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Reinforcement learning (RL) is learning by interacting with an environment. An RL agent learns from the

consequences of its actions, rather than from being explicitly taught and it selects its actions on basis of its past

experiences (exploitation) and also by new choices (exploration), which is essentially trial and error learning. The

reinforcement signal that the RL-agent receives is a numerical reward, which encodes the success of an action's

outcome, and the agent seeks to learn to select actions that maximize the accumulated reward over time. (The use of

the term reward is used here in a neutral fashion and does not imply any pleasure, hedonic impact or other

psychological interpretations.)

Overview

In general we are following Marr's approach (Marr et al 1982, later re-introduced by Gurney et al 2004) by

introducing different levels: the algorithmic, the mechanistic and the implementation level.

The Algorithmic level (Machine-Learning perspective)

The best studied case is when RL can be formulated as class of Markov Decision Problems (MDP). The agent can

visit a finite number of states and in visiting a state, a numerical reward will be collected, where negative numbers

may represent punishments. Each state has a changeable value attached to it. From every state there are subsequent

states that can be reached by means of actions. The value of a given state is defined by the averaged future reward

which can be accumulated by selecting actions from this particular state. Actions are selected according to a policy

which can also change. The goal of an RL algorithm is to select actions that maximize the expected cumulative

reward (the return) of the agent.

In general. RL methods are employed to address two related problems: the Prediction Problem and the Control

Problem.

Prediction only: RL is used to learn the value function for the policy followed. At the end of learning this

value function describes for every visited state how much future reward we can expect when performing

actions starting at this state.

1.

Control: By interacting with the environment, we wish to find a policy which maximizes the reward when

traveling through state space. At the end we have obtained an optimal policy which allows for action

planning and optimal control. Since this is really a predictive type of control, solving the control problem

would seem to require a solution to the prediction problem as well.

2.
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In general there exist several ways for determining the optimal value function and/or the optimal policy.

If we know the state transition function function T(s,a,s'), which describes the transition probability in going from

state s to s' when performing action a, and if we know the reward function r(s,a), which determines how much

reward is obtained at a state, then algorithms can be which are called model based algorithms. They can be used to

acquire the optimal value function and/or the optimal policy. Most notably here Value-Iteration and Policy-Iteration

are being used, both of which have their origins in the field of Dynamic Programming (Bellmann 1957) and are,

strictly-speaking, therefore not RL algorithms (see Kaelbling et al 1996 for a discussion).

If the model (T and r) of the process is not known in advance, then we are truly in the domain of RL, where by an

adaptive process the optimal value function and/or the optimal policy will have to be learned. The most influential

algorithms, which will be described below, are:

Temporal Difference Learning: TD; by itself used for value function learning,

adaptive Actor-Critics: an adaptive policy iteration algorithm, which approximates the model of the value

function by TD where the TD error is used for boththe actor and critic, and

Q-learning: a unifying algorithm which allows for simultaneous value function and policy optimization.

The mechanistic level (Neuronal Perspective)

Early on, we note that the state-action space formalism used in reinforcement learning (RL) can be also translated

into an equivalent neuronal network formalism, as will be discussed below. Note, the neuronal perspective of RL is

in general indeed meant to address biological questions. Its goals are usually not related to those of other artificial

neural network (ANN) approaches (this is addressed by the machine-learning approach of RL).

Overview: from the algorithmic level to the neuronal implementation

Figure 1 shows a summary diagram of the embedding of reinforcement learning depicting the links between the

different fields. Red shows the most important theoretical and green the biological aspects related to RL, some of

which will be described below (Wörgötter and Porr 2005). RL plays a role in machine learning (optimal control) but

also in theories of animal (human) learning relating RL to some aspects of psychology (classical conditioning and

instrumental conditioning). At the same time, RL-concepts developed in machine learning seem to find their

correspondence in the response of certain neurons in the brain (see Reward Signals). Furthermore RL is necessarily

linked to biophysics and the theory of synaptic plasticity.

RL methods are used in a wide range of applications, mostly in academic research but also in fewer cases in

industry. Typical application fields are:

Systems control, e.g. learning to schedule elevator dispatching,

(Crites and Barto 1996);

Playing Games, e.g. TD-Gammon (Thesauro 1994), and
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Figure 1: The context of RL

Simulations of

animal learning
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and Barto 1981,
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tasks, Montague

et al 1995,
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tropisms, Porr

and Wörgötter

2003).

