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Abstract

Physiological studies suggest that the integration of neural
circuits and biomechanics (e.g., muscles) is a key for animals
to achieve robust and efficient locomotion over challenging
surfaces. Inspired by these studies, we present a neurome-
chanical controller of a hexapod robot for walking on soft
elastic and loose surfaces. It consists of a modular neural
network (MNN) and virtual agonist-antagonist mechanisms
(VAAM, i.e., a muscle model). The MNN coordinates 18
joints and generates basic locomotion while variable joint
compliance for walking on different surfaces is achieved by
the VAAM. The changeable compliance of each joint does
not depend on physical compliant mechanisms or joint torque
sensing. Instead, the compliance is altered by two internal pa-
rameters of the VAAM. The performance of the controller is
tested on a physical hexapod robot for walking on soft elas-
tic (e.g., sponge) and loose (e.g., gravel and snow) surfaces.
The experimental results show that the controller enables the
hexapod robot to achieve variably compliant leg behaviors,
thereby leading to more energy-efficient locomotion on dif-
ferent surfaces. In addition, a finding of the experiments com-
plies with the finding of physiological experiments on cock-
roach locomotion on soft elastic surfaces.

Introduction
There are increasing demands for robots to walk on a se-
ries of diverse terrains (Ozcan et al., 2010; Qian et al.,
2012). However, few robots can walk on soft elastic (e.g.,
sponge) and loose (e.g., gravel and snow) surfaces. This is
because traversing these surfaces efficiently requires vari-
able compliance of legs (Spence, 2011; Bermudez et al.,
2012). Traditionally, the variable compliance of legged
robots can be achieved by passive compliance mechanisms
(Ham et al., 2009) and/or active compliance control (Görner
and Hirzinger, 2010). For example, by using active com-
pliance control with joint torque feedback, a hydraulically
actuated quadruped robot (i.e., HyQ, 90 kg) has been de-
veloped for moving over terrains (Boaventura et al., 2012).
Nevertheless, the complex mechanical and sensing compo-
nents of the HyQ robot greatly increase its size and mass,
thereby not fitting for developing small legged robots. Yet
a small six-legged robot (i.e., EduBot, 3 kg) has been de-
signed by using physically passive variable compliant legs

(Galloway et al., 2011). The experimental results show that
stiffer legs allow its faster locomotion on soft surfaces.

In contrast to the robot experimental results, owing to en-
ergy efficiency, biological study has shown that cockroaches
(i.e., Blaberus discoidalis) use their softer legs on soft sur-
faces (Spence et al., 2010; Spence, 2011). This finding re-
veals a neuromehcanical control strategy of hexapod loco-
motion on soft surfaces. In fact, the strategy is not the result
of a single component rather interactions between a nervous
system, a musculoskeletal system and the environment. In-
spired by this, the work here proposes a novel neuromechan-
ical controller of a hexapod robot for walking on soft elastic
and loose surfaces. The neuromechanical controller consists
of a modular neural network (MNN) coordinating leg move-
ment and virtual agonist-antagonist mechanisms (VAAM)
changing the compliance of legs. The changeable compli-
ance is simply achieved by altering two internal parameters
of the VAAM without physical passive compliant mecha-
nisms (Ham et al., 2009) or joint torque sensing (Görner and
Hirzinger, 2010). Employing this controller allows the robot
to walk on different surfaces with energy efficiency. Be-
sides, a finding of robot walking complies with the finding
of physiological experiments on cockroach locomotion on
soft elastic surfaces (Spence et al., 2010; Spence, 2011).

Neuromechanical Controller of a Hexapod
Robot

The experimental robot is a hexapod robot (5.4 kg) (see
Fig. 1 (a)). Each three-jointed leg has a TC (Thoraco Coxal)
joint allowing the motions of forward and backward, a CTr
(Coxa Trochanteral) joint allowing the motions of elevation
and depression, and a FTi (Femur Tibia) joint allowing the
motions of extension and flexion (see Fig. 1 (b)). Each joint
is physically driven by a standard servo motor. There is a
force sensor used for detecting the analog signal at each leg
(see fc1−6 in Fig. 1 (a)). A current sensor installed inside
the body of the hexapod robot is used to detect electrical cur-
rent used for all motors and sensors of the hexapod robot.
For more details of the hexapod robot, we refer to (Manoon-
pong et al., 2013).



