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Abstract

The neuromechanical control principles of animal locomotion provide good insights for the development of bio-inspired legged
robots for walking on challenging surfaces. Based on such principles, we developed a neuromechanical controller consisting of a
modular neural network (MNN) and of virtual agonist-antagonist muscle mechanisms (VAAMs). The controller allows for variable
compliant leg motions of a hexapod robot, thereby leading to energy-efficient walking on different surfaces. Without any passive
mechanisms or torque and position feedback at each joint, the variable compliant leg motions are achieved by only changing the
stiffness parameters of the VAAMs. In addition, six surfaces can be also classified by observing the motor signals generated by the
controller. The performance of the controller is tested on a physical hexapod robot. Experimental results show that it can effectively
walk on six different surfaces with the specific resistances between 9.1 and 25.0, and also classify them with high accuracy.
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1. Introduction

Neuromechanical models for animal locomotion combine
neural circuits (e.g., central pattern generators, CPGs) and
biomechanics (e.g., muscles). They are also used to study
the interplay of muscles, CPGs, and sense organs [1], which
provides good insights into developing bio-inspired locomo-
tion systems [2]. Employing such models leads to adaptation
and energy efficiency of locomotion of the bio-inspired systems
[3, 4, 5].

The energy efficiency of bio-inspired walking systems is typ-
ically measured by specific resistance [6, 7]. Lower specific
resistance corresponds to more efficient walking. Neurome-
chanical controllers exploit muscle-like mechanisms as well as
neural mechanisms for effective legged robot control. In con-
trast, isolating them results in energy inefficient locomotion [8],
thereby leading to high specific resistances [9].

For instance, the specific resistance of a hexapod robot (i.e.,
Gregor I) during walking over an uneven surface (i.e., obsta-
cle course) is 70 when only a cellular neural network is used
as its CPG [10]. Combining CPGs with forward models can
improve the energy efficiency of a hexapod robot. For exam-
ple, a CPG combined with an adaptive forward model enables
a hexapod robot (i.e., AMOS) to walk over an uneven surface
(i.e., fine gravel) with the specific resistance of 55.5 [11]. Adap-
tive leg motions generated by the neural controllers of Gregor
I and AMOS depend only on the changes of neural activities
of the controllers for walking over uneven surfaces. However,
owing to energy efficiency [12], there are no changes detected
in neural activities for controlling key muscles or performing

precise limb coordination of cockroaches when walking over
an uneven surface (i.e., obstacles up to three times cockroach
hip height) [13]. This finding shows that cockroaches perform
adaptive leg motions and compensate perturbations by relying
more on their biomechanics (e.g., muscles), thereby leading to
energy efficiency.

Muscles also play a vital role in legged locomotion over dif-
ferent terrains [14, 15, 16, 17]. In robotic applications, muscle-
like mechanisms (e.g., Shape Memory Alloy (SMA) actua-
tors) can be used for controlling lightweight legged robots.
However, such SMA actuators are energy inefficient owing to
their slow cycle speed. For example, the specific resistance
of a small legged robot is over 12,000 when its joints are
mainly actuated by SMA actuators [18]. In contrast, our vir-
tual agonist-antagonist mechanisms (VAAMs, i.e., muscle-like
mechanisms) proposed here lead to smaller specific resistances
of a hexapod robot during walking on different surfaces (de-
scribed below). The VAAMs can also generate variable com-
pliant leg motions which rely only on force sensing at the end
effectors of the robot legs. This technique is different from
two classical methods (i.e., active and passive compliance).
Typically, active compliance [19] requires the components of
force/torque sensing at each joint while passive compliance [20]
depends heavily on physical passive components, e.g., passive
springs or artificial muscles. These components make legged
robots heavier and mechanically more complex, therefore mak-
ing it difficult to implement on small legged robots (weight less
than 8 kg) [21].

Combining the VAAMs with a modular neural network
(MNN) results in a neuromechanical controller which is able
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to control, e.g., a small hexapod robot (5.4 kg). In principle,
the MNN is for generating basic coordinated movements while
the VAAMs are for energy efficient walking and variable com-
pliant leg motions. Without any passive mechanisms or torque
and position feedback at each joint, the variable compliant leg
motions are achieved by only changing the damper or stiffness
parameters of the VAAMs [22]. Proper setups of the stiffness
parameters allow a physical hexapod robot to effectively walk
on different surfaces, i.e., fine gravel, coarse gravel, very coarse
gravel, floor, snow and sponge surfaces.

In addition, adaptive compliance motion will also help
legged robots to classify surfaces. Generally, surface clas-
sification has been implemented on legged robots based on
multiple sensing (e.g., current and angular positions) [23, 24],
force/torque sensing [25, 26], vibration sensing [27, 28] and vi-
sual perception [29, 30]. Visual perception using conventional
technique [31] cannot work well in classifying the surfaces of
non-distinguishable features (e.g, snow). Owing to natural vi-
brations of legged robots, vibration sensing may not perform
well for classifying surfaces either [32]. Compared to multiple
sensing, force sensing can still provide precise surface classifi-
cations by using a simple algorithm. Force sensing embedded
in the VAAMs allows a physical hexapod robot to well classify
six different surfaces with high accuracy (i.e., ≥ 89%).

2. Neuromechanical controller of a hexapod robot

Here we use the hexapod robot AMOS (5.4 kg weight,
see Fig. 1) as our experimental platform. It has six three-
jointed legs. Each three-jointed leg has a TC (Thoraco Coxal)
joint allowing forward and backward motions, a CTr (Coxa
Trochanteral) joint allowing elevation and depression motions,
and a FTi (Femur Tibia) joint allowing extension and flexion
motions (see Fig. 1 (b)). Each joint is physically driven by a
standard servo motor (i.e., HSR-5990TG). There is a force sen-
sor (i.e., FS Series Force Sensor) used for detecting an analog
force signal at each leg (see f c1−6 in Fig. 1 (a)). A current
sensor installed inside the body of the hexapod robot is used
to measure the electrical current supplied to all motors of the
robot. Here, the current sensor signal is used to calculate power
consumption during walking. The sensory data are transmitted
via an RS232 serial connection to an external PC on which a
controller is implemented. Here a neuromechanical controller
(see Fig. 2) is employed to generate the adaptive and energy
efficient walking behavior of the robot. The controller con-
sists of a modular neural network (MNN) and virtual agonist-
antagonist mechanisms (VAAMs). The final motor commands
of the controller are sent to the robot via the serial connection.

