)

4. If the total energy of the configuration is decreased by this move, i.e. ∆E < 0,
the move is always accepted.

5. If the energy increased, i.e. ∆E > 0, the probability that the proposed move
will be accepted is given by

PA→B = exp
(
−|∆E|
kTn

)
, (8)

and

Tn+1 = γTn γ < 1 , (9)

where γ is the annealing coefficient. We draw a number ξ randomly from a
uniform distribution in the range of [0, 1]. If ξ < PA→B , the move is accepted.

Each spin update involves only the nearest neighbors of the considered pixel.
Hence, spin variables of pixels that are not neighbors of each other can be up-
dated simultaneously [8]. Therefore the Metropolis algorithm fits very well to
the GPU architecture.

The energy function may contain many local minima in which the system
can get trapped. This problem can be resolved by slow annealing of the spin
system. An annealing schedule allows to simulate a cooling process by decreasing
the temperature after each iteration (see Eq. 9). While slow cooling leads to an
undesired increase in computation time, fast cooling faces the problem of domain
fragmentation. In the next section, we present an algorithm for resolving the
domain-fragmentation problem.
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2.2 Resolving Domain Fragmentation

Domain fragmentation describes the fact that large uniform areas are being split
into sub-segments despite high attractive forces within them [20]. It happens in
the case of a too fast annealing process when the temperature decreases rapidly
and the system arrives too early at the ”frozen” state. For illustration, the spin
configuration with q = 6 after 20 Metropolis iterations is presented for an ex-
ample image (Fig. 2(a-b)). Large interaction forces within the apple and the
background lead to the creation of domains that try to cover each other. This
effect has its origin in the finite interaction range and local dynamics of the
Metropolis algorithm. The fragmented domains, however, carry all the required
information to resolve this problem. For this we consider the result after an
initial fast cooling phase consisting of 20 Metropolis iterations only and find
that domain-fragment boundaries are unstable and clear-cut whereas true seg-
ment boundaries are stable and characterized by a noisy local neighborhood
(Fig. 2(b)). This holds true for real images due to their finite image gradient at
true boundaries and it allows us to distinguish true segment boundaries from
those caused by domain fragmentation.
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Fig. 2. Detection of real boundaries after using the Metropolis algorithm. (a) Input
image. (b) Configuration of spin states after 20 Metropolis iterations. (c) Function of
spin states for one image row as marked by a horizontal line in panels (a) and (b). (d)
Changes of spin state for the same row where each peak represents a changing spin
state. (e) Detected object boundaries.

The procedure works as follows. After a fixed small number of Metropolis
iterations, we compute the spatial derivatives along the x and y direction of the
spin-state configuration S(x, y) according to

S′x =
∆S(x, y)
∆x

and S′y =
∆S(x, y)
∆y

. (10)
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In Fig. 2(c,d) functions Sx and S′x are depicted for one row of the original
image. Each peak of S′x represents a change in the spin state. Here we are
interested only in the number of peaks rather than in the derivative values,
because the Potts model does not penalize differences between certain spin states
stronger than others (see Eq. 2). The frequency of peaks increases significantly
at real boundaries (depicted by dashed lines). Thus considering couples of pixels
in parallel we find boundaries

B(xi, yj) =

1 if S′(xi, yj) 6= 0 and S′(xi−1, yj) 6= 0,
1 if S′(xi, yj) 6= 0 and S′(xi, yj−1) 6= 0,
0 otherwise.

(11)

The result of this procedure is a binary image where objects are depicted
by white and boundaries by black (see Fig. 2(e)). This step can also be imple-
mented completely in parallel. Erroneous noisy speckles arising from this pro-
cedure are corrected by applying the Metropolis algorithm a second time for
recovery (see 2.4). We used a fixed parameter α = 0.7 for all images. For images
which have not much texture a larger parameter α > 1 can be used to obtain
even better results.

Note, one cannot easily use a conventional edge detector (on the original
image) for this. An edge detector would indeed find many segment boundaries,
but it would also find others which are unrelated to the segments that come out
from the Metropolis procedure. As we need to continue the relaxation process,
we should do this using only ”the correct” segments. Otherwise relaxation would
have to undo all wrong segments to finally reach the minimum. Moreover the
proposed procedure yields closed object boundaries while many edge detectors
produce borders having gaps. The method of using the noisiness to distinguish
real edges from domain edges is consistent within our algorithmic framework
and, thus, allows continuation of the Metropolis procedure without problems.