Figure 1: A hexapod robot (a) Six legs and six foot sensors
fc(1−6). (b) A three-jointed leg.

Modular Neural Network (MNN)
The modular neural network (MNN) is a biologically-
inspired hierarchical neural controller (McCrea and Rybak,
2008), which generates signals for leg and joint coordination
of the hexapod robot. The MNN consists of a central pat-
tern generator (CPG, see Fig. 2 (a)), a phase switch module
(PSM, see Fig. 2 (b)) and two velocity regulating modules
(VRMs, see Fig. 2 (c)). All neurons of the MNN are mod-
elled as discrete-time non-spiking neurons. The activity Hi

of each neuron develops according to:

Hi(t) =

m∑
j=1

Wij oj(t− 1) +Bi, i = 1, . . . ,m, (1)

where m denotes the number of units, Bi is an internal
bias term (i.e., stationary input) to neuron i, Wij is the
synaptic strength of the connection from neuron j to neu-
ron i. The output oi of all neurons of the MNN is calcu-
lated using a hyperbolic tangent (tanh) transfer function,
i.e., oi = tanh(Hi),∈ [−1, 1]. The CPG consists of only
two neurons with full connectivity (see Fig. 2(a)), where
B1 = B2 = 0.01. The weights W12 and W21 are given
by:

W12(S) = 0.18 + S,W21(S) = −0.18− S, (2)

where S ∈ R[0,0.18] is the input of the modular neural net-
work, which determines walking patterns of the hexapod
robot. The speed of its leg motion increases with increasing
S. Here, we set S = 0.04 resulting in slow walking behav-
ior, which leads to stable and energy-efficient locomotion on
non-flat surfaces (Manoonpong et al., 2013).

The PSM is a generic feed-forward network consisting
of three hierarchical layers with ten hidden neurons (i.e.,
H3−H12). The outputs of the PSM are projected to the FTi
(i.e., F (R,L)(1,2,3)) and CTr (i.e., C(R,L)(1,2,3)) motor
neurons (see Fig. 2 (d)), as well as the neurons H13 and H14

of the two velocity regulating modules (VRMs, see Fig. 2
(c)). The two VRMs are feed-forward networks projecting
their outputs to the TC motor neurons T (R,L)(1,2,3) (see
Fig. 2 (d)). In the neuromechanical controller, the outputs
N1−18 of the motor neurons are the neural activations of 18

Figure 2: Modular neural network. Output neurons (i.e.,
N(1−18)) represent the neural activations of 18 joints of the
hexapod robot. All connection strengths together with bias
terms are indicated by the small numbers except some pa-
rameters of the VRMs (a = 1.7246, b = −2.48285, c =
−1.7246). Delays λL and λ between motor neurons (i.e.,
N1−18) are set to: λL = 48 time steps, λ = 16 time steps.
Abbreviation are: TR(L)1,2,3 = TC joints of the Right(Left)
Front, Middle, Hind legs, CR(L)1,2,3 = CTr joints of the
Right(Left) Front, Middle, Hind legs, FR(L)1,2,3 = FTi
joints of the Right(Left) Front, Middle, Hind legs.

joints of the hexapod robot. N1−18 enable its legs to per-
form fast swing and slow stance phases (see Fig. 3). Delays
λL and λ between the outputs of motor neurons are fixed
(see Fig. 2 (d)). For more details of the MNN, we refer to
our previous work (Manoonpong et al., 2013). However, the
previous work did not consist of muscle-like mechanisms
(e.g., virtual agonist-antagonist mechanism (VAAM)). In-
cluding the VAAM allows the hexapod robot to achieve
more energy-efficient locomotion (described below).