2.1. Modular Neural Network (MNN)

The modular neural network (MNN) is a biologically-
inspired hierarchical neural controller [33]. The MNN gener-
ates signals for inter- and intra-leg coordination of the hexapod
robot. The MNN consists of a central pattern generator (CPG,
see Fig. 3 (a)), a phase switch module (PSM, see Fig. 3 (b)) and
two velocity regulating modules (VRMs, see Fig. 3 (c)). All

Figure 1: The hexapod robot AMOS. (a) The hexapod robot and its sensors.
f c(1−6) are force sensors. (b) Leg with three degrees of freedom.

Figure 2: Neuromechanical control for the hexapod robot. Via neural out-
puts Ni (i = 1, 2, . . . , 17, 18), a neural circuit activates muscles that gener-
ate position commands (i.e., Oi) to move the joints of AMOS legs. The legs
then interact with the environment, which produces force feedback (i.e., Fext

j,1 ,
j = 1, 2, . . . , 5, 6) back to the system. (a) Neural circuit. It is the modular
neural network (MNN) (see Fig.3) where S ∈ [0.01, 0.18] is the modulatory
input determining the speed of robot legs. The speed of its leg motion in-
creases with increasing S . (b) Muscle-like mechanisms which are here the vir-
tual agonist-antagonist mechanisms (VAAMs) (see Fig.5). (c) Body mechanics
of AMOS. (d) Challenging surfaces (environment) which are here fine gravel,
coarse gravel, very coarse gravel, slippery floor, snow, and elastic sponge.

neurons of the MNN are modeled as discrete-time, non-spiking
neurons. The activation Hi of each neuron develops according
to:

Hi(t) =

m∑
j=1

Wi j o j(t − 1) + Bi, i = 1, . . . ,m, (1)

where m denotes the number of units, Bi is an internal bias term
(i.e., stationary input) to neuron i, Wi j is the synaptic strength
of the connection from neuron j to neuron i. The output oi of
all neurons of the MNN is calculated using the hyperbolic tan-
gent (tanh) transfer function, i.e., oi = tanh(Hi), ∈ [−1, 1]. The
weights Wi j are manually designed, except weights a, b, and c
which are obtained by backpropagation learning (see Fig.3 (c)).
For more details of determining the weights Wi j, we refer to our
previous work [34].

The CPG consists of only two neurons with full connectivity
(see Fig. 3(a)), where B1 and B2 are set to 0.01. The weights
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W12 and W21 are given by:

W12(S ) = 0.18 + S ,W21(S ) = −0.18 − S , (2)

where S ∈ [0.01, 0.18] is the input of the MNN, which deter-
mines different walking patterns of the robot. The speed of its
leg motion increases with increasing S . Here, we set S to 0.04
resulting in slow walking behavior, which leads to stable and
energy-efficient locomotion on uneven surfaces [11].

The PSM is a generic feed-forward network consisting of
three hierarchical layers with ten hidden neurons (i.e., H3−H12)
(see Fig. 3 (b)). The outputs of the PSM are projected to the FTi
(i.e., F(R, L)(1,2,3)) and CTr (i.e., C(R, L)(1,2,3)) motor neurons
(see Fig. 3 (d)), as well as to the neurons H13 and H14 of the two
VRMs (see Fig. 3 (c)). The VRMs are feed-forward networks
projecting their outputs to the TC motor neurons T (R, L)(1,2,3)
(see Fig. 3 (d)).

In the neuromechanical controller, the outputs N1−18 of the
motor neurons are the neural activities of the joints of the hexa-
pod robot. N1−18 enable the legs to perform fast swing and slow
stance phases (see Fig.4). Delays λL and λ between the motor
neurons are fixed (see Fig. 3 (d)). For more details of the MNN,
we refer to our previous work [11].

In our previous work [11], adaptive leg motion depends on
changing of the outputs of the MNN which are controlled by
additional forward models. In contrast, the proposed neurome-
chanical controller here only relies on changing the parame-
ters of the muscle-like mechanisms as in cockroach locomo-
tion [13]. Changing the mechanical parameters of the muscle-
like mechanisms (i.e., virtual agonist-antagonist mechanism
(VAAM)) allows the hexapod robot to not only perform adap-
tive locomotion, but also achieve more energy-efficient locomo-
tion.

2.2. Virtual Agonist-antagonist Mechanism (VAAM)
The virtual agonist-antagonist mechanism (VAAM) consists

of a pair of agonist and antagonist mechanisms (see Fig. 5(a)).
It produces active and passive forces using its contractile and
parallel elements (CEs and PEs, see Fig. 5(b)). In Fig. 5(a), a
physical joint is driven by a pair of the VAAM (i.e., M1 and
M2). Virtual means that the joint, physically driven by a stan-
dard servo motor, imitates muscle-like behaviors as if it were
driven by a pair of physical agonist and antagonist muscles.
The joint actuation relies on the CEs, while the PEs govern joint
compliance.

