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Abstract—The control of multi-legged animal walking is a
neuromechanical process, and to achieve this in an adaptive
and energy efficient way is a difficult and challenging problem.
This is due to the fact that this process needs in real time 1)
to coordinate very many degrees of freedom of jointed legs, 2)
to generate the proper leg stiffness (i.e., compliance), and 3)
to determine joint angles that give rise to particular positions
at the endpoints of the legs. To tackle this problem for a
robotic application, here we present a neuromechanical controller
coupled with sensorimotor learning. The controller consists of a
modular neural network (MNN) for coordinating 18 joints and
several virtual agonist-antagonist muscle mechanisms (VAAMs)
for variable compliant joint motions. In addition, sensorimo-
tor learning, including forward models and dual-rate learning
processes, is introduced for predicting foot force feedback and
for online tuning the VAAMSs’ stiffness parameters. The control
and learning mechanisms enable the hexapod robot AMOS to
achieve variable compliant walking that accommodates different
gaits and surfaces. As a consequence, AMOS can perform more
energy efficient walking, compared to other small legged robots.
In addition, this study also shows that the tight combination
of neural control with tunable muscle-like functions, guided
by sensory feedback and coupled with sensorimotor learning,
is a way forward to better understand and solve adaptive
coordination problems in multi-legged locomotion.

Index Terms—Legged locomotion, bio-inspired robot control,
muscle model, variable impedance control.

I. INTRODUCTION

EGGED animals are capable of adjusting their leg

stiffness to accommodate surfaces of variable structural
properties [1], [2], thereby leading to adaptive and energy
efficient locomotion [3], [4]. They also tune their leg stiffness
to accommodate different gaits based on energetic cost [5],
[6], [7], [8]. Neurophysiological studies have revealed that
these behaviors arise from the interplays between the nervous
systems and the musculoskeletal structures (i.e., muscles and
body) of legged animals [9], [10], [11]. These neuromechani-
cal interactions [12], [13] govern how legged animals achieve
adaptive locomotion on different surfaces. For example, cock-
roaches rely more on their musculoskeletal structures to move
over a regular surface. But moving over a more difficult one,
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they need to resort to the integrations of their nervous systems
and musculoskeletal structures [14].

As Bernstein pointed out, the need to control many degrees
of freedom (DOFs) is a characteristics of neuromechanical
systems [15], [10]. In a cockroach (e.g., Blaberus discoidalis),
for instance, there are 220 muscles controlling legs with at
least 19 DOFs that contribute to its locomotion [16]. Owing
to this, modeling the cooperations within and between different
functional components of neuromechanical systems in legged
locomotion is a very challenging task (Bernstein’s famous
‘degrees of freedom’ problem [15], [10]). Along this paradigm,
Full and Koditschek proposed a specific solution where two
types of dynamic models (i.e., template and anchor) are used
to model legged locomotion with many DOFs [17]. An anchor
is a representative model with detailed descriptions of neural
circuits, muscles, and joints. Whereas, a template represents
the simplest model of locomotion by trimming away the
detailed descriptions (e.g., muscles and joints) of the degrees
of freedom. Referring to the template, hexapod robots (i.e.,
RHex robots) were designed by Koditschek and his colleagues
[18]. Each RHex robot having only six DOFs showed un-
precedented mobility over different surfaces. Besides, they
can also achieve energy efficient locomotion by exploiting
passive variable compliant legs. For example, leg compliance
of a RHex robot was manually tuned to accommodate its
running speeds based on energetic cost [19]. The RHex robot
is the best example for a coordination architecture controlling
faster movement (e.g., running) where mechanical properties
(e.g., leg compliance) must be increasingly well tuned to
adapt to different environments [20], [10]. In such a case,
more feed-forward and decentralized control can suffice, since
feedback control may not be effective due to noisy sensing. By
contrast, slower movement (e.g., walking) can heavily count on
sensing which allows for more adaptive movement [21], [22].
Similarly, here more feedback and a centralized coordination
architecture will be utilized to control our hexapod robot
AMOS in a neuromechanical manner. Moreover, the modeling
of RHex robots is no more than a template, since this template
behavior was not embedded within a very detailed model
(i.e., anchor). The anchor model is a representative model
describing a nervous system, muscles, joints, and legs with
many DOFs like in insects [20]. Templates and anchors are
more than ‘simple models’ and ‘complex models’. Therefore,
there should be a natural embedding of the femplate behavior
within the anchor [17], [23]. Attempting to embed the femplate
within an anchor, Holmes et. al. [24] presented the com-



prehensive models of legged locomotion which integrates a
nervous system, central pattern generators (CPGs) [25], muscle
dynamics, and body mechanics. Thereinto, a Hill muscle
model [26], [27] was adopted to express the force generated
by agonist and antagonist muscles where there are up to 26
parameters to be tuned. Thus, such detailed neuromechanical
models (i.e., anchors) are computationally expensive and not
practical for being implemented on physical legged robots.
Therefore, a computational model for adaptive and energy
efficient physical robot locomotion that accommodates differ-
ent gaits and surfaces remains an important and unresolved
problem in a neuromechanical context [15], [10].

To solve this problem, we propose a neuromechanical
controller [21] coupled with sensorimotor learning [28], [29]
for active tuning [11] of passive properties (e.g., stiffness
parameters) of the muscle-like components driving the joints
during locomotion. Specifically, here the multi-legged robot
can online adjust the stiffness parameters to produce variable
compliant joint motions, thereby accommodating its walking
to different gaits and surfaces. Thus, one of the main objectives
of this paper is to show that neuromechanical control coupled
with sensorimotor learning can generate variable compliant
joint motions of a hexapod robot with 19 DOFs, like AMOS.
The control and learning mechanisms adopted here enable
AMOS to achieve adaptive and energy efficient walking over
different surfaces with the appropriate gaits. Generally, energy
efficiency is measured by cost of transport! COT (i.e., specific
resistance [30], [18]). Lower COT corresponds to more energy
efficient locomotion. We show that our hexapod robot AMOS
can achieve lower COTs (see Table I and Figs.7 in supplemen-
tary information) than other small legged robots (less than
8 kg [31]), when proper gaits are chosen for walking over
different surfaces. These surfaces include loose surfaces (e.g.,
fine gravel and coarse gravel), an elastic surface (e.g., sponge),
and a muddy surface (e.g., grassland).