Virtual Agonist-antagonist Mechanism (VAAM)

The virtual agonist-antagonist mechanism (VAAM) con-
sists of a pair of agonist and antagonist mechanisms (see
Fig. 4(a)). They produce active and passive forces by its con-
tractile and parallel elements (CEs and PEs, see Fig. 4(b)).
In Fig. 4(a), the physical joint is driven by a pair of the vir-
tual agonist-antagonist mechanism (VAAM, i.e., M1 and
M2). ’Virtual’ means that the physical joint, physically
driven by a standard servo motor, imitates muscle-like be-
haviors as if it were driven by a pair of agonist and antago-
nist muscles. The joint actuation relies on the CEs while the
PEs govern joint compliance.

The parallel elements (i.e., PEs) are modelled as spring-
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Figure 3: Outputs of motor neuronsN1−18 between 10 s and
13.6 s. Abbreviations are: R(F,M,H) = Right (front, middle,
hind) legs, L(F,M,H) = Left (front, middle, hind) legs. st =
stance phase, sw = swing phase.

damper systems (see Fig. 4(b)). The matrix [fP1 , f
P
2 ]T

of passive forces created by PE(1,2) is the sum of two
Hadamard products:

[fP1 , f
P
2 ]T = Γ2×1 ◦ L2×1 + Φ2×1 ◦ V2×1, (3)

where

• Γ2×1 is the matrix of stiffness coefficients of PE(1,2), i.e.,
Γ2×1 = [K,K]T ;

• L2×1 is the matrix of displacements of PE(1,2), i.e.,
L2×1 = [lP1 − l0, l

P
2 − l0]T . l0 is the initial length of

PE(1,2), which is set to: l0 = 0.085;

• Φ2×1 is the matrix of damper coefficients of PE(1,2), i.e.,
Φ2×1 = [D,D]T ;

• V2×1 is the matrix of velocities of PE(1,2), i.e., V2×1 =
[vP1 , v

P
2 ]T .

The active forces produced by the CEs are approximated by
the product of the neural activation Nj and the activation
intensities i(1,2). The matrix [fC1 , f

C
2 ]T of active forces gen-

erated by CE(1,2) are represented by (see Fig. 4 (b)) :

[fC1 , f
C
2 ]T = Nj × [i1, i2]T , (4)

where

• Nj is the neural activation of CE(1,2) (i.e.,Nj ∈ [−1, 1]).
It is one of the outputsN1−18 of the MNN (see Fig. 2 (d));

• [i1, i2]T is the matrix of activation intensities for CE(1,2)

(i.e., i(1,2) ∈ [−1, 1]).

The total forces fT1 and fT2 are the sum of the active and
passive forces produced by M1 and M2. They are given by
(derived from Eqs.(3) and (4)):

fT1 = fP1 + fC1 = K(lP1 − l0) +DvP1︸ ︷︷ ︸
fP
1

+Nji1︸︷︷︸
fC
1

, (5)

fT2 = fP2 + fC2 = K(lP2 − l0) +DvP2︸ ︷︷ ︸
fP
2

+Nji2︸︷︷︸
fC
2

. (6)

Figure 4: Virtual agonist-antagonist mechanism (VAAM)
for joint control interacting with the ground surface. (a)
A physical joint is driven by a pair of the VAAM with the
lengths L1 and L2 (i.e., M1 and M2). The interaction re-
sults in the force fext, which drives the joint P with the
radius r via the shank with the length L. fext is sensed
by a force sensor (i.e., O), and f⊥ is the amount of fext

directed perpendicularly to the position of the joint P . (b)
The VAAM consists of contractile (i.e., CE(1,2)) and paral-
lel (i.e., PE(1,2)) elements for producing active and passive
forces.

The antagonist mechanism M2 (see Fig. 4 (a)) resists the
extension of the joint angle θ when receiving the force fext,
which is sensed by a force sensor. Simultaneously, the ago-
nist mechanismM1 (see Fig. 4 (a)) produces opposing force
against M2. Therefore, the directions of fT1 and fext are
counter-clockwise when the direction of fT2 is clockwise.