The parallel elements (i.e., PEs) are modeled as spring-
damper systems (see Fig. 5(b)) in term of Voigt muscle model
[35]. The matrix [ f P

1 , f P
2 ]T of passive forces created by PE(1,2)

is the sum of two Hadamard products:

[ f P
1 , f P

2 ]T = Γ2×1 ◦ L2×1 + Φ2×1 ◦ V2×1, (3)

where

• Γ2×1 is the matrix of stiffness coefficients of PE(1,2), i.e.,
Γ2×1 = [K,K]T ;

• L2×1 is the matrix of displacements of PE(1,2), i.e., L2×1 =

[lP
1 − l0, lP

2 − l0]T . l0 is the initial length of PE(1,2);

Figure 3: Modular neural network. There are three different neuron groups:
input neuron (S ), hidden neurons (H1−24) and output neurons (N1−18). The
input neuron is used to control walking patterns of the hexapod robot. The
hidden neurons are divided into three modules: CPG, PSM and VRMs, which
have different functionalities (see text for details). The output neurons represent
the neural activities of the joints of the robot. All connection strengths together
with bias terms are indicated by the small numbers except some parameters
of the VRMs (a = 1.7246, b = −2.48285, c = −1.7246). Delays λL and λ
between output neurons are set to 48 time steps and 16 time steps, respectively.
The abbreviations are: TR(L)1,2,3 = TC joints of the Right(Left) Front, Middle,
Hind legs, CR(L)1,2,3 = CTr joints of the Right(Left) Front, Middle, Hind legs,
FR(L)1,2,3 = FTi joints of the Right(Left) Front, Middle, Hind legs.
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Figure 4: Outputs of the motor neurons N1−18. Here the input S of the modular
neural network is set to 0.04. This results in slow walking behavior with a wave
gait. Abbreviations are: R(F, M, H) = Right (Front, Middle, Hind) leg, L(F, M,
H) = Left (Front, Middle, Hind) leg.

• Φ2×1 is the matrix of damper coefficients of PE(1,2), i.e.,
Φ2×1 = [D,D]T ;
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Figure 5: Virtual agonist-antagonist mechanism (VAAM) for joint control in-
teracting with the ground surface. (a) The physical joint P is driven by a pair
of the VAAM (i.e., M1 and M2) with the lengths L1 and L2. The interaction
results in an external force f ext , which drives the joint P with the radius r via
the shank with the length L. f ext is sensed by a force sensor (i.e., O), and f⊥

is the amount of f ext directly perpendicular to the position of the joint P. θ
is the rotational angle of the joint P relative to the absolute frame Z. (b) The
agonist and antagonist mechanisms consist of contractile and parallel elements
(CE(1,2) and PE(1,2)). PE(1,2) are spring-damper systems producing passive
forces. CE(1,2) generate active forces depending on the neural activity N j and
the activity strengths i(1,2) (i.e., i(1,2) ∈ [−1, 1]). The neural activity N j is one of
the outputs N1−18 of the modular neural network (see Fig.3 (d)).

• V2×1 is the matrix of velocities of PE(1,2), i.e., V2×1 =

[vP
1 , v

P
2 ]T (see vP

1 and vP
2 in Fig. 5(a)).

The active forces produced by the CEs are approximated by
the product of the neural activity N j and the activity strengths
i(1,2). The matrix [ f C

1 , f C
2 ]T of the active forces generated by

CE(1,2) (see Fig. 5 (b)) is represented by:

[ f C
1 , f C

2 ]T = N j × [i1, i2]T , (4)

where

• N j is the neural activity of CE(1,2) (i.e., N j ∈ [−1, 1]). It is
one of the outputs N1−18 of the MNN (see Fig. 3 (d));

• [i1, i2]T is the matrix of activity strengths for CE(1,2) (i.e.,
i(1,2) ∈ [−1, 1]).

The total forces f T
1 and f T

2 are the sum of the active and pas-
sive forces produced by the muscle pair (M1 and M2). The

antagonist mechanism M2 (see Fig. 5 (a)) resists the exten-
sion of the joint angle θ when receiving an external force f ext,
which is sensed by a force sensor. Simultaneously, the ag-
onist mechanism M1 (see Fig. 5 (a)) produces an opposing
force against M2. Therefore, the directions of f T

1 and f ext are
counter-clockwise when the direction of f T

2 is clockwise. For
more details of the VAAM, we refer to our previous work [9].

We apply Euler’s law to the rotation of the joint P (see
Fig. 5(a)). The net torque

∑
τ acting on the joint P is equal to

the product of its moment of inertia I and angular acceleration
θ̈. It is given by:

Iθ̈ =
∑

τ = τ( f ext) + τ( f T
1 ) + τ( f T

2 ). (5)

Derived from Eq.(5), the motion equation of the joint P is given
by:

Iθ̈ = f ext sin(θ)L︸       ︷︷       ︸
torque by f ext

+[ rN j︸︷︷︸
torque by f C

(1,2)

− r(2Kθr + 2Dθ̇r)︸              ︷︷              ︸
torque by f P

(1,2)

]. (6)

Equation (6) governs the joint angle θ of a physical joint driven
by the VAAM that is activated by the output N j ( j ∈ Z[1,18]) of
the MNN. The joint angle θ and joint velocity θ̇ in Eq.(6) are
not from sensory feedback but calculated from the fourth-order
Runge-Kutta method. In principle, this bio-inspired compliant
joint control approach (i.e., the VAAM) shares a connection to
classical impedance control approaches [36] in terms of spring-
damper based compliance. However, it is a biological modeling
where muscle-like functions (e.g., variable compliant motions)
are emulated by easily changing stiffness and damper parame-
ters (i.e., K and D in Eq.(6)) [37].

A pair of agonist and antagonist mechanisms (e.g., the
VAAM) gains advantage over a single antagonist or agonist
mechanism in terms of the fast achievement of stability [37, 38].
This is because the VAAM can push and pull the joint at the
same time generating inverse torques to oppose each other. Fur-
thermore, some simulations have shown that a pair of agonist
and antagonist muscles acting collaboratively produces more
power than the sum of each muscle working independently [39].