Classical neural control [32] and variable compliance con-
trol [33] are generalized and integrated into our neurome-
chanical controller consisting the modular neural network
(MNN) and several virtual agonist-antagonist mechanisms
(VAAMs). Such an integration facilitates more adaptive and
energy-efficient walking on challenging surfaces. For instance,
the neuromechanical controller enables AMOS to achieve
more energy-efficient waking on the challenging surfaces [21],
compared to the adaptive neural controller [22], [58]. This
is because the adaptive neural controller consists only of
the MMN and adaptive forward models without the muscle-
like mechanisms (e.g., VAAMs), which allow for variable
compliant joint motions for more energy-efficient walking on
the surfaces. Generally, variable compliant joint motions can
be achieved by passive or active compliance control. Passive
compliance control is typically regarded as the integration
of actuators and viscoelastic mechanics [34]. Such control,
however, leads to structural and sensory complexities that
cause bulkier and energy-inefficient legged robots with many
DOFs [35]. Whereas our neuromechanical controller solves

I'The cost of transport (i.e., COT) quantifies the energy efficiency transport-
ing an animal or a vehicle from one place to another. It is also called specific
tractive force or specific resistance.

these problems virtualizing the muscle-like mechanisms (i.e.,
VAAMs), which can be applied to variable compliance control
of lightweight legged robots with many DOFs. Regardless of
additional passive components, the VAAMs or active com-
pliance control is characterized by software control of joint
positions or torques [21], [33]. The implementation of active
compliance control typically requires force/torque sensing
at each joint of legged robots. Whereas the VAAMs make
AMOS achieve variable compliant joint motions relying only
force sensing at the end effector of its leg. Moreover, the
integration of the VAAMs and a proximo-distal gradient en-
hances stabilities of variable compliant locomotion. Whereas
active compliance control intrinsically results in instability
of variable compliant locomotion [36], [37]. Furthermore,
adaptive compliance control on a physical legged robot with
many DOFs remains an important and unsolved problem in a
context of energy-efficient walking on different surfaces. Here
we develop sensorimotor learning to self-adjust the stiffness
parameters of the VAAMs, which adapts AMOS’s walking to
different gaits and surfaces.

The work presented in this paper is built on the neu-
romechanical controller where the stiffness parameters of
the muscle-like mechanisms (i.e., VAAMs) were manually
adjusted with only one gait [21]. Whereas now sensorimotor
learning is developed and integrated to self-adjust the stiffness
parameters of the VAAMs of the neuromechanical controller,
which adapts AMOS’s walking to nine gaits and four sur-
faces. As a result, the neuromechanical control coupled with
sensorimotor learning enables AMOS to achieve more energy-
efficient walking, compared to mere neuromechanical control
[21]. The main contributions of the presented control and
learning mechanisms are as follows:

o the developed muscle-like mechanisms (i.e., VAAMs)
show a simple way to achieve variable compliant joint
motions without complex sensory systems and (physical)
compliant components;

« the integration of the VAAMs and a proximo-distal gra-
dient leads a way to solve locomotor instabilities under
active compliance control;

« the developed sensorimotor learning (see Fig. 1) presents
a way to adaptive compliance control of a multi-legged
robot with many DOFs;

o the neuromechanical control coupled with sensorimotor
learning provides a way forward to model and control
adaptive and energy-efficient legged locomotion with
many DOFs.

II. NEUROMECHANICAL CONTROLLER COUPLED WITH
SENSORIMOTOR LEARNING

A. Overview

We include the feed-forward and feedback pathways into
our neuromechanical controller (see Fig. 1). For the feed-
forward pathways, the controller not only consists of feed-
forward control via descending commands (i.e., .S, N;, and
O;) from a neural circuit to muscle-like components and body
mechanics, but also includes six forward models [38] for
predicting force sensing (i.e., Ff:m) of the six legs. In the



feedback pathway, there is force sensing (i.e., F,ff{) at the
end effectors of the legs. Using F}, | and F5*] as the inputs,
12 dual-rate learning processes can actively tune the stiffness
parameters (i.e., K;) of the muscle-like components driving 12
joints of the legs. This leads to variable compliant leg motions
over different surfaces. Actively tuning mechanical properties
(e.g., joint stiffness) is an important characteristic of animal
locomotion [11], [39], [40], [41]. For example, the tunable
mechanical properties of insect legs can help its locomotion

over rough terrain [14], [42], [43].
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Fig. 1. Neuromechanical control coupled with sensorimotor learning applied
to a hexapod robot AMOS. Via neural outputs N; (¢ = 1,2,...,17,18),
a neural circuit activates the muscle-like components that generate position
commands (i.e., O;) to move the leg joints of AMOS. The legs then
interact with the environment, which produces force feedback (i.e., Ff;ﬁ)
(m = 1,2,...,5,6). Besides, six forward models predict expected force
feedback (i.e., Ff:%l) of the legs based on the outputs of the neural network.
Using Fﬁf’ﬁ and Ff:hl as the inputs, 12 dual-rate learning processes actively
tune 12 stiffness parameters (i.e., Kj, j = 7,8,...,17,18) of muscle-
like components driving 12 joints. There are three ways of generating
position commands O; driving the joints: feed-forward neural control for
proximal joints (see (I)), combining feed-forward neural control and tendon-
like compliance for intermediate joints, and tendon-like compliance for distal
joints (see (D). Interestingly, these three ways are comparable to a proximo-
distal gradient [44], [45], [46] (see text for details).