Background
and History

A detailed account

of the history of RL

is found in Sutton

and Barto (1998) [1]

(http://www.cs.ualberta.ca/~sutton/book/the-book.html) . Here, we will only summarize the most important

contributions.

The top part of Figure 1 shows that several academic disciplines have contributed to RL. Most notably there are

two:

Optimal control (left side).1.

Animal learning by trial and error (middle).2.

Optimal control problems have been addressed by methods of dynamic programming (Bellmann 1957) which is a

large scientific area in its own right (not to be discussed here). Trial-and-error learning has roots in Psychology,

especially Classical Conditioning and instrumental conditioning. As a consequence, the first stream (optimal

control) was from the beginning governed by highly algorithmical/mathematical approaches, whereas for the second

stream (animal learning) it took much longer for the first, still more qualitative, mathematical models to be

developed (see, for example, the Rescorla-Wagner Model). Optimal control and instrumental conditioning deal with
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closed-loop control problems. However, Classical Conditioning deals with a prediction-only problem because the

response of the animal does not influence the experiment, or - in more general terms - does not influence the

environment. A good short summary relating algorithmic approaches to real classical conditioning experiments is

given by Balkenius and Moren (1998).

Arising from the interdisciplinary study of these two fields, there appeared a very influential computational method,

called the method of Temporal Difference Learning (TD) (Witten 1977, Sutton and Barto 1981). TD learning was

originally mainly associated to animal learning (Classical Conditioning), where an early occurring reinforcer (see

the stimuli in Figure 2), the conditioned stimulus (CS), needs to be associated with a later occurring unconditioned

stimulus (US) creating a situation where temporal differences of a (value-) function need to be evaluated. Goal of

this computation is to assure that after learning the CS becomes a predictor of the US (prediction problem). While

TD was originally designed to deal with such prediction problems (Sutton and Barto 1981, Sutton 1988), is was also

used to solve optimal control problems. Of particular note is the work of Watkins (1989) on Q-learning, a temporal

difference-based control algorithm.

It was essentially the work of Klopf (1972, 1975, 1982, 1988), that began to bring TD-methods together with animal

learning theories. He also introduced the difference between evaluative and non-evaluative feedback, where he

associated evaluative feedback to [[supervised learning]] (feedback from a teacher) and rightfully stated that the

environment does not produce any evaluation. Feedback that arrives from the environment at the sensors of a

creature can only be non-evaluative. Any evaluation, in this case, must be performed only internally by the animal

itself. Because animals don't receive evaluative feedback, RL would appear to be an example of unsupervised

learning. However, this formulation hides the subtle, sometimes very troubling, problem of how the environment is

actually defined. The reason this issue is a problem will be discussed later (see section on Problems below).

TD methods need to predict future rewards. In order to achieve this, TD learning use value functions V(t) which

assign values to states and then calculates the change of those values by ways of a temporal derivative. As a

consequence, these methods are related to methods of correlation based, differential Hebbian learning (right side

of Figure 1), where a synaptic weight changes by the correlation between its input signals with the derivative of its

output. Such rules were first discussed by Kosco (1986) as well as Klopf (1986, 1988). Sutton and Barto's 1981

paper, however, really also described a differential Hebbian learning rule. Differential Hebbian rules moved back

into the focus of interest only after 1997, when they had been related to spike-timing dependent plasticity (Markram

et al 1997). In this new context, Gerstner et al rediscovered these rules in 1996 (Gerstner et al 1996) and they had

been applied to RL control problems some years later by Porr and coworkers (Porr and Wörgötter 2003, 2006).

Basic Algorithms

A wide variety of algorithms exist to date with which RL problems can be addressed. As most of them will be

covered by separate articles of this encyclopedia, we will only give a brief summary over the most important ones

here.

Specifically here we need to distinguish between the machine learning- (Sutton and Barto 1998, Kaelbling et al
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1996) and the neuronal perspective (Wörgötter and Porr 2005). The machine learning perspective deals with states,

values and actions, etc., whereas the neuronal perspective tries to obtain neuronal signals related to reward-

expectation or prediction-error (see below).

Again we divide the discussion into the prediction-problem (open loop) as well as the control problem (closed loop).

The following side-by-side presentation compares the most important basic approaches and should serve as a

direction for further reading.