3. The implementation of neuromechanical control

The outputs O1−18 ∈ [−1, 1] of the neuromechanical con-
troller are linearly scaled and transmitted to control the posi-
tions of the standard servo motors driving the 18 joints of the
hexapod robot (see Fig. 6). For joint control, different control
strategies are applied to swing and stance phases.

3.1. Swing phase
When a leg is in a swing phase (i.e., f ext

i = 0, i ∈ Z[1,6]), the
outputs O(i,i+6,i+12) for the TC, CTr and FTi joints receive the
outputs of the motor neurons N(i,i+6,i+12) as their inputs. They
satisfy:

[Oi,Oi+6,Oi+12]T = [0.4Ni, 0.15Ni+6,−0.02Ni+12]T −

[0.05,−0.86, 0.43]T , i ∈ Z[1,6]. (7)

The details of Eq.(7) can be seen in Appendix A.1 (i.e., see
Eqs.(A.1), (A.2), and (A.3)).
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Figure 6: The outputs O1−18 of the neuromechanical controller. (a) O1−18
control 18 joints of the hexapod robot when receiving analog signals f ext

1−6,
which are detected by the force sensors at the legs. (b) Relationship be-
tween the joint outputs O1−18 and the joint angles θ1−18. The angle ranges
of the TC, CTr and FTi joints are as follows: [β1, β2] = [0.32,−0.37](rad),
[β3, β4] = [−1.745, 0.785](rad), [β5, β6] = [0.96,−1.222](rad).

3.2. Stance phase

According to the three-jointed legs of the hexapod robot, the
TC joint of the leg allowing only horizontal motion is not af-
fected by the PEs of the VAAM since there is only detection of
vertical foot force at the end effector of the leg. As a conse-
quence, the TC joint is driven by the CEs of the VAAM. In con-
trast, the CTr and FTi joints of the leg allowing vertical motion
can be influenced by vertical foot force. The force therefore ac-
tivates the PEs to generate variable compliant joint motions. To
investigate proper compliant setups for the CTr and FTi joints,
we test four possible control setups in a physical simulator (i.e.,
lpzrobots simulator [40]). A constraint for the setups is that
each of them should contain at least the PEs for compliant gen-
eration. The simulation results show that setup 2 which is the
combination of regular compliance at the CTr joint and sole
compliance at the FTi joint is the best compared to other com-
binations (see Fig.7 (a)). This combination allows the hexapod
robot to achieve better coordinated movement and stable loco-
motion with very low body oscillation (see Fig.7 (b)).

Figure 7: Four control setups for the CTr and FTi joints tested in a physical
simulator. (a) Four control setups. (b) Vertical position of the hexapod robot.
The vertical position shows that the hexapod robot walks stably (lower body
oscillation) when the FTi joints are controlled by only the PEs of the VAAM,
and the CTr joints are controlled by the CEs and PEs of the VAAM (i.e., setup
2).

Therefore, the control strategy of each three-jointed leg of the
hexapod robot is as follows: each TC joint (i.e., proximal joint)
is purely controlled by the CEs of the VAAM leading to pure
actuation or no compliance, each CTr joint (i.e., intermediate
joint) is governed by the CEs and PEs of the VAAM (combi-

nation of actuation and compliance resulting in regular compli-
ance), and each FTi joint (i.e., distal joint) is driven by the PEs
of the VAAM resulting in pure compliance (see Fig. 8). This
control strategy also complies with the findings revealed by a
biological study on three-jointed leg locomotion [41, 42]. The
biological study shows that the proximal joints of animal legs
mainly act as actuation while their distal joints serve as compli-
ance and their intermediate joints show the combination.

Figure 8: Neuromechanical control for each three-jointed leg. (a) The TC joint
is controlled by the output of the TC motor neuron while the CTr joint is driven
by the VAAM activated by the output of the CTr motor neuron. All outputs
of the motor neurons come from the modular neural network (MNN). Besides,
the FTi joint is driven by a pair of parallel elements (i.e., PE1 and PE2) of
the VAAM. In this implementation, the TC joint has pure actuation while the
CTr joint combines actuation and compliance and the FTi joint has only pure
compliance. (b) The three-jointed leg control refers to the findings revealed by
a biological study on three-jointed leg locomotion [41, 42].

The outputs O1−18 of the proposed neuromechanical con-
troller are calculated as follows:

3.2.1. TC joints
All TC joints are purely controlled by CE(1,2) of the VAAM.

The matrix of the outputs of the TC motor neurons is T6×1 =

[N1,N2, . . . ,N6]T . O j are given by ( j ∈ Z[1,6]):

O j = 0.4T j,1 − 0.05. (8)

The details of Eq.(8) can be seen in Appendix A.2.1 (i.e., see
Eq.(A.4)).

3.2.2. CTr joints
Each CTr joint is driven by PE(1,2) and CE(1,2) of the VAAM.

The matrix θ26×1 of the CTr angles is the sum of the Hadamard
products (see Eqs.(17-18) of our previous work [9]):

Iθ̈26×1 = Fext
6×1 ◦ (L2 cos(θ26×1) + ~V16×1)

+[rC6×1 −

2r2(K26×1 ◦ θ26×1 + D26×1 ◦ θ̇26×1)]. (9)

The angles θ2m,1 (m ∈ Z[1,6], see θ26×1 in Eq.(9)) of the CTr
joints are linearly transformed into their outputs O j (see Fig. 6).
O j are given by ( j ∈ Z[7,12]):

O j = −0.8θ2m,1 − 0.38,m = j − 6. (10)

The details of Eq.(10) can be seen in Appendix A.2.2 (i.e., see
Eq.(A.5)).
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3.2.3. FTi joints
Each FTi joint is only driven by PE(1,2) of the VAAM (see

Fig. 8 (a)). The FTi angle matrix θ16×1 is the sum of the
Hadamard products (see Eqs.(13-15) of our previous work [9]):

Iθ̈16×1 = Fext
6×1 ◦ sin(θ16×1)L1

−r(2rK16×1 ◦ θ16×1 + 2rD16×1 ◦ θ̇16×1). (11)

The angles θ1m,1 (m ∈ Z[1,6], see θ16×1 in Eq.(11)) of the FTi
joints can be linearly transformed into their outputs O j (see
Fig. 6). O j are given by ( j ∈ Z[13,18]):

O j = 0.92θ1m,1 + 0.12,m = j − 12. (12)

The details of Eq.(12) can be seen in Appendix A.2.3 (i.e., see
Eq.(A.6)).