In addition to neuromechanical interactions, studies of leg
muscle architecture [47] and function [48], [49], [50] suggest
that a proximo-distal gradient of muscle function and neural
control exists, which reflects different control strategies for
the joints [44], [45], [46], [51], [52]. Following the gradient,
proximal joints are under feed-forward neural control, and
are rarely sensitive to changes in loading during stance. By
contrast, distal joints are more sensitive to loading, and are
basically driven by tendons. This proximo-distal gradient en-
hances locomotor stability of legged animals on rough terrain
[46], [53], [54]. Based on the gradient, the virtual agonist-
antagonist mechanisms (i.e., VAAMs) emulate muscle-like
mechanisms (see Fig. 1). The contractile (i.e., CEs) and
passive (i.e., PEs) elements of the VAAMs implement feed-
forward neural control [14] and compliance of tendons [55],
respectively. The proximal joints (i.e., Thoraco Coxal joints)
of the hexapod robot are driven by a neural circuit (see
(D in Fig. 1) without muscle-like mechanisms (i.e., spring-
damper mechanisms). Whereas its distal joints (i.e., Femur
Tibia joints) are only actuated by the muscle-like mechanisms
emulating the compliance of tendons (see @) in Fig. 1). The
experimental results show that such a setup enables the hexa-
pod robot to achieve more stable walking on rough surfaces
(e.g., gravels). The setup enhances stability of legged robot
locomotion under active compliance control which generally

leads to locomotor instabilities [36], [37]. In the following, we
describe three above introduced components of our system: (I)
A neural circuit which produces the commands to coordinate
joint motions and to change gaits based on energetic cost. (II)
Biomechanical components consisting of muscle-like compo-
nents and a bio-inspired body. Walking systems particularly
require an adaptive muscle model where its parameters can
be easily and quickly tuned to achieve proper compliant joint
motions. (IIT) Sensorimotor learning which can predict sensory
consequences of actions and actively tune compliance of joint
motions; thereby enabling walking systems to accommodate
different gaits and deal with different surfaces. The details of
each component are described below.

B. Neural Circuit: Modular Neural Network (MNN)

Our modular neural network (MNN) is a biologically-
inspired hierarchical neural controller [56], [57]. The MNN
generates signals for inter- and intra-leg coordination of the
six-legged robot AMOS. Each leg has a TC (Thoraco Coxal)
joint allowing forward and backward motions, a CTr (Coxa
Trochanteral) joint allowing elevation and depression motions,
and an FTi (Femur Tibia) joint allowing extension and flexion
motions. The MNN consists of a central pattern generator
(CPG, see Fig. 2 (I)), a phase switch module (PSM, see
Fig. 2 (II)) and two velocity regulating modules (VRMs, see
Fig. 2 (IID)). All neurons of the MNN are modeled as discrete-
time, non-spiking neurons. The activation H; of each neuron
develops according to:

Hi(t) = Y Wijoi(t—1)+B;, i=1...,m, (1)
j=1

where m denotes the number of units, I3; is an internal
bias term (i.e., stationary input) to neuron i, W;; is the
synaptic strength of the connection from neuron j to neuron
i. The output o; of every neuron of the MNN is calcu-
lated using a hyperbolic tangent (tanh) transfer function, i.e.,
o; = tanh(H,;),€ [—1,1]. The weights W;; are manually
designed, except weights a, b, and ¢ which are obtained by
back-propagation learning (see Fig.2 (III)). More details of
determining the weights W;;, we refer to our previous work
[58].

The CPG consists of only two neurons with full connectivity
[25] (see Fig. 2 (I)), where B; and By are set to 0.01. The
weights Wy, and Wy are given by:

Wia(S) = 0.18 + S, Way (S) = —0.18 — S, )

where S € [0.01,0.18] is the modulatory input determining
the speed of the legs, which increases with increasing S.
The PSM is a generic feed-forward network consisting of
three hierarchical layers with ten hidden neurons (i.e., Hs —
Hy5) (see Fig. 2 (II)). The outputs of the PSM are projected
to the FTi (i.e., F'(R, L)(1,2,3)) and CTr (i.e., C(R,L)(12,3))
motor neurons (see Fig. 2 (IV)), as well as to the neurons
Hy3 and Hy4 of the two VRMs (see Fig. 2 (II)). The VRMs
are feed-forward networks projecting their outputs to the TC
motor neurons T'(R, L)1 2,3y (see Fig. 2 (IV)). Delays Az, and
A between the motor neurons are fixed (see Fig. 2 (IV)). The
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Fig. 2. Modular neural network. There are three different neuron groups:
input neuron (.S), hidden neurons (Hj_24) and output neurons (/N1_18).
The input neuron is used to control walking patterns of the hexapod robot
AMOS. The hidden neurons are divided into three modules: CPG, PSM
and VRMs, which have different functionalities (see texts for details). The
output neurons represent the neural activities of the joints of the robot. All
connection strengths together with bias terms are indicated by the small
numbers except some parameters of the VRMs (a = 1.7246, b = —2.48285,
¢ = —1.7246). Delays A1, and A between output neurons are set to 48 time
steps and 16 time steps, respectively. Abbreviations are: TR(L)1,2,3 = TC
joints of the Right(Left) Front, Middle, Hind legs, CR(L)1,2,3 = CTr joints
of the Right(Left) Front, Middle, Hind legs, FR(L)1,2,3 = FTi joints of the
Right(Left) Front, Middle, Hind legs. Abbreviations are: R(F, M, H) = Right
(Front, Middle, Hind) leg, L(F, M, H) = Left (Front, Middle, Hind) leg.

outputs N;_1g of the motor neurons are the neural activities
of the joints of the hexapod robot. Here, we show how Nj_ig
enable the legs to perform a fast wave gait [57] (see Fig.1 in
supplementary information). In addition, nine gaits (see Fig.2
in supplementary information) are achieved by changing the
modulatory input S (see Eq.(2)) of the modular neural network
(MNN, see Fig.2). More details of the MNN can be seen at
our previous work [58].

C. Biomechanical Components

1) Muscle-like Component - Virtual Agonist-antagonist
Mechanism (VAAM): The virtual agonist-antagonist mecha-
nism (VAAM) consists of a pair of agonist and antagonist
mechanisms (see Fig. 3(a)). It produces active and passive
forces using its contractile and parallel elements (CEs and
PEs, see Fig. 3(b)). In Fig. 3(a), a physical joint is driven by
a VAAM (i.e., M1 and M2). Virtual means that the joint,
physically driven by a standard servo motor, imitates muscle-
like behaviors as if it were driven by a pair of physical agonist
and antagonist muscles. The joint actuation relies on the CEs,
while the PEs govern joint compliance.