2.3 Labeling of connected components

After resolving the domain fragmentation described in Sec. 2.2, all connected
components, i.e. areas having a closed boundary, have to be labeled in order
to get the spin states configuration back. Many algorithms have been proposed
for the labeling of connected components in a binary image [17, 18, 16]. As our
segmentation algorithm has to be sufficient for real-time applications we decided
to use a procedure suggested by He et al. (2009) which is, to our knowledge,
the fastest labeling algorithm to date [16]. All steps of the employed labeling
procedure are represented in Fig. 3.

The chosen algorithm completes labeling in two scans of an image: during the
first scan it assigns provisional labels to object pixels (see Fig. 3(b)) and records
label equivalences for labels, belonging to the same object. Label equivalences
are being resolved during the first scan choosing one of the equivalent labels as
a representative label. All representative labels are stored in the representative
label table where provisional labels act as indexes. During the second scan,
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all equivalent labels are replaced by their representative label obtained from
the representative label table (see Fig. 3(c)). The detailed description of the
algorithm and its optimizations can be found in [16].

(a) (b) (ñ)

Fig. 3. Fast labeling of connected components. (a) Defined object boundaries. (b)
Provisional labels after the first image scan. (c) Representative labels assigned after
the second image scan.

Both image scans run on the CPU and are extremely fast for image sizes that
are being used in our work. Especially the second scan can be accelerated on the
GPU architecture, since representative labels can be assigned simultaneously to
all pixels by independent parallel processing threads.

2.4 Employment of Metropolis for final relaxation

After the labeling of connected components we assign spin states to all pixels
according to

σ(xi, yj) = L(xi, yj) mod q , (12)

where mod means that the segment label L(xi, yj) of the pixel is divided by
the number of possible spin states q and the new spin state σ is the remainder of
the division. After this assignment we apply five more Metropolis iterations to
obtain the final spin configuration after which final segments can be extracted.

2.5 Experimental environment

As hardware platforms for testing of our segmentation algorithm we used

– NVIDIA card GeForce GTX 295 (using a single GPU) with 40 multiproces-
sors each having 8 cores, so 240 processor cores in total and 896 MB device
memory.

– CPU 2.2GHz AMD Phenom Quad 9550 (using a single core) with 2 GB
RAM.
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3 Experimental Results

3.1 Segmentation results

We applied the developed algorithm to a set of real images, i.e. Cluttered scene,
Lampshade from the Middlebury dataset2 and Skier from the Berkeley dataset3

(see Fig. 4(a)). The results at the different stages of the algorithm are shown in
Fig. 4(b-e).

In Fig. 4(b), the spin states after 10 Metropolis iterations are shown. Domain
fragmentation is clearly visible, characterized by noisy boundaries, in all three
images. The more textured an input image is, the more noisy entities are arising.
Objects borders are found, resulting in a binary image (see Fig. 4(c)). Since the
Lampshade and Skier images contain much more texture than Cluttered scene,
more boundaries and consequently more boundary errors are visible at this stage
(Fig. 4(c), middle and right panels).

In Fig. 4(d) the results after the labeling of connected components are rep-
resented. Errors after the resolving domain fragmentation, resulting in noisy
speckles, are removed by reapplying the Metropolis procedure for system re-
laxation. The respective final segments extracted after the final relaxation are
shown in Fig. 4(e). Fig. 4(f) shows a comparison to a conventional segmentation
algorithm.

3.2 Execution time

In Fig. 5(a), the dependence of the segmentation runtime on the number of pixels
in an image is shown. We can see that the dependence is linear, as the Metropolis
algorithm, resolving the domain fragmentation and the labeling procedure have
almost the ideal linearity property versus image size (i.e., for N ×N images, its
complexity is O(N2)).

Among all algorithmic steps only the runtime of the labeling depends on the
structure of the input image, but deviations are in the range of two milliseconds
for images up to 256 × 320 pixels and of ten milliseconds for images up to
1024×1240 pixels. For very textured images like Skier the labeling takes longer,
since shapes of objects are more difficult and more provisional labels are being
assigned, so more time is needed to solve label equivalences (see 2.3). The most
time-consuming step is the Metropolis procedure, taking about 90 percent of
the total execution time (see Fig. 5(b)). Processing times of our segmentation
algorithm on GPU and CPU are compared in Table 1.