Their torques acting on the joint P (see Fig. 4 (a)) are repre-
sented by:

τ(fT1 ) = fT1 r = (K(lP1 − l0) +DvP1 +Nji1)r, (7)

τ(fT2 ) = −fT2 r = −(K(lP2 − l0) +DvP2 +Nji2)r, (8)

τ(fext) = f⊥L = fext sin(θ)L, (9)

where r is the radius of the joint P . f⊥ is the amount of fext

directed perpendicularly to the position of the joint P . L is
the length of the shank of the joint P . Note that the direction
of torque τ(fT2 ) is opposite to those of τ(fT1 ) and τ(fext).
We consider the torque pointing outward from the page as
the positive torque (e.g., τ(fT1 ) and τ(fext)).

We apply Euler’s laws of motion to the rotation of the
joint P (see Fig. 4(a)). The net torque

∑
τ acting on the

joint P is equal to the product of its moment of inertia I and
angular acceleration θ̈. It is given by:

Iθ̈ =
∑

τ = τ(fext) + τ(fT1 ) + τ(fT2 ). (10)

Derived by Eq.(10) (see details in Appendix A), the motion
equation of the joint P is given by:

Iθ̈ = fext sin(θ)L︸ ︷︷ ︸
torque by fext

+[ rNj︸︷︷︸
torque by fC

(1,2)

− r(2Kθr + 2Dθ̇r)︸ ︷︷ ︸
torque by fP

(1,2)

].

(11)

Equation (11) governs θ of the joint P driven by the VAAM
that is activated by the output Nj (j ∈ Z[1,18]) of the MNN.

Neuromechanical Control Strategies for a
Hexapod Robot

The outputs O1−18 ∈ R[−1,1] (see Fig.5) of the neurome-
chanical controller are linearly scaled and transmitted to
control the position of the standard servo motors driving the
18 joints of the hexapod robot. Different control strategies
are applied in swing and stance phases.

Swing phase
When a leg is in swing phase (i.e., fexti = 0, i ∈ Z[1,6],
see Fig. 5 (a)), the outputs O(i,i+6,i+12) of its TC, CTr and
FTi joints receive motor neuron signals N(i,i+6,i+12) of the
MNN as their inputs. They satisfy:

[Oi, Oi+6, Oi+12]T = [0.4Ni, 0.15Ni+6,−0.02Ni+12]T −
[0.05, 0.86, 0.43]T , i ∈ Z[1,6]. (12)

Stance phase
Since there is only detection for vertical foot force in the
leg, the TC joint allowing only horizontal motions is not
effected by a pair of the PEs of the VAAM. Moreover,

Figure 5: The outputs O1−18 of the neuromechanical con-
troller. (a) O1−18 control the 18 joints of the hexapod robot.
fext1−6 are six analog signals, which are detected by the force
sensors at the legs. (b) Relationship between O1−18 and
θ1−18. The angle ranges of the TC, CTr and FTi joints
are as follows: [β1, β2] = [0.785,−0.785]rad, [β3, β4] =
[−1.745, 0.785]rad, [β5, β6] = [0.96,−1.222]rad.

we test two control setups (see Fig.6) for the FTi joint
when the CTr joint is controlled by a pair of the PEs
and CEs of the VAAM. The control setups are tested in a
physical simulator (i.e., lpzrobots simulator (Der and Mar-
tius, 2012)). The results of the physical simulation show
that the FTi joint, purely controlled by a pair of the PEs
of the VAAM, allows the hexapod robot to achieve the
coordinated movement and stable locomotion (see Figs.6
(a) and (b)). The video clip of the test can be seen at
http://www.youtube.com/watch?v=fMLf6nIOWpM .

Figure 6: Two control setups for the FTi joint tested in a
physical simulator. (a) Snapshot of stable walking of the
hexapod robot at 15 s. (b) Vertical position of its body. (c)
Snapshot of unstable walking of the hexapod robot at 15 s.
(d) Vertical position of its body.