The parallel elements (i.e., PEs) are modeled as spring-
damper systems (see Fig. 3(b)) in terms of a Voigt muscle
model [59]. The active forces produced by the CEs are
approximated by the product of the neural activity N; and
the activity strengths i(; 7). More details of mathematically
modeling the PEs and CEs can be seen at our previous work
[60]. We apply Euler’s law to the rotation of the joint P (see
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Fig. 3. Virtual agonist-antagonist mechanism (VAAM) for joint control
interacting with the ground surface. (a) The physical joint P is driven by a
VAAM (i.e., M1 and M2) with the lengths L1 and Lo. The interaction results
in an external force f¢*¢, which drives the joint P with radius r via the shank
with length L. f¢%? is sensed by a force sensor (i.e., O), and fJ- is the amount
of fe=t directly perpendicular to the position of the joint P. @ is the rotational
angle of the joint P relative to the absolute frame Z. (b) The agonist and
antagonist mechanisms consist of contractile and parallel elements (C'E(q 2)
and PE(; o)). PE(y 2y are spring-damper systems producing passive forces.
CE(1,2) generate active forces depending on the neural activity N; and the
activity strengths (1 2y (i.e., i(1,2) € [—1,1]). The neural activity N; is one
of the outputs Nj_1g of the modular neural network (see Fig. 2 (IV)).

Fig. 3(a)). The motion equation of the joint P is given by:

10 = ftsin(@)L+[  rN;  —r(2K60r +2D0r)).
—_— ~~ —_—

torque by f¢ot torque by C'E (1 2) torque by PE(1 o)

3)
Equation (3) governs the angle 6 of a physical joint driven
by the VAAM that is activated by the output N; (j € Zy,15))
of the MNN. The joint angle # and joint velocity 6 in Eq.(3)
are not from sensory feedback but calculated using fourth-
order RungeKutta. In principle, this bio-inspired compliant
joint control approach (i.e., the VAAM) shares a connection
to classical impedance control approaches [61] in terms of
spring-damper based compliance. However, it is a biological
model where biological muscle functions (e.g., brakes [62])
can be easily emulated by changing stiffness and damper
parameters (i.e., K and D in Eq.(3)) [63]. Here, through using
sensorimotor learning (see section II-E for details), K will be
adjusted in an online manner while D will keep fixed during
walking. More advantages of the VAAM model are described



at our previous work [21].
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Fig. 4. Hexapod robot AMOS. Its three-jointed legs mimic leg morphology
of an insect (see Figs.3 in supplementary information). (a) AMOS and its
sensors. fc(y_g) are force sensors. (b) The outputs Og—1s controlling the
19 joints of AMOS when receiving analog signals ffftﬁ, which are detected
by the force sensors at the legs. Abbreviations are: L(1,2,3) = Left (Front,
Middle, Hind) leg. R(1,2,3) = Right (Front, Middle, Hind) leg.

2) Bio-inspired Body - Hexapod Robot AMOS: Here we
use a hexapod robot (i.e., AMOS, 5.4 kg weight, see Fig. 4
(a)) as our experimental platform. It has six three-jointed
legs (see Figs.3 in supplementary information), and each leg
emulates the morphology of a cockroach leg [64]. Every
leg has a TC (Thoraco Coxal) joint allowing forward and
backward motions, a CTr (Coxa Trochanteral) joint allowing
elevation and depression motions, and an FTi (Femur Tibia)
joint allowing extension and flexion motions (see Figs.3 in
supplementary information). Each joint is physically driven
by a standard servo motor (i.e., HSR-5990TG). There is a
force sensor (i.e., FS Series Force Sensor) used for detecting
an analog force signal at each leg (see fci1_g in Fig. 4 (b)).

A current sensor, installed inside the body of the hexapod
robot, is used to measure the electrical current supplied to all
motors of the robot. Here, the current sensor signal is used to
calculate power consumption during walking. The sensory data
are transmitted via an RS232 serial connection to an external
PC on which the controller is implemented. The final motor
commands of the controller are sent to the robot also via the
serial connection.

D. Neuromechanical Control: Combining Neural Circuit and
Biomechanical Components

The outputs O1_15 € [—1,1] of the neuromechanical
controller are linearly scaled and transmitted to control the
positions of the standard servo motors driving the 18 joints of
the hexapod robot (see Fig.5 (b) in supplementary informa-
tion). Note that the command Og here is set to a constant
value (i.e., Oy = 0) for controlling a backbone joint to
the middle position. For joint control (i.e., O1_13), different
control strategies are applied to swing and stance phases, like
virtual model controllers [65], [66].

1) Swing Phase: When a leg is in swing phases (i.e., ff*!
=0,¢=1,2,...,5,6), the motor neurons N; ;.6 +12) Of
the MNN (see Fig. 2 (IV)) are linearly transformed into the
outputs O(; ;y6,i+12) controlling the TC, CTr, and FTi joints.
O(i,i+6,i+12) satisfy:

[0, 0i46,0i112)7 = [0.4N;,0.15N;,6, —0.02N;;10]" —

[0.05,—0.86,0.43]",i € Zj; 5. (4)

The details of Eq.(4) can be seen in Egs.(A.(1-3)) of our previ-
ous work [21]. Note that the outputs O; ;1 ;+12) are kept and
transferred to the initial joint angles of the following stance
phases. The keeping leads to smooth switches from swing to
stance phases (see Fig.6 in supplementary information).

2) Stance Phase: The TC joint of the leg allowing only
horizontal motion is not affected by the PEs of the VAAM
since there is only detection of vertical foot force at the end
effector of the leg. As a consequence, the TC joint is driven
by the CEs of the VAAM that simulate feed-forward neural
control. By contrast, the CTr and FTi joints, contributing to
vertical motion of the leg, can be influenced by vertical foot
force. Based on the VAAMs, we test nine possible setups (see
Table I in supplementary information) to control the CTr and
FTi joints in a physical simulator (i.e., lpzrobots simulator
[67]). The simulation results show that the setup S2 is the
best leading to coordinated movement and stable locomotion
with the smallest body oscillation (see Fig.4 in supplementary
information). The setup S2 is as follows: each TC joint (i.e.,
proximal joint) is purely controlled by the CEs of the VAAM
(i.e., pure actuation), each CTr joint (i.e., intermediate joint) is
governed by the CEs and PEs of the VAAM (i.e., combination
of actuation and compliance), and each FTi joint (i.e., distal
joint) is driven by the PEs (i.e., PE; and PFE5) of the
VAAM (i.e., pure compliance) (see more details in Figs.5
of supplementary information). Interestingly, this setup also
complies with a proximo-distal gradient revealed by biological
studies on three-jointed leg locomotion [44], [52], [68]. These
studies show that proximal joints mainly act as actuation while
distal joints serve as compliance in legged animal locomotion.
Such passive compliance and active actuation make the VAAM
differ from virtual model control (VMC), which only contains
a virtual passive element (e.g., spring) attached to the robot
as if it had exited [65] (see Figs. 5). In contrast to VMC
controllers [66], the VAAM not only includes the virtual
passive elements (PEs) to act as muscle-like mechanisms,
but also integrates the virtual contractile elements (CEs) to
serve as neural control at the joints of legged robots. The
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Fig. 5. Schematic diagrams of virtual model control (VMC) and VAAM
control. (a) A virtual model controller [65] that only exploits a virtual passive
element (e.g., spring) attaching the body to the end effector. (b) The VAAM
controller that uses the virtual contractile and passive elements (i.e., CEs and
PEs, see Figs. 3). The controller is based on the proximo-distal gradient (see
more details in Figs.5 of supplementary information).