Prediction
Algorithms: Machine learning Mechanisms: Neuronal

TD-Learning: At the core of most RL algorithm lies the

method of Temporal Differences (TD, Figure 2A). We

consider a sequence of states followed by rewards

The complete return  to be expected in the future from

state  is, thus

where  is a discount factor (distant rewards are

less important). Reinforcement learning assumes that the

value of a state  is directly equivalent to the

expected return

where  is here an unspecified action policy. Thus, the

value of state  can be iteratively updated with

where  is a step-size (often =1). Note, if 

correctly predicts the expected complete return  the

update will be zero in average and we have found the

final value for  This method requires to wait until a

sequence has reached its terminal state before the value-

update can commence. For long sequences this may be

problematic. However, given that

 we can also update

Neuronal-TD: A similar algorithm can be designed for

the neuronal perspective (as suggested by Dayan, 2002).

We assume that a neuron  can approximately predict a

reward  then we should at every time step 

find that  and 

Since this is only approximately true (until convergence)

we can in the same way define the error by

(neglecting discount factors here for brevity). Thus we

can update weight  with

where  is a convolution with the filter kernel E

and denotes the fact that input  needs to be

remembered for some time in the system. The function E

is usually a first order low pass response and is also

known as eligibility trace. Because the error  occurs

later than  the correlation of  would be zero

without this type of memory. Figure 2B shows the basic

TD-rule for a neuron with one predictive CS-input 

and a reward line  the US. When combining this with

a delay line which splits  into many inputs, each

delayed with respect to each other by a unit delay (serial

compound representation) this algorithm emulates the

backward-TD(1) procedure.

ISO/ICO-learning: An alternative neuronal approach
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iteratively by

which is the TD(0) procedure. The elegant trick is to

assume that, if the process converges, the value of the

next state  should be an accurate estimate of

the expected return downstream to  We define the

-error as

Normally we would only assign a new value to one state

by performing  not considering

any other previously visited states. This, however, can be

desirable and can be achieved by so called eligibility

traces  which are used to update earlier visited states

"a little bit". We define  at the currently visited

state and let E decay gradually along states visited in the

past with a decay factor  so we can define

for  This procedure is known as

 If  then we are equally

considering all previously visited states.

Properties of TD-learning: TD-learning will converge

to the final value function assigning to each state its final

value, if all states have been visited "often enough". This

can, however, lead to very slow convergence if the state

space is large. The expectation value of the -error

denoted by  will converge to zero, while  itself can

- for example - also alternate between positive and

negative values. For large state spaces and/or sparse

rewards convergence may require many steps and can be

very slow. It is not possible to a priori assess if TD( )

will

(Figure 2B) uses a correlation based differential Hebbian

learning rule given by:

(ISO-rule), or alternatively using pure input correlations:

(ICO-rule), where  is the learning rate.

Properties of ISO/ICO: In general  is the

unconditioned input which drives the post-synaptic

potential whereas the conditioned input  converges

through a plastic synapse on the neuron. After learning

the neuron's output will co-occur with the CS, but since

the US-input  converges onto the neuron, this circuit

(Figure 3B) can also before learning be used for

generating (motor-)output. In ISO all weights are

allowed to change, in ICO weight  remains fixed. The

weight change curve is similar to those observed with

spike-timing dependent plasticity. Proof exists that 

will converge if  which is a condition that needs

to be fulfilled by an input taking a certain value and is

called input control.

See Wörgötter and Porr (2005) for a review and Porr and

Wörgötter (2006).
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perform better than TD(0). See Sutton and Barto (1998).

Figure 2: Diagrammatic representation of the different learning methods for the prediction problem. A) An agent

travels through states Si by ways of actions Ai. When reaching a new state a reward Ri will be collected. TD-learning

uses these rewards to update the values Vi of previously visited states. TD(0) only updates the value of the most

recently visited state (dashed arrows). B) Neuronal TD learning correlates a CS (r=reward) with a US (x1), where the

CS is prolonged by trace E. pe=Prediction Error Neuron, re=Reward Expectation Neuron. The blue amplifier symbol

denotes a changeable synapse, the 'X' a multiplication and the prime symbol a temporal derivative. In TD only 

can change. C) In ISO-learning both synapses  and  can change.