4. Experimental Results

The proposed neuromechanical controller can produce vari-
able compliant motions, thereby leading to adaptive and energy
efficient locomotion over different surfaces. The surfaces tested
here include fine gravel (diameter ϕ = 5-8 mm), coarse gravel (ϕ
= 16-25 mm), very coarse gravel (ϕ = 40-60 mm), floor, snow
and sponge surfaces. The variable compliant motions are im-
plemented by changing the stiffness coefficients of the FTi and
CTr joints (i.e., K16×1 in Eq.(11) and K26×1 in Eq.(9)).

4.1. Setups of K16×1 and K26×1

We tested 2601 setups of K16×1 and K26×1 for the robot in
the LpzRobot simulator [40]. By using these setups of K16×1
and K26×1, the forward displacements X of the robot are used
to measure the performance of robot walking (see X in Fig. 9).
With each setup, the running time of robot walking is 30s. One
can see that the robot performs proper walking behavior on a
flat surface when K(1, 2)6×1 are set within the range surrounded
by black dash lines shown in Fig. 9. The result also certifies the
bigdog-inspired control strategies [41, 42] (see Fig. 8). That
is, the distal joints (e.g., FTi joints) should act more compli-
antly than the intermediate joints (e.g., CTr joints). Therefore,
stiffness coefficients K(1, 2)m,1 should be set as: K1m,1 < K2m,1
(e.g., 2 × K1m,1 = K2m,1). Four setups of K(1, 2)m,1 are chosen
for testing on our real hexapod robot (m ∈ Z[1,6], see S (1 − 4)
in Fig. 9):

S 1: K1m,1 = 2, K2m,1 = 4;
S 2: K1m,1 = 3, K2m,1 = 6;
S 3: K1m,1 = 4, K2m,1 = 8;
S 4: K1m,1 = 4.5, K2m,1 = 9.

Note that all damper coefficients D(1, 2)m,1 are set to 1.0.

4.2. Real hexapedal robot walking on different surfaces
We tested the four setups (i.e., S (1 − 4)) of K(1, 2)6×1 on our

real hexapod robot walking on fine gravel (diameter ϕ = 5-8
mm), coarse gravel (ϕ = 16-25 mm), very coarse gravel (ϕ =

40-60 mm), floor, snow (thickness 8cm), and sponge (stiffness
0.523 kN/m) surfaces. The hexapod robot had a difficulty to

Figure 9: Forward displacements X (unit: m)according to the changes of the
stiffness coefficients K1m,1 and K2m,1. Four sets (i.e., S (1 − 4)) of the stiffness
coefficients K(1, 2)6×1 are used to test on our physical robot for walking over
different surfaces.

walk on all these uneven surfaces when the lower stiffness setup
(i.e., S 1) was used. This is because with this setup the legs of
the hexapod robot shallowly penetrate into the surfaces, thereby
gaining less foot contact force (see S 1 in Fig. 10). When the
higher stiffness setup (i.e., S 4) was used, the legs penetrate into
the surfaces more deeply. However, this sometimes causes un-
stable locomotion which can be observed from dropping of the
foot contact force (see A1 and A2 of S 4 in Fig. 10). Therefore,
with the steup S 4 the robot also had a difficulty to overcome all
these surfaces. Note that ”high stiffness” (i.e., high impedance
[43, 44]) here means that a joint greatly resists the influence
of external forces; thereby low compliance. In contrast, ”low
stiffness” (i.e., low impedance [44, 45]) here means that a joint
allows external forces to influence its movement easily; thereby
high compliance.

Quantitatively, the inverse of compliance is stiffness, typ-
ically quantified by the ratio of the greatest magnitude of a
sinusoidally varying force to the greatest magnitude of a dis-
placement [46]. According to this, the stiffness Y j+6 and Y j+12
( j = 1, 2, . . . , 5, 6) of the CTr and FTi joints is calculated as:

Y j+6 =

∣∣∣∣∣∣∣ Max(Fext
j,1 )

Min(O j+6) − Ini(O j+6)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ Max(Fext
j,1 )

Min(O j+6)

∣∣∣∣∣∣∣ ,
Y j+12 =

∣∣∣∣∣∣∣ Max(Fext
j,1 )

Min(O j+12) − Ini(O j+12)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ Max(Fext
j,1 )

Min(O j+12)

∣∣∣∣∣∣∣ , (13)

where Max(Fext
j,1 ) is the maximum value of an analog signal of

the foot force Fext
j,1 (e.g., see Fext

1,1 in Fig. 11 (c)). Min(O j+6)
and Min(O j+12) are the minimum values of the CTr and FTi
joint outputs O7−18, and Ini(O j+6) and Ini(O j+12) are their initial
values, i.e., Ini(O j+6) = Ini(O j+12) = 0. The examples of the
joint stiffness Y7 and Y13 are shown in Figs.11 and 12 when
high and low stiffness setups were applied for walking on fine
gravel and sponge.
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Figure 10: Analog signals of foot force with stiffness setups S 1 and S 4. The
signals were sensed when the hexapod robot walked on final gravel and sponge
surfaces.