VAAM control is more bio-inspired control that generalizes
the integration of neural control and muscle-like functions on
coordinated and compliant control of legged robots, compared
to VMC controllers. As a result, the VAAM control enables
AMOS to not only achieve more stable walking under active
compliance control (see Fig. 6), but also easily emulate
muscle-like functions (e.g., brakes and springs) [63].

The outputs O;_1g of the proposed neuromechanical con-
troller are calculated as follows:

All TC joints are purely controlled by CE(; o) of the
VAAM. The matrix of the outputs of the TC motor neurons
is Tox1 = [N1, Na, ..., Ng|T (see Fig. 2 (IV)). O; are given
by (j € Zp 6)):

4)

The details of Eq.(5) can be seen in Eq.(A.4) of our previous
work [21].
Each CTr joint is driven by PE(;2) and CE(; 3 of the
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Fig. 6. Vertical positions of COM (Center Of Mass) of the hexapod robot
AMOS. The experiments are conducted in the physical simulator Ipzrobots
[67]. The VAAM control (setup S2, see Table I in supplementary information)
enables AMOS to walk stably (smaller body oscillation), compared to virtual
model control (VMC).

VAAM. The matrix 6241 of the CTr angles is the sum of the
Hadamard products (see Eqgs.(17-18) as in our previous work
[60]):

19..26><1 = Fgmtl O(LQCOS(926x1)+‘f16X1)

X

+[rCex1 —
212 (K 26%1 0 026x1 + D26x1 © 026%1)]. (6)

The angles 02,,, 1 (m € Zy 6], see 026x1 in Eq.(6)) of the CTr
joints are linearly transformed into their outputs O; (see more
details in Figs.5 of supplementary information). O; are given
by (J € Zj712):

0; = —0.802,,1 — 0.38, m = j — 6. (7

The details of Eq.(7) can be seen in Eq.(A.5) of our previous
work [21].

Each FTi joint is only driven by PE(; o) of the VAAM (see
more details in Figs.5 of supplementary information). The FTi
angle matrix 61y is the sum of the Hadamard products (see
Eqgs.(13-15) as in our previous work [60]):

Ia“].ﬁxl = ngtl o sin(016X1)L1 -
2r%(K1gx1 0 01lgx1 + Dlgx1 0 0lgx1). (8)
The angles 01, 1 (m € Z; g, see 01gx1 in Eq.(8)) of the FTi

joints can be linearly transformed into their outputs O; (see
more details in Figs.5 of supplementary information). O; are

given by (j € Zj13,15]):

0; =0.9201,, 1 +0.12,m = j — 12. 9)

The details of Eq.(9) can be seen in Eq.(A.6) of our previous
work [21].

E. Sensorimotor Learning for Adaptive Compliant Joint Mo-
tions

The adaptive compliant joint motions of AMOS are
achieved by actively adjusting the stiffness parameters K 1gx1
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,5,6) are stiffness parameters of the passive

elements (i.e., PEs) driving the FTi and CTr joints of the AMOS’s legs. For each leg, there are two dual-rate learning processes for adjusting stiffness
parameters (e.g., K141 and K24 1) by using expected and real foot force signals (e.g., F4 , and F It) The expected foot force signal (e.g., F4 1) is
predicted by a forward model based on an output (e.g., O4) driving the TC joint. Each dual- rate ledrmng process consists of a fast learner and of a slower
learner acting in parallel. (a) A dual-rate learning process for stiffness parameters K 1,, 1. The parameters of the two learners are set as: Aly = 0.59,
Algs = 0.992, B1 f =0.378, and Bls = 0.036. (b) A dual-rate learning for stiffness parameters K2, 1. The parameters of the two learners are set as:

A2y = 0.59, A25 = 0.992, B2y = 0.882, and B2; = 0.084.

and K21 (see Egs.(8) and (6)) of the passive elements (i.e.,
PEs) of the VAAMs driving the FTi and CTr joints. Here,
we apply sensorimotor learning for online adjusting Klgx1
and K2y, at every time step At (i.e., At = 0.019(s)).
For each leg, there are two dual-rate learning processes and
a forward model (see Figs. 7 (a) and (b)) for the CTr and
FTi joints. The forward model uses the outputs (i.e., O,,(t))
driving the TC joints to predict foot force signals (i.e., F};, ; (t),
m = 1,2,...,5,6). Specifically, F}, |(t) will gradually in-
crease to 1 when O, (t) is decreasing (e.g., see F}(t) and
Oy(t) in Fig. 8 (a)). F} | (t) are given by:

Ep ((t+ At) = 0.2G 1 (t + At) + 0.8F) (1),

Gm(t) = {1’ Om(t + At) < O ().

0, Om(t+A8)>0n). 0

The matrix egx1 (t) of errors between expected and real foot
force signals is:

€6><1(t) = Fgﬁ(t) - Fé)xl(t )

€6><1(t) = [61(t)7 eg(t), ey 65(t)7 66(t)]T, (11)

where FEZ! (t) is the matrix of the real foot force signals, i.e.,
Fget(t) = fe=h(t) (see Figs.4). FY (t) is the matrix of the
predicted foot force signals, i.e., Ff. ,(t) = f7_4(t).