Therefore, the control strategy of its three-jointed legs
during stance phase is as follows: each TC joint (i.e., prox-
imal joint) is purely controlled by a pair of the CEs of the
VAAM (i.e., pure actuation), each CTr joint (i.e., interme-
diate joint) is governed by a pair of the CEs and PEs of the



VAAM (the combination of actuation and compliance), and
each FTi joint (i.e., distal joint) is driven by a pair of the
PEs (i.e., PE1 and PE2) of the VAAM (i.e., pure compli-
ance) (see Fig. 7). The control strategy is also comparable to
the findings revealed by three-jointed leg locomotion of the
BigDog-inspired study (Lee et al., 2008; Raibert, 2008).

Figure 7: Control framework for a three-jointed leg of the
hexapod robot in stance phase. (a) The three-jointed legs
take the strategy of directional actuation and compliance
(see text for details). (b) The control strategy for the leg.
The function of compliance intensifies from the TC to FTi
joints.

The relationship between the outputs O1−18 and the an-
gles θ1−18 of the joints is shown in Fig. 5(b). In concrete,
the computations of O1−18 are as follows:

FTi joints : Each FTi joint is only driven by PE(1,2) of the
VAAM (see Fig. 7 (a)). Therefore, their neural activations
N6×1 are equal to zero,

N6×1 = [0, 0, . . . , 0]T , (13)

where N6×1 = [N13, N14, . . . , N18]T .
In addition, the forces fext1−6 directly result in the extension

and flexion of the FTi joints. Therefore, the matrix τFTi
6×1 of

torques acting on the FTi joints is given by (derived from
Eq.(9)):

τFTi
6×1 = F⊥6×1L1, (14)

where

F⊥6×1 = F ext
6×1 ◦ sin(θ16×1)

= [fext1 sin(θ13), fext2 sin(θ14), . . . , fext6 sin(θ18)]T ,

Substituting Eqs.(13) and (14) into Eq.(11), θ16×1 is the
sum of the Hadamard products:

Iθ̈16×1 = F ext
6×1 ◦ sin(θ16×1)L1

−r(2rK16×1 ◦ θ16×1 +

2rD16×1 ◦ θ̇16×1), (15)

where

θ̈16×1 = [θ̈13, . . . , θ̈18]T , θ̇16×1 = [θ̇13, . . . , θ̇18]T ,

K16×1 = [K13, . . . ,K18]T , D16×1 = [D13, . . . , D18]T ,

The angles θ1m,1 (m ∈ Z[1,6]) of the FTi joints can be lin-
early transformed into their outputs Oj (see Fig. 5). Oj are
given by (j ∈ Z[13,18]):

Oj = 0.92θ1j−12,1 + 0.12. (16)

CTr joints : Each CTr joint is driven by PE(1,2) and
CE(1,2) of the VAAM. CE(1,2) are activated by one of
the outputs N7−12 of the MNN (see Fig. 7 (a)). For ex-
ample, the pair of the VAAM of the right front CTr joint
(i.e., CR1) is activated by N7 of the MNN (see Fig. 2 (d)).
The forces fext1−6 indirectly result in the elevation and depres-
sion of the CTr joint. The matrix of the CTr joint angles is
θ26×1 = [θ7, θ8, . . . , θ12]T . The computation of the torques
generated by fext1−6 needs to be approximated, since there are
no torque sensors at the CTr joint. Therefore, the matrix
τCTr
6×1 of the torques acting on the CTr joints is given by:

τCTr
6×1 = F ext

6×1 ◦ ~V 26×1

= F ext
6×1 ◦ (L2 cos(θ26×1) + ~V 16×1), (17)

where

L2 cos(θ26×1) = L2[cos(θ7), cos(θ8), . . . , cos(θ12)]T ,

~V 16×1 = L1[sin(θ13), sin(θ14), . . . , sin(θ18)]T ,

Substituting Eq.(17) to Eq.(11), the matrix θ26×1 of the CTr
angles is the sum of the Hadamard products:

Iθ̈26×1 = F ext
6×1 ◦ (L2 cos(θ26×1) + ~V 16×1)