Control
Algorithms: Machine learning Mechanisms: Neuronal

SARSA (initially known as modified Q-learning

Rummery and Niranjan, 1994): Probably the nicest

aspect of the TD-formalism is that it can be used almost

unaltered to address the control problem. We note first

that the value of state-action pairs is given by the same

formal expectation value of an expected total return 

as before:

The difference is that we have to calculate this now

assuming that at moment  we are visiting state  from

where we take the specific action  whereas above the

action was left unspecified. The same TD(0) rule can be

used to approximate  with

Actor-Critic Architectures: Neuronal approaches,

which address the control problem and can generate

behavior, in general follow a control-loop architecture.

Figure 3A shows a conventional feedback control

system. In neuronal terms this is a reflex-loop. A

controller provides control signals to a system, which is

influenced by disturbances. Feedback allows the

controller to adjusts it signals. In addition, a set-point is

defined which the control loop tries to approximate. Part

B shows how to extend this into an Actor-Critic

architecture (Witten 1977, Barto et al. 1983, Sutton

1984, Barto 1995). The Critic produces evaluative,

reinforcement feedback for the Actor by observing the

consequences of its actions. The Critic takes the form of

a TD-error, which gives an indication if things have gone

ω1

ω0 ω1

Rt

Q(s, a) = ( | = s, = a) .Eπ Rt st at

t s

a ,

Q
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To calculate this we must for t and t+1 go through the

transition: state, action, reward, state, action; which

gives this update rule its name SARSA (Sutton 1996).

This method starts with a policy  which is continuously

updated during learning (on-policy update).

Q-learning: Uses the rule

Taking the maximum across all actions a which are

possible at state  seems to be only a minor

modification as compared to SARSA. In effect, however,

it makes learning independent of the starting policy 

and it allows keeping this policy throughout the whole

learning process (off-policy update). When Q-learning

has finished, the optimal policy and the optimal value

function have been found, without having to

continuously update the policy during learning.

Formulations for SARSA( ) and Q( ) can be derived in

a similar way as above (see Sutton and Barto 1998 for a

discussion).

Properties of Q-learning and SARSA: Q-learning is

the reinforcement learning algorithm most widely used

for addressing the control problem because of its

off-policy update, which makes convergence control

easier. SARSA and Actor-Critics (see below) are less

easy to handle. It can be shown that under certain

boundary conditions SARSA and Q-learning will

converge to the optimal policy if all state-action pairs are

better or worse than expected with the preceding action.

If the TD-error is positive the tendency to select this

action should be strengthened or else, lessened. Thus,

Actor and Critic are adaptive through reinforcement

learning. On the side of machine learning, Actor-Critics

are related to interleaved value/policy-iteration methods

(Kaelbling et al 1996). On the side of control, they are

related to advanced feed-forward control and

feed-forward compensation techniques.

Properties of Actor-Critics: They rely on the return

maximization principle trying to maximize the expected

return by choosing the best actions. They allow for the

learning of goal-directed actions. The Actor uses in

general a set of predefined actions. Actions are not easily

generated de novo. The Critic cannot generate actions on

its own but must work together with the Actor.

Convergence is slow if these methods are not augmented

by additional mechanisms (Touzet and Santos 2001).

Actor-Critics use evaluative feedback from the

environment labelled reward=positive or

punishment=negative. As  is the convergence

condition, these systems are governed by output-control.

Actor-Critic Architectures are specifically being

discussed in conjunction with the Basal Ganglia where

different models have been proposed (Gurney et.al.

2004).

Closed-loop ISO/ICO: Figure 3C shows a different

approach, where it is assumed that the environment will

provide temporally correlated signals  about

upcoming events like a CS-US pair. Learning goal is to

minimize the later signal  which represents an error

signal. After learning the primary reflex input 

converges to zero. Actor and Critic are not separate in

this architecture which does not allow so far the

sequencing of actions. Because the system uses only

correlations between signals for the learning, it receives

strictly non-evalutative feedback from the environment.

Convergence is very fast (one-shot learning of ICO, Porr

and Wörgötter 2006). As  is the convergence

Q( , ) → Q( , ) + :st at st at

α[ + γQ( , ) − Q( , )] .rt+1 st+1 at+1 st at
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Q( , ) → Q( , ) + :st at st at
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visited infinitely often.

Actor-Critic Architectures: These play a specific role

because originally they had been designed in the context

of machine learning as an adaptive policy iteration

algorithm. More recently Actor-Critics, however, have

been much more discussed in conjunction with the

architecture of the basal ganglia (Joel et al 2002). Hence,

their properties are being described on the right side of

this page under "neuronal control".