In contrast to the setups S 1 and S 4, the setups S 2 and S 3
allow the hexapod robot to walk well on all these uneven sur-
faces. However, they lead to different energy efficiencies of
walking on the different surfaces. Its energy-efficiency is here
measured by the specific resistance ε [6, 7] as:

ε =
P

mgv
, (14)

where P is power consumption. mg is the weight of the hexa-
pod robot, i.e., mg = 52.974 N. v is its forward speed. For each
stiffness setup (i.e.,S 2 or S 3), we ran the hexapod robot at each
surface ten times. For each run, the power consumption P and
average speed vavg were obtained. The average specific resis-
tances εavg with their standard deviations are shown in TABLE
I. Low εavg corresponds to more energy efficient walking.

One can see that the high stiffness setup S 3 allows more
energy efficient locomotion (see TABLE I) on loose surfaces
(i.e., fine and coarse gravels, snow). This is because S 3 en-
ables the hexapod robot to obtain more foot contact force (e.g.,
see Fig. 11 (c)) on these surfaces owing to stiffer CTr and FTi
joints (e.g., see Figs. 11 (d) and (e)). Whereas the low stiff-
ness setup S 2 results in more force (e.g., see Fig. 12 (c)) on
flat (e.g., floor), very coarse (e.g., gravels), and elastic (e.g.,
sponge) surfaces. Therefore, S 2 leads to more energy efficient
locomotion on these surfaces due to softer legs (e.g., see joint
stiffness in Figs. 12 (d) and (e)). Interestingly, this experimental
result shows that soft legs allow the hexapod robot to achieve
more energy-efficient locomotion on a soft elastic surface (e.g.,
sponge). The finding complies with a finding of physiologi-
cal experiments on cockroach locomotion [47, 12]. Owing to
energy efficiency, cockroaches also use their soft legs on soft
elastic surfaces.

In addition, the neuromechanical controller leads to more
energy-efficient AMOS walking over three surfaces, compared
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Figure 11: Joint outputs, foot force signals, and joint stiffness that resulted from
two stiffness setups S (2, 3) during walking on fine gravel. (a) CTr joint outputs
O7. (b) FTi joint outputs O13. (c) Analog signals of forces Fext

1,1 . The setup
S 3 enables the hexapod robot to obtain more foot contact force during stance
phases than the setup S 2. (d) CTr joint stiffness Y7. (e) FTi joint stiffness Y13.
The joint stiffness Y7 and Y13 are calculated by Eq.(13). The setup S 3 makes
the legs stiffer than the setup S 2.

to an adaptive neural controller [11] (see TABLE II). For ex-
ample, the specific resistance of walking on the fine gravel sur-
face using the adaptive neural controller is 55.5 while the spe-
cific resistance can be reduced to 9.1 when the neuromechan-
ical controller with the high stiffness setup (i.e., S 3) was em-
ployed. This is because the neuromechanical controller stiffens
and enables AMOS legs to penetrate deeply into the surface;
thereby gaining more foot contact force for propelling the body
forwards. Whereas the adaptive neural controller cannot drive
the legs to penetrate deeply into the surfaces due to the lack of
stiffening them. Note that both controllers use the same modu-
lar neural network (see Fig. 3) and control input for gait gener-
ation (i.e., S = 0.04, see Fig. 4). They were also tested on the
same hexapod robot (i.e., AMOS).

4.3. Surface classifications

Among the four stiffness setups, S 3 is better for the hexa-
pod robot to achieve energy efficient locomotion over fine and
coarse gravels. With S 3, we ran the hexapod robot from fine
gravel to coarse gravel. The CTr and FTi joint signals (i.e., O7
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Figure 12: Joint outputs, foot force signals, and joint stiffness that resulted from
two stiffness setups S (2, 3) during walking on sponge. (a) CTr joint outputs
O7. (b) FTi joint outputs O13. (c) Analog signals of forces Fext

1,1 . The setup
S 2 enables the hexapod robot to obtain more foot contact force during stance
phases than the setup S 3. (d) CTr joint stiffness Y7. (e) FTi joint stiffness Y13.
The joint stiffness Y7 and Y13 are calculated by Eq.(13). The setup S 3 makes
the legs stiffer than the setup S 2.

and O13) of its right front leg are shown in Fig.13. One can see
that the hexapod robot can autonomously adapt its CTr and FTi
joint motions during walking on the surfaces. Other different
FTi joint signals can be seen in Fig. 14 when the hexapod robot
walked on sponge and snow. Therefore, the FTi joint signals
can be used to classify the surfaces. One can see that it is hard
for a legged robot to classify floor, snow and sponge surfaces
by visual perception due to their non-distinguishable features
(see Fig. 15).

We ran the hexapod robot on six different surfaces, respec-
tively. Six FTi outputs (i.e., O13) of the right front leg were
obtained as order datum streams FT j(t) and used as the inputs
of the cumulative moving averages (CMA). The CMA outputs

Figure 13: CTr and FTi joint signals(i.e., O7 and O13) of the right front leg. O7
and O13 show adaptable walking of the hexapod robot when it walked from fine
gravel (diameter ϕ = 5-8 mm) to coarse gravel (ϕ = 16-25 mm).

Figure 14: The hexapod robot walked on sponge and snow surfaces. (a) Snap-
shot of walking on sponge. (b) FTi joint signal O13 of walking on sponge. (c)
Snapshot of walking on snow (d) FTi joint signal O13 of walking on snow.

CA j(t) are given by:

CA j(t) = CA j(t − ∆t) +
FT j(t) −CA j(t − ∆t)

t
∆t + 1

,∆t ≤ t ≤ 14,

(15)
where j denotes the type of the surface (i.e., j ∈ Z[1,6]), i.e.,
j = 1 − 6 denote fine gravel, coarse gravel, very coarse gravel,
floor, snow and sponge surfaces. t is a discrete time domain
(i.e., 0s − 14s) at the interval ∆t ≈ 0.019s. The initial value
CA j(0) is set to FT j(0).