+[rC6×1 − 2r2(K26×1 ◦ θ26×1 +

D26×1 ◦ θ̇26×1)], (18)

where

θ̈26×1 = [θ̈7, . . . , θ̈12]T , θ̇26×1 = [θ̇7, . . . , θ̇12]T ,

K26×1 = [K7, . . . ,K12]T , D26×1 = [D7, . . . , D12]T ,

The angles θ2m,1 (m ∈ Z[1,6]) of the CTr joints are linearly
transformed into their outputs Oj (see Fig. 5). Oj are given
by (j ∈ Z[7,12]):

Oj = −0.8θ2j−6,1 − 0.38. (19)

TC joints : All TC joints are purely controlled by CE(1,2)

of the VAAM. CE(1,2) are activated by the outputs N1−6
of the MNN (see Fig. 7 (a)). N1−6 are linearly transformed
into the outputsO1−6 of the TC joints. The matrix of the TC
neuron outputs is T6×1 = [N1, N2, . . . , N6]T . Oj are given
by (j ∈ Z[1,6]):

Oj = 0.4Tj,1 − 0.05. (20)



Experimental Results
The proposed neuromechanical and pure neural controllers
were implemented on the hexapod robot for walking on soft
elastic (i.e., sponge) and loose (i.e., gravel and snow) sur-
faces. Changing the matrices of the stiffness coefficients
of the FTi (i.e., K16×1 in Eq.(15)) and CTr (i.e., K26×1
in Eq.(18)) joints enables the legs of the hexapod robot to
show variable compliance (see notations in Appendix B).
Note that here, all damper coefficients of the CTr and FTi
joints were set to: D(1, 2)6×1 = [0.1, 0.1, . . . , 0.1]T . Due
to the damper properties of the VAAMs, the noise of force
sensor signals is filtered. Hence, we tested three setups for
hexpod walking on the surfaces:

• Neuromechanical controller with high stiffness (HSC).
K(1, 2)6×1 are set as: K16×1 = [4, 4, 6, 4, 4, 6]T and
K26×1 = [8, 8, . . . , 8]T .

• Neuromechanical controller with low stiffness (LSC).
K(1, 2)6×1 are set as: K16×1 = [3, 3, 5, 3, 3, 5]T and
K26×1 = [6, 6, . . . , 6]T .

• Pure neural controller (PNC).

The pure neural controller (PNC) uses the outputs of the
motor neurons of the MNN to directly drive the 18 joints of
the robot. The computations of its outputs follow Eq.(12)
for stance and swing phases. The free parameters of the pro-
posed neuromechanical controller are chosen based on trial
and error. The parameters of three setups allow the hexapod
robot to achieve coordinated and stable locomotion, which
have been tested in a physical simulator (i.e., lpzrobots sim-
ulator (Der and Martius, 2012)). For each setup, the runs
over each surface were repeated until ten successful runs1

were obtained. For a successful run, the power consumption
Pi and forward velocity vi are given by:

Pi = 5Ai, vi =
∆DISi

∆t
, i ∈ Z[1,10], (21)

where 5 Volts is the input voltage of the electrical board and
motors of the hexpod robot. Ai is an average electrical cur-
rent measured using a current sensor. ∆DISi is the forward
displacement during a time interval ∆t. The performance of
the runs was measured by ”specific resistance” εi (Gregorio
et al., 1997; Saranli et al., 2001). εi is determined by power
consumption Pi and forward velocity vi:

εi =
Pi

mgvi
=

Pi

52.974vi
, εavg =

10∑
i=1

εi

10
(22)

where mg is the weight of the hexapod robot, i.e., mg =
52.974 N. Lower εavg corresponds to more energy-efficient
walking, which is desirable.

1The data of unsuccessful runs was discarded. In unsuccessful
runs, the hexapod robot walked in unwanted directions.