An error (e.g., e4.1(t)) is used as the input to a dual-rate
learning process. For reducing the error (e.g., see eq1(t) at
Fig.8 (b)), the process adjusts the stiffness parameter (e.g.,
K141(t)) of the PEs driving the FTi joint in each leg (see
Fig. 7(a)). Each learning process consists of a fast learner
and of a slow learner. Both learners are modeled as linear
systems acting in parallel. The fast one learns compensating
the error more quickly, is indicated by a higher learning rate,
i.e.,, Bly > B1,. Whereas, the slow one retains previous states
much better, is indicated by a high retention factor, i.e., Al; <
Als. Therefore, the matrix K1lgx1(t) of stiffness parameters
for the FTi joints is given by:

K1f, (t+ At) = A1;K 1] (t) + Blyegxa(t),
Klgxl(t + At) - AlsKlgxl( ) + Blseﬁxl(t)7

Klgxi(t 4+ At) = K15 (t+ At) + K13, (t + At), (12)

where K 13;’1(1% + At) are the outputs of fast learners, and
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Fig. 8. Sensorimotor learning for adjusting stiffness parameter K24 1. Here the gait is fast caterpillar (i.e., the modulatory input S = 0.10). (a) Forward
model. The output O4(t) driving the TC joint is applied to predict the foot force signal Fﬁ 1(t) (see Eq.(10)). (b) Contact forces. Ffﬁt(t) and Ff, , are the

real and predicted contact forces. (c) Learning the stiffness parameter K24 1.

K241 is the sum of the outputs (i.e., K 2{ ; and K2§ 1) of a fast learner and

a slow learner using the error e4,1 between Ff“it and ij 1 (see Eq.(13)). The adjustment of stiffness parameter K14 1 dr1vmg the FT1 joint in the left front
leg is shown in Fig.10 (a) (i.e., see LF). (d) 010 and 016 are the outputs controlling the positions of the CTr and FTl joints in the left front leg.

K13, 1(t + At) are the outputs of slow learners. Note that the
value of Aly and Al, are from [28], and Bl and Bl are
empirically chosen (see all values in Fig. 7(a)).

Similarly, the matrix K24x1(t) of stiffness parameters (see
Fig. 7(b)) for the CTr joints is given by:

K2l (t+ At) = A2fK26><1( )+ B2esxi(t),
K23, (t+ At) = A2,K25,,(t) + B2,e6x1(t),
K261 (t + At) = K20 (t + At) + K25, (t + At), (13)

where K 27{%1(15 + At) are the outputs of fast learners, and
K27, ,(t + At) are the outputs of slow learners. Note that
the value of A2y and A2, are from [28], and B2; and
B2, are empirically chosen (see all values in Fig. 7(b)). The
Eqgs.(12) and (13) are written in terms of time ¢ different from
the equations in [28] and [29] formulated according to trial

number n.

III. EXPERIMENTS

A. Sensorimotor Learning for Self-Adjusting Stiffness Param-
eters

For each leg, there are two learning processes coupled
with a forward model (see Fig. 7) for adjusting the stiffness
parameters (e.g., K141 and K24 1). At the left front leg, for
example, there are two outputs (i.e., K 24{1 and K 22,1) of
a fast learner and a slow learner acting in parallel, which
contribute to stiffness parameter K24 ; (see Fig.8 (c)). One
can see that the fast one learns K 21’1 more rapidly, which
leads to smaller oscillations (see green dashed line in Fig. 8
(c)). By contrast, the slow one retains K 2?1)1 better, thereby
leading to the convergence (see red dashed line in Fig. 8 (c)).
This is because the retention factor A2y = 0.59 of the fast
learner is lower than A2, = 0.992 of the slow learner (see
Eq.(13)). Moreover, the fast learner is more sensitive to the



perturbations (i.e., stance phases) after learning (see Fig. 9),
compared to the slow learner. This is because the learning rate
B2y = 0.882 of the fast learner is higher than B2, = 0.084
of the slow learner (see Eq.(13)). The combination of the
slow and fast learners enables the stiffness parameters (e.g.,
K?2,41) to achieve global convergences and local oscillatory
stiffness responds (see Figs. 8 (c) and 9), which lead to stable
and adaptive compliant hexapedal walking on challenging
surfaces. Furthermore, the stiffness parameters (e.g., K24 1)
during swing phases are higher than them during stance phases
(see Fig. 9), since they (during the swing phases) are kept
as the stiffness parameters from the previous stance phases.
Note that sensorimotor learning (see Eqs. (10)-(13)) is not
applied to adaptively control the joints during swing phases,
since there is only feed-forward neural control (see Eq.(4))
on the joints during swing phases. Whereas during stance
phases, the stiffness parameters (e.g., K24 1) initially decrease
and increase afterwards (e.g., see Fig. 9). This is because the
muscle-like mechanisms (i.e., VAAMs) need to initially soften
the joints to absorb impacts of external loads, and afterwards
stiffen them to obtain more forces to move forward. Similarly,
the PEs of the VAAMs also soften and stiffen the FTi joints
during stances phases (see Fig. 10 (a)). In other words, the
VAAMs stiffen when the external load increases (i.e., stance
phases). This property of the VAAMs is comparable to that
of biological muscles, which become stiff when the external
load increases [69], [10]. The video of the experiment can
be seen at http://www.youtube.com/watch?v=B0v5D9yiRH4.
Note that AMOS had difficulties to walk on all experimental
surfaces when only fast or slow learners were used to tune
stiffness parameters K1lgx; and K24;. The video of the
experiment can be seen at http://www.youtube.com/watch?
v=Lq22FibYLE4. This is because the slow or fast learners
allow only for global convergences or local oscillatory stiffness
responds (see Fig. 9). Whereas combining the slow and fast
learners, the dual-rate learners enable K1,,; and K2,
to achieve global convergences (see Fig. 8 (c)) and local
oscillatory stiffness responds (see Figs. 10), thereby leading to
stable and adaptive walking on different surfaces. Moreover,
the ranges of the stiffness parameters K1,,; and K2, ; vary
between hind and non-hind legs. Lower K'1(3¢) 1 and higher
K236y, (see LH and RH in Figs. 10) press the hind legs
more down, which enhance locomotion stability, compared
to the front and middle legs. This is because the mass of
AMOS mainly concentrates on its hind part. Furthermore, the
values of B(1,2); and B(1,2), are empirically chosen to
produce proper stiffness parameters K1,,; and K2, (see
Figs. 7), which leads to appropriate (e.g., smooth) compliant
joint motions of AMOS. For example, the compliant CTr joint
motions are more smooth (see K2,,; = 9.0 in Fig. 11)
when the parameters K2, ; of their driving VAAMs are self-
adjusted between 6.5 and 13.5 (see Fig. 10 (b)).