The CMA outputs CA j(t) shown in Fig.(16) are used as sam-
ple signals for the surface classifications. Then we ran the hexa-
pod robot on nine sets of the six surfaces. The total number of
the runs is 54. For each run, the CMA output CA(t) is calculated
by Eq.(15). The deviations DEV j between CA(t) and CA j(t) are
given by:

DEV j =

14∑
t=0

(|CA(t) −CA j(t)|), j = 1, 2, . . . , 5, 6,

S C = min(DEV j),when h = j. (16)

S C is the minimal value of the deviations DEV j. h is the result
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Figure 15: Six different surfaces used in the experiments.

of the classification for the run (h ∈ Z[1,6]). h is set to 1 − 6
denoting fine gravel, coarse gravel, very coarse gravel, floor,
snow, and sponge surfaces, respectively. For example, if S C
is DEV2 (i.e., h = 2), the result of the surface classification is
coarse gravel.

Fine gravel
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Sponge
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Figure 16: Cumulative moving average (CMA) outputs CA j(t).

The experimental statistics (i.e., the numbers of correct and
wrong classifications) of the surface classifications is shown
in TABLE III. One can see that eight of nine runs are classi-
fied correctly for fine gravel and coarse gravel surfaces. Thus,
the success rates of classifying fine gravel and coarse gravel
surfaces are 89%. The success rate (SR) is used to evaluate
the performance of surface classifications, which is the ratio
of the number of correctly classifying a given surface and the
total number of classifications on this surface. SR = 100% is
found for the classifications of very coarse gravel, floor, snow
and sponge surfaces (see TABLE III). We emphasize that the
ability of well terrain classification presented here is due to the
exploitation of compliance signals generated by the VAAMs.
Here, the signals are determined by the motions of the FTi
joints. From this point of view, the VAAMs are one of key
components enabling the hexapod robot to well classify some
types of surfaces where the robot moves. Note that the key com-

ponents include force sensing, the VAAMs, and the cumulative
moving average algorithm.

5. Discussion

Here, we briefly discuss some aspects of neuromechanical
control for legged locomotion, since most of the relevant dis-
cussions have been provided in above sections. The motiva-
tions and benefits of neuromechanical control are in detailed
described in [48, 1, 8, 2] compared to pure neural control or
mechanical control (e.g., compliance control). Many neurome-
chanical controllers have been developed for different types of
locomotion, e.g., salamander-like trotting [3, 49], lamprey-like
swimming [4, 50] and insect-like walking [5, 51]. However,
rather than physical robot implementations, most of them are
only presented by computer simulations owing to their com-
plexities. For instance, a neuromechanical model of insect loco-
motion uses 264 ordinary differential equations (ODEs) for de-
scribing its central pattern generator, muscles actuating jointed
legs, and joint torque feedback to motoneurons [52]. By using
phase reduction and average theory, the model is reduced to 24
one-dimensional phase oscillators activating agonist-antagonist
muscle pairs shown in later works [5, 53]. However for the
muscles, there are up to 26 parameters to be tuned in the model,
which is impractical for applying it to physical legged robots.
Different from this, agonist-antagonist muscles can be physi-
cally implemented by artificial muscles (e.g., fluidic muscles)
[54, 55]. For instance, some insect-like robots use McKibben
fluidic muscles as their actuators, e.g., AirBug (weight 27.2 kg)
[56] and Robot V (Ajax) (weight 15.1 kg) [57]. But these arti-
ficial muscles make the mechanical structures of legged robots
more complex and bulky, therefore rarely presenting their use
in small legged robots (weight less than 8 kg) [21]. Whereas
the virtual agonist-antagonist mechanism introduced here is a
muscle model with only two tunable parameters. It can be eas-
ily applied to generate variable compliant leg motions of small
legged robots. These applications do not require force/torque
sensing at each joint or physical compliant components (e.g.,
springs or artificial muscles). The proposed neuromechanical
controller is based on biological findings [13, 47, 12] and can
improve the energy efficiency of a hexapod robot. The specific
resistances of the robot during walking on different surfaces are
between 9.1 and 25.0 (i.e., ε = 9.1-25.0) (see TABLE I). On
surfaces, like fine gravel, coarse gravel, and floor, the specific
resistances are less than the ones obtained from walking driven
by the adaptive neural controller (see TABLE II).

As a comparison, the specific resistance of the RHex robot
(i.e., a hexapod robot) is between 2 and 14 [7] when it ran
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on different surfaces (i.e., gravels). Considering that the RHex
robot has only one degree of freedom (DOF) for each leg (to-
tally six motors), our robot consisting of three DOFs for each
leg (totally 18 motors) consumes more energy. However thanks
to the three DOFs for each leg, our robot can reproduce insect-
like leg movements, and its legs can be extended for climb-
ing [58] as well as allow for omnidirectional walking including
sideways walking [34].

Taken together our main contributions here which is an ex-
tension of our previous work [9] include: 1) the experimen-
tal part dealing with in more details of parameter setups (stiff-
ness coefficients K(1, 2), see section 4.1) which can be applied
to other legged robots, 2) the new walking experiments on six
challenging surfaces (see section 4.2), and 3) the exploitation of
compliance signals generated by the VAAMs for surface clas-
sifications (see section 4.3).

6. CONCLUSIONS

We developed a neuromechanical controller that allows for
variable compliant leg motions of a hexapod robot, thereby
leading to its adaptable and energy-efficient walking on six
challenging surfaces. The controller consists of a modular neu-
ral network (MNN) and virtual agonist-antagonist mechanisms
(VAAMs, i.e., a muscle model). The main features of the neu-
romechanical controller are as follows: (I) It allows the hexapod
robot to easily achieve variable leg compliance by only chang-
ing the stiffness parameters of the VAAMs. The implemen-
tation does not require any passive mechanisms or torque and
position feedback; (II) The VAAMs also enable the hexapod
robot to classify six different surfaces with high success rates;
(III) It presents a control strategy on the three-jointed leg of
the hexapod robot which also agrees to the principles found in
the biological study on three-jointed leg locomotion [41, 42].
In future work, the surface classification will be used for the
hexapod robot to autonomously change its leg compliance with
respect to a surface. Moreover, we will also apply a learning
mechanism for the adaptation of muscle parameters on differ-
ent surfaces.
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Appendix A. Neuromechanical control of the legs

Appendix A.1. Swing phase

When a leg is in a swing phase (i.e., f ext
i = 0, i ∈ Z[1,6], see

Fig. 6 (a)), outputs O(i,i+6,i+12) for its TC, CTr and FTi joints
receive the outputs of the motor neurons N(i,i+6,i+12) as their in-
puts.