4 Discussion

We introduced a novel parallel nonparametric image segmentation algorithm
based on the method of superparamagnetic clustering. Using the highly parallel
2 available under http://vision.middlebury.edu/stereo/ [9]
3 available under http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/



9

(a)

(b)

(ñ)

(d)

(f)

Cluttered scene Lampshade Skier

(e)

Fig. 4. Intermediate and final results of the segmentation algorithm for three example
images. (a) Test images. (b) Results after 10 Metropolis iterations with q = 256.
(c) Found objects boundaries. (d) Labeling of connected components. (e) Extracted
segments after the final relaxation. (f) Results of graph-based image segmentation
approach of Felzenszwalb and Huttenlocher [15].
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Fig. 5. Timing performances of the algorithm. (a) Execution time versus the number
of pixels in an image. (b) Total computation time of all algorithmic steps in percentage.

Image size (px) GPU (ms) / CPU time (s)

”Cluttered scene” ”Lampshade” ”Skier”

128× 160 9.55 / 1.4 10.5 / 1.4 11.0 / 1.5

256× 320 33.8 / 5.8 34.3 / 5.9 33.7 / 5.9

512× 640 150.5 / 24.3 153.1 / 24.4 154.6 / 24.3

1024× 1280 601.3 / 100.8 612.2 / 102.2 609.8 / 102.5

Table 1. Total computation times obtained for GPU and CPU for different sizes of
the test images.

GPU architecture we obtained processing times which are sufficient for real-time
applications. So for images of size 256 × 320 pixels the algorithm can be used
for real-time processing tasks and of size up to 512 × 620 for close to real-time
applications. The algorithm has been adapted to fit the parallel architecture of
GPUs, including a procedure to resolve the domain-fragmentation problem.

The proposed method has been applied to several real images. Obtained
segmentation results for a single frame are comparable with conventional ap-
proaches. In Fig. 4(f) results of graph-based image segmentation proposed by
Felzenszwalb and Huttenlocher (2004) are shown. We can see that our results
(see Fig 4(e)) look very similar with the difference that our method yields more
small segments for very textured images like Skier. This happens because our
method takes into account only color information of interacting pixels. There-
fore our algorithm has a better performance for large segments than for small
ones, since the color segmentation works best for large uniform image regions.
For textured areas, corresponding to small regions, the performance of our al-
gorithm decreases, because the gray-value similarity of neighboring pixels is too
low. Towards better results for very textured images, in the future texture seg-
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mentation can be incorporated into the algorithm. With respect to processing
time our method outperforms the mentioned graph-based approach.

Also it is necessary to point out that the processing time is almost inde-
pendent of image structure, number of segments, and image density, i.e. the
relation between object pixels and boundary pixels during the labeling of con-
nected components. The slowest part of the algorithm is Metropolis updating,
since some annealing iterations have to be executed. A potential error source
of the algorithm originates from the boundary-detection procedure, which can
however be resolved in most cases by reapplying the Metropolis algorithm in the
final relaxation.

Several real-time approaches to the image-segmentation problem have been
suggested in the past [10–12]. However, most image segmentation methods either
deliver precise segmentation results at low speed or real-time processing with
relatively poor accuracy. In certain cases, however, both accuracy and speed have
been achieved [11, 12]. After release of the framework CUDA by NVIDIA in 2007,
some image segmentation algorithms were implemented on the GPU [13, 14]. A
method proposed by Kim et al. (2009) segments cervicographic images using the
spacially coherent deterministic annealing, but not in real-time. The real-time
algorithm of Vineet and Narayanan (2008) performs a binary segmentation of
the image into objects of interest and background, which is a different problem.
In our case, the whole image is segmented into similar regions according to a
similarity criterion, here color.

Currently, we are investigating whether alternative approaches for computa-
tion of equilibrium states of the Potts model can be parallelized efficiently as
well [26, 27, 22]. In the future, we will apply the algorithm to the problem of
image-sequence segmentation with the aim to track image segments in real time
in a model-free way [29].
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