B. Adaptive Leg Compliance for Different Gaits

Actively tuning stiffness parameters Klgx; and K2gx1
allows AMOS to accommodate different gaits. AMOS, for
instance, walked on fine gravel when slow wave (i.e., S =
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Fig. 9. Sensorimotor learning for adjusting stiffness parameter K24 1 during
a swing and stance phases (see more details at Figs. 8). The figure is clipped
from Fig. 8 (c).
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H) = K1(1,2 3y,1, L(EM, H) = K1(4 5 6,1 (b) Stiffness parameters K2y, 1
for the CTr joints. The compliances of CTr joint motions are determined by
the stiffness parameters K2,,,1 (see Eqs.(6)). Abbreviations are: R(F, M, H)
=K2(1,23),1, LEM H) = K24 56),1-

0.02) and fast caterpillar (i.e., S = 0.10) gaits were cho-
sen (see Figs.2 (a) and (e) in supplementary information),
respectively. One can see that AMOS softens and stiffens
its CTr and FTi joints during stance phases, no matter
which gait is chosen (e.g., see the gray area in Figs. 12
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Fig. 12. Adjustments of K141 and K24 ; for different gaits. AMOS walked
on fine gravel where its gait was chosen as slow wave (i.e., S = 0.02)
and fast caterpillar (i.e., S = 0.10) gait, respectively. Sensorimotor learning
enables AMOS to self-adjust stiffness parameters K141 and K241 for the
left front leg. (a) TC joint outputs O4. (b) CTr joint outputs O1g. (c) Stiffness
parameters K24 1 determine the compliance of CTr joint motions of the left
front leg. (d) FTi joint outputs O1¢. () Stiffness parameters /14 1 determine
the compliance of FTi joint motions of the left front leg. (f) Foot contact force
EITors e4,1.

(c) and (e)). The video of the experiments can be seen at
http://www.youtube.com/watch?v=tmqr65qIOTY . Moreover,
the slow wave gait enables CTr and FTi joints to achieve stiffer
motions that result from larger K'1,,; and K2,,1 (e.g., see
green dashed circles in Figs. 12 (c) and (e)), compared to the
fast caterpillar gait. That is, AMOS stiffens the legs during

stance phases when the speed of its leg motion is reduced
from the fast gait to the slow gait. This result is comparable
to the finding of physiological experiments, which had shown
that at low speed animals walk by vaulting stiffer legs [70],
[24]. By contrast, AMOS softens its legs when the speed of
its leg motion is increased from the slow gait to the fast one.
This finding may reflect a control strategy of polyped (i.e., >
two legs) locomotion where polyped systems soften the legs
owing to energy efficiency requirements [3]. Our experimental
results also show that the fast caterpillar gait (i.e., S = 0.10)
allows AMOS to achieve softer leg motions which lead to
more energy-efficient locomotion on all experimental surfaces
(see Costs of transport in Figs. 14), compared to the slow wave
gait (i.e., S = 0.02).
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Fig. 13. Adjustments of K141 and K24 for different surfaces. An
intermixed gait (i.e., modulatory input S = 0.12) was chosen for AMOS
to walk on fine and coarse gravel, respectively. Sensorimotor learning enables
AMOS to self-adjust stiffness parameters K141 and K241 for the left
front leg. (a) TC joint outputs O4. (b) CTr joint outputs O1g. (c) Stiffness
parameters K241 determine the compliance of the CTr joint motions of
the left front leg. (d) FTi joint outputs O1¢. (e) Stiffness parameters K14 1
determine the compliance of the FTi joint motions of the left front leg. (f)
Foot contact force errors e4,1.

C. Adaptive Leg Compliance for Walking on Different Sur-
faces

Actively changing stiffness parameters K 1gx1 and K2gx1
also leads to adaptive locomotion on different surfaces, for
example, when an intermixed gait (i.e., modulatory input
S = 0.12) was chosen for AMOS to walk on fine and
coarse gravel, respectively. On these two surfaces, AMOS
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Fig. 14. Energy efficiencies of AMOS walking on different surfaces using different gaits. The energy efficiency is measured by cost of transport COT (i.e.,
specific resistances, see Eq.(14)). Lower COT corresponds to more energy efficient locomotion. Nine gaits (see Figs.2 in supplementary information) were
chosen for AMOS walking over each experimental surface. (a) COTs on fine gravel. The slow intermixed gait (i.e., S = 0.12) enables AMOS to achieve
more energy efficient walking. (b) COTs on coarse gravel. The Fast intermixed gait (i.e., S = 0.14) is more energy-efficient for its walking on this surface.
(c) COTs on elastic sponge. The slow caterpillar gait (i.e., S = 0.08) is the optimizer gait. (d) COTs on grass land. The fast caterpillar gait (i.e., S = 0.10)

allows AMOS to achieve more energy efficient walking.

joints receive the same motor neuron outputs® of the modular
neural network (i.e., MNN, see Fig. 2). One can see that
the TC joint motions of the left front leg are the same (see
Fig. 13 (a)) because they are controlled by only feed-forward
neural control (i.e., without passive elements). By contrast,
CTr and FTi joint motions are different (see Figs. 13 (b) and
(d)) during stance phases when AMOS walks on fine and
coarse gravel, respectively. This is because TC, CTr, and FTi
joints act with different roles (i.e., compliance or actuation,
see more details in Figs.5 of supplementary information) for
controlling leg motions in stance phases. Moreover, we can see
that the CTr and FTi joints are stiffer’ (i.e., higher K14 and
K24, values, see Figs. 13 (c) and (e)) when AMOS walked
on coarse gravel, compared to fine gravel. This makes the
legs penetrate more deeply, but also extend more widely into
the coarse gravel (see CTr and FTi joint motions in Figs. 13
(b) and (d)). The video of the experiments can be seen at
http://www.youtube.com/watch?v=-Du62APFUt0 .