Table 1: Average specific resistances εavg with standard de-
viations of the hexapod robot walking on sponge, gravel and
snow surfaces

Setup Sponge Gravel Snow
HSC 21.8 (± 0.9) 17.2 (± 0.7) 18.8 (± 0.5)
LSC 19.7 (± 0.8) 29.3 (± 2.0) 22.3 (± 0.8)
PNC 542.4 (± 63.8) 112.7 (± 13.0) -

Sponge surface
The interval ∆t over one run was 27 s. A 1.5 m long
sponge (i.e., three pieces of sponge glued together) was
used as a soft elastic surface. The experiment result is
shown in Table 1 and Fig. 8. The hexapod robot that
was controlled by the neuromechanical controllers with
the low (i.e., LSC) or high (i.e., HSC) stiffness con-
sumed less energy than controlled by the pure neural con-
troller (i.e., PNC). This is because LSC and HSC allow
for variable joint compliance of the hexapod robot result-
ing in leg adaptations to sponge deformations (see Fig. 8
(a)). The experimental video can be seen at the link
http://www.youtube.com/watch?v=vEqylwMXfJE .

Interestingly, LSC shows the lowest average specific re-
sistance with 19.7. This experimental result shows that
softer legs (i.e., LSC setup) allow the hexapod robot to
achieve more energy-efficient locomotion, compared to
stiffer legs (i.e., HSC setup). The finding complies with a
finding of physiological experiments on cockroach locomo-
tion. Owing to energy efficiency, cockroaches (i.e., Blaberus
discoidalis) also use their softer legs on soft elastic surfaces
(Spence et al., 2010; Spence, 2011).

Figure 8: Comparisons of HSC, LSC, and PNC for walking
on sponge surface. (a) Control signals O7 and O13 for the
CTr and FTi joints of the right front leg. There are seven
stance and six swing phases between 5 s and 15 s. (b) A
series of photos shows hexapod robot walking controlled by
LSC.



Gravel and snow surfaces
The interval ∆t over one run was 60 s. Gravel surface is
a bed (i.e., the length is 2.4 m) of loosely packed gravels
(i.e., gravel diameter φ : 5 mm - 60 mm). The experimental
result is shown in Table 1 and Fig. 9. HSC and LSC en-
able the hexapod robot to adapt its joint motions to different
sizes of gravels (see Joint motion I and II in Fig.9 (a)), while
PNC does not adapt the joint motions leading to difficulty
of locomotion. In addition, the average specific resistance
was lowest for HSC (i.e., εavg = 17.2), thereby leading to
more energy-efficient locomotion. This is because HSC al-
lows the legs of the hexapod robot to penetrate more deeply
into gravel surface (see control signals O7 in Fig.9 (a)). The
experimental video of walking on gravel surface can be seen
at http://www.youtube.com/watch?v=f2G4UzUQ6Iw .

Figure 9: Comparisons of HSC, LSC and PNC for walking
on gravel surface. (a) Control signals O7 and O13 for the
CTr and FTi joints of the right front leg. There are six stance
and five swing phases between 15 s and 25 s. (b) A series of
photos shows hexapod robot walking controlled by HSC.

In addition to gravel surface, we also tested HSC, LSC
and PNC for walking on another loose surface (i.e., snow),
which has a thickness of 8cm. The experimental result also
shows that HSC allows the hexapod robot to achieve more
energy-efficient locomotion (see average specific resistance
Table 1), compared to LSC. Note that we did not calcu-
late average specific resistance of the hexapod robot con-
trolled by PNC, since it got stuck in the snow. The exper-
imental video of walking on snow surface can be seen at
https://www.youtube.com/watch?v=OkZiVNeQdCA .

Conclusion and Future Work
We implemented a neuromechanical controller on a hexapod
robot for walking on sponge, gravel and snow surfaces. The
controller coordinates 18 joints, generates basic locomotion,
and allows for simply changing compliance of its legs for
walking on the different surfaces. Due to the changeable

compliance, the robot can achieve more energy-efficient lo-
comotion (i.e., lower specific resistance) on different sur-
faces. Softer legs (i.e., LSC setup) do better in locomotion
on a soft elastic surface (i.e., sponge), while stiffer legs (i.e.,
HSC setup) are better for locomotion on loose surfaces (i.e.,
gravels and snow). In addition, on gravel surface, the spe-
cific resistance of the robot is 17.2 when it is controlled by
the neuromechanical controller with HSC presented here.
In contrast, its specific resistance increases to 56.63 when
it is controlled by an adaptive neural locomotion controller
presented in our previous work (Manoonpong et al., 2013),
which does not have muscle-like mechanisms (i.e., virtual
agonist-antagonist mechanism (VAAM)).