Appendix A.1.1. TC joints
The TC neuron outputs N1−6 ∈ [−0.81, 0.91] are scaled into

the TC outputs O1−6 ∈ [−0.37, 0.32]:

O1−6 =
N1−6 − (−0.81)
0.91 − (−0.81)

(0.32 − (−0.37)) − 0.37

≈ 0.4N1−6 − 0.05. (A.1)

Appendix A.1.2. CTr joints
The CTr neuron outputs N7−12 ∈ [−1, 0, 1.0] are scaled into

the CTr outputs O7−12 ∈ [0.71, 1.0]:

O7−12 =
N7−12 − (−1.0)
1.0 − (−1.0)

(1.0 − 0.71) + 0.71

≈ 0.15N7−12 + 0.86. (A.2)

Appendix A.1.3. FTi joints
The FTi neuron outputs N13−18 ∈ [−0.9, 1.0] are scaled into

the FTi outputs O13−18 ∈ [−0.41,−0.45]:

O13−18 =
N13−18 − (−0.9)

1.0 − (−0.9)
((−0.45) − (−0.41)) − 0.41

≈ −0.02N13−18 − 0.43. (A.3)

Appendix A.2. Stance phase

Appendix A.2.1. TC joints
All TC joints are purely controlled by CE(1,2) of the VAAM.

CE(1,2) are activated by the outputs N1−6 of the modular neu-
ral network. The TC neuron outputs T j,1 ∈ [−0.81, 0.91] are
scaled into the TC outputs O j ∈ [−0.37, 0.32] (see Fig. 8 (a),
j ∈ Z[1,6]):

O j =
T j,1 − (−0.81)
0.91 − (−0.81)

(0.32 − (−0.37)) − 0.37

≈ 0.4T j,1 − 0.05. (A.4)

Appendix A.2.2. CTr joints
Each CTr joint is driven by PE(1,2) and CE(1,2) of the VAAM.

CE(1,2) are activated by one of the outputs N7−12 of the modular
neural network (see Fig. 8 (a)). The angles θ2m,1 (m ∈ Z[1,6])
of the CTr joints are linearly transformed into their outputs O j

(see Fig. 6). O j are given by ( j ∈ Z[7,12]):

O j =
θ2 j−6,1 − 0.785
−1.745 − 0.785

(1 − (−1)) − 1

≈ −0.8θ2 j−6,1 − 0.38 (A.5)
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Appendix A.2.3. FTi joints
Each FTi joint is only driven by PE(1,2) of the VAAM (see

Fig. 8 (a)). The angles θ1m,1 (m ∈ Z[1,6]) of the FTi joints can be
linearly transformed into their outputs O j (see Fig. 6). O j are
given by ( j ∈ Z[13,18]):

O j =
θ1 j−12,1 − (−1.22)

0.96 − (−1.22)
(1 − (−1)) − 1

≈ 0.92θ1 j−12,1 + 0.12. (A.6)

Appendix B. Notations

• Fext
6×1 is the matrix of the forces, i.e., Fext

6×1 =

[ f ext
1 , f ext

2 , . . . , f ext
6 ]T ;

• F⊥6×1 is the Hadamard product of Fext
6×1 and sin(θ16×1);

• L1 is the length of the link between the FTi joint and the
end effector of the leg, e.g., L1 = 0.115 m;

• I is the inertia of the FTi and CTr joints, i.e., I = 0.5×10−3;

• θ̈16×1 and θ̇16×1 are the acceleration and velocity matrices
of θ16×1. r is set to 0.1;

• K(1, 2)6×1 and D(1, 2)6×1 are matrices of the stiffness and
damper coefficients of PE(1,2), which control the compli-
ance of the FTi and CTr joints.

• L2 is the length of links between the CTr and FTi joints,
i.e., L2 = 0.075 m;

• ~V16×1 and ~V26×1 are matrices of the displacement vectors
of the CTr and FTi joints relating to the forces f ext

1−6.

• θ̈26×1 and θ̇26×1 are the acceleration and velocity matrices
of θ26×1.

• C6×1 is the matrix of the CTr neuron outputs of the MNN,
i.e., C6×1 = [N7,N8, . . . ,N12]T .
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[51] S. Knops, T. I. Tóth, C. Guschlbauer, M. Gruhn, S. Daun-Gruhn, A neu-
romechanical model for the neuronal basis of curve walking in the stick
insect, Journal of Neurophysiology 109 (3) (2013) 679–691.

[52] R. Kukillaya, J. Proctor, P. Holmes, Neuromechanical models for in-
sect locomotion: Stability, maneuverability, and proprioceptive feedback,
Chaos: An Interdisciplinary Journal of Nonlinear Science 19 (2).

[53] J. Proctor, P. Holmes, Reflexes and preflexes: on the role of sensory feed-
back on rhythmic patterns in insect locomotion, Biological Cybernetics
102 (6) (2010) 513–531.

[54] R. King, State of the art in robotics and robotic actuation, in: BiLBIQ:
A Biologically Inspired Robot with Walking and Rolling Locomotion,
Vol. 2 of Biosystems & Biorobotics, Springer Berlin Heidelberg, 2013,
pp. 29–47.

[55] R. Dillmann, J. Albiez, B. Gaßmann, T. Kerscher, M. Zöllner, Biologi-
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