2In our work, the same modulatory input S of the modular neural network
(i.e., MNN) corresponds to same motor neuron outputs (i.e., Nj_1g in
Fig. 2(IV)).

3A joint greatly resists the influence of external forces, and is thus “stiff”.
Whereas, a joint allows external forces to influence its movement easily, and
is thus “soft” [71].

D. Energy Efficient Walking

In the previous subsections, we show that the proposed neu-
romechanical controller coupled with sensorimotor learning
enables AMOS to produce coordinated and variable compliant
joint motions that accommodate different gaits and surfaces.
For each surface, nine gaits (see Figs.2 in supplementary
information) are chosen by changing the modulatory input
S (see Eq.(2)) of the modular neural network (MNN, see
Fig.2). The variable compliant joint motions lead to different
energy efficiencies of AMOS walking on fine gravel, coarse
gravel, elastic sponge (stiffness 0.523 kN/m), and grass
land. Typically, the energy efficiency is measured by cost of
transport COT (i.e., specific resistance [30], [18]) as:

Poug d

Vaa = -
y» Yavg
MYGVavg t

CcoT = (14)
where P,  is average power consumption. mg is the weight
of AMOS, ie., mg = 52.974 N. vgq,4 is its average forward
speed when AMOS walks a distance d using time ¢. For each
gait, we repeatedly ran the hexapod robot on each surface until
ten successful runs were obtained. For each successful run, the
average power consumption P, was calculated based on the
electrical current supplied to all motors of AMOS, which is
measured by a current sensor. Low C'OT corresponds to more
energy efficient walking.

Figures 14 show costs of transport (i.e., COTs) when AMOS



TABLE I
THE COMPARISON BETWEEN THE HEXAPOD ROBOTS

Hexapod robots AMOS RHex [18] | Gregor I [72]
COTs 3.4—11.7 3.7—14 70
DOFs 19 6 16

walked on the four surfaces using the nine gaits. One can see
that AMOS achieves more energy efficient walking by using
gaits with intermediate leg speeds, compared to a slower leg
speed (i.e., modulatory input S = 0.02, slow wave gait) or a
faster leg speed (i.e., S = 0.18, fast tripod gait). Moreover,
different gaits let AMOS consume different energetic costs.
For instance, the slow intermixed gait (i.e., S = 0.12) enables
AMOS to achieve more energy efficient walking on fine gravel
(see Fig. 14 (a)) while the fast intermixed gait (i.e., S = 0.14)
is an efficient gait for AMOS walking on coarse gravel (see
Fig. 14 (b)). The slow (i.e., S = 0.08) and fast (i.e., S = 0.10)
caterpillar gaits make AMOS achieve more energy efficient
walking on elastic sponge and grass land, respectively (see
Figs. 14 (c) and (d)). The video of the experiments can
be seen at http://www.youtube.com/watch?v=SrasTYQG8XKk .
Integrating neuromechanical control and sensorimotor learn-
ing, the adaptive neuromechanical controller (see Fig. 1)
enables AMOS to achieve adaptive compliant walking, which
effectively accommodates different gaits and surfaces. Such
walking is achieved by online adjusting stiffness parameters
Klgx1 and K261 (see Egs.(12) and (13)) of the passive
elements (i.e., PEs) driving the FTi and CTr joints. Note
that all damper parameters D(1,2),, 1 (see Egs.(8) and (6))
are set to 1.0 in all experiments chosen by trial and error.
As a result, the adaptive neuromechanical controller (see
Fig. 1) reduces COT of AMOS’s walking to between 3.4
and 11.7, compared to our previous work [21]. Similarly, the
adaptive neuromechanical controller allows for lower COT
that corresponds to more energy-efficient walking (see Fig. 15
(a)), compared to the adaptive neural controller [22]. This is
because the adjustable VAAMs of the adaptive neuromechan-
ical controller result in compliant and smooth joint outputs
(e.g., see Fig. 15 (b)), which lead to proper (e.g., deeper)
leg penetrations into challenging surfaces (e.g., coarse gravel).
Whereas other neural controllers [58] like the adaptive neural
controller [22] cannot achieve such leg penetrations due to the
lack of the muscle-like mechanisms (e.g., VAAMSs). Moreover,
the adaptive neuromechanical controller makes AMOS achieve
more energy-efficient walking (see Table I and Figs.7 in
supplementary information), compared to other small legged
robots (less than 8 kg [31]).

IV. DISCUSSION AND CONCLUSION

The proposed method (see Fig. 1) enables our legged
robot to achieve variable compliant joint motions with self-
adjustments that accommodate different gaits and surfaces.
These motions are generated by online tuning 12 stiffness
parameters (i.e., K1, and K2,, 1, m =1,2,...,5,6) of the
muscle-like mechanisms (i.e., the VAAMs) driving 12 joints.
This online tuning is achieved by sensorimotor learning (see
Fig. 1) with only force feedback at the end effectors of the
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Fig. 15. Costs of transports COT' and CTr joint outputs under the adaptive
neuromechanical (see Fig. 1) and neural [22] controllers. The experimental
surface is coarse gravel. (a) Costs of transports COT'. (b) CTr joint outputs
O10 (with fast intermixed gaits, modulatory input S = 0.14).

legs. It is distinct from variable active compliance which is
achieved by using force/torque feedback at each joint of the
legs [33]. Moreover, active compliance control often gives rise
to unstable locomotion on tough terrain (e.g., see VMC in
Fig. 6)[37], [36]. Whereas our method utilizes the proximo-
distal gradient to enhance locomotor stability on tough ter-
rain (e.g., gravels) (see Fig.4 in supplementary information).
Our method also differs from passive compliance, which is
characterized by physical passive components (e.g., springs
and dampers [73]) [74]. In addition, the proposed VAAM is
a computational muscle model which can be easily applied
to control physical legged robots [21], [63]. Thereby, the
VAAM is also different from the Hill muscle model [26], [27]
where there are typically 26 parameters to be tuned, usually
used in computer simulations [75]. In conclusion, the main
contribution of the work introduced here is that we present
a way forward to understand and solve Bernstein’s problem
[15] of how to efficiently control many degrees of freedom in
multi-legged locomotion tasks. This allows our legged robot to
achieve adaptive and energy efficient walking without complex
passive components or force/torque sensing systems.
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