Central properties of the VAAM of our neuromechanical
controller are: (1) it enables robot legs to simply change
their compliance without the requirement of additional phys-
ically compliant mechanisms (Ham et al., 2009) or joint
torque sensing (Görner and Hirzinger, 2010) and (2) it al-
lows a hexapod robot to adapt its legs to deal with chal-
lenging surfaces (i.e., sponge, gravel and snow). In future
work, we plan to compare the proposed neuromechanical
controller with other adaptive leg controllers (e.g., forward
model (Manoonpong et al., 2013)) in different surfaces (e.g.,
snow). And we will also implement an adaptive mecha-
nism for automatically adjusting stiffness coefficients of the
VAAM with respect to different walking speeds or gaits.
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Appendix A : Joint Motion Equation
Substituting Eqs.(7), (8) and (9) into Eq.(10), the motion
equation of the joint P is given by:

Iθ̈ = fext sin(θ)L+ r[(K(lP1 − l0) +DvP1 +Nji1)

−(K(lP2 − l0) +DvP2 +Nji2)]. (23)

The lengths of PE(1,2) (i.e., lP(1,2)) are equal to the lengths
of M1 (i.e., L1) and M2 (i.e., L2),

lP1 = L1, L2 = lP2 . (24)

In Fig. 4,M1 is shortening whenM2 is lengthening. There-
fore, the relationship between displacements of M1 (i.e.,



∆L1), M2 (i.e., ∆L2) and PE(1,2) (i.e., ∆lP(1,2)) is given
by:

−∆lP1 = −∆L1 = ∆L2 = ∆lP2 . (25)

Here we postulate the relationship between displacements
∆lP1 of PE1, ∆lP2 of PE2 and the joint angle θ as (derived
by Eqs.(24) and (25)):

−(lP1 − l0) = −∆lP1 = θr = ∆lP2 = lP2 − l0, (26)

where r is the radius of the joint P . The relationship be-
tween velocities ˙∆lP1 of PE1, ˙∆lP2 of PE2 and the joint
velocity θ̇ is given by:

−vP1 = − ˙∆lP1 = θ̇r = ˙∆lP2 = vP2 . (27)

Besides, since the motions of M1 and M2 are against
each other, their activation intensities i(1,2) are set to:

i1 = −i2 = 0.5. (28)

Appendix B : Notations
• F ext

6×1 is the matrix of the forces, i.e., F ext
6×1 =

[fext1 , fext2 , . . . , fext6 ]T ;

• F⊥6×1 is the Hadamard product of F ext
6×1 and sin(θ16×1);

• L1 is the length of the link between the FTi joint and the
end effector of the leg, e.g., L1 = 0.115 m;

• I is the inertia of the FTi and CTr joints, i.e., I = 0.5 ×
10−3;

• θ̈16×1 and θ̇16×1 are the acceleration and velocity matri-
ces of θ16×1. r is set to 0.1;

• K(1, 2)6×1 and D(1, 2)6×1 are matrices of the stiffness
and damper coefficients of PE(1,2), which control the
compliance of the FTi and CTr joints.

• L2 is the length of links between the CTr and FTi joints,
i.e., L2 = 0.075 m;

• ~V 16×1 and ~V 26×1 are matrices of the displacement vec-
tors of the CTr and FTi joints relating to the forces fext1−6.

• θ̈26×1 and θ̇26×1 are the acceleration and velocity matri-
ces of θ26×1.

• C6×1 is the matrix of the CTr neuron outputs of the MNN,
i.e., C6×1 = [N7, N8, . . . , N12]T .
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