Note: for Q-learning and SARSA no neuronal

architectures exist so far. Recent results suggest that

animals might rather follow a SARSA-like, on-policy

update as opposed to a Q-learning like, off-policy update

(Morris et al 2006, see also commentary by Niv et al

2006).

condition which is defined at the input, this system

performs input control. See Wörgötter and Porr (2005).
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Figure 3: Diagrammatic representation of closed-loop reinforcement methods mainly applied

using the neuronal perspective.

Different RL Strategies

RL-methods can be used for learning to reach a goal step by step (Goal Directedness). They can however also be

used to learn avoiding a disturbance (Homeostasis). TD methods can be used to learn goals, ISO/ICO methods are

better suited for homeostasis learning. ISO/ICO methods have also been employed to learn attractive (food retrieval)

or repulsive (obstacle avoidance) tropisms, but so far not for learning step-wise goal-directed actions.

The Implementation-level (Neuroscience)

In the section we are establishing the link between the mechanistic level and the neuroscience, hence establishing a

link between the abstracts ANNs presented in the previous sections with neurophysiological findings such as spike

timing dependent plasticity and dopaminergic modulation.

Reinforcement learning is also reflected at the level of neuronal sub-systems or even at the level of single neurons.

In general the Dopaminergic system of the brain is held responsible for RL. Responses from dopaminergic neurons
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Figure 4: Examples of a Prediction Error (pe, A-C) and some Reward

Expectation (re, D,E) neurons (Schultz, 2002). The bottom panels show the

similarity of real STDP curves (F, Markram et al 1997) with the ones

obtained from ISO-learning (G, Porr et al 2003).

have been recorded in the Substantia

Nigra pars compacta (SNc) and the

Ventral Tegmental Area (VTA) where

some reflect the prediction error  of

TD-learning (see Figure 3B pe).

Neurons in the Striatum, orbitofrontal

cortex and Amygdala seem to encode

reward expectation (for a review see

Reward Signals, Schultz 2002, see

Figure 3B re). These neurons have

been discovered mostly in

conjunction with appetitive (food-

related) rewards. Figure 4 shows

some examples of prediction error- as

well as reward expectation neurons.

However, only few dopaminergic

neurons produce error signals that

comply with the demands of

reinforcement learning. Most

dopaminergic cells seem to be tuned

to arousal, novelty, attention or even

intention and possibly other driving

forces for animal behavior.

Furthermore the TD-rule reflects a well-defined mathematical formalism that demands precise timing and duration

of the  error, which cannot be guaranteed in the basal ganglia or the limbic system (Redgrave et al. 1999).

Consequently, it might be difficult to calculate predictions of future rewards. For that reason alternative mechanisms

have been proposed which either do not rely on explicit predictions (derivatives) but rather on a Hebbian association

between reward and CS (O'Reilley et al. 2007), or which use the DA signal just as a switch which times learning

after salient stimuli (Redgrave and Gurney 2007, Porr and Wörgötter 2007). Hence the concept of derivatives and

therefore predictions has been questioned in the basal ganglia and the limbic system and alternative more simpler

mechanisms have been proposed which reflect the actual neuronal structure and measured signals.

Differential Hebbian learning (e.g. ISO-rule) seem to be to some degree compatible with novel findings on spike-

timing dependent synaptic plasticity (STDP, Markram et al 1997). In this type of plasticity, synapses potentiate

(become stronger) when the presynaptic input is followed by post-synaptic spiking activity, while else they are

depressed (become weaker). The multiplicative (correlative) properties necessary to emulate a Hebb rule can be

traced back to second messenger chains, which phosphorilate AMPA receptors and the required differential aspect

appears to arise from the sensitivity of real synaptic plasticity to Calcium gradients (Lindskog et.al. 2006). Figure 4

shows two examples of weight change curves (often called learning window) from a real neuron and from a

differential Hebbian learning rule emulated to be compatible with some basic biophysical characteristics

δ

δ
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(Saudargiene et al 2004).

Challenges and extensions to RL

In spite of its influence across different fields RL is confronted with a variety of problems, which we will list here.

Note that in any given RL scenario the different problems listed here occur with different relevance. Unfortunately

this has in general led to a situation in the literature where solutions are tailor-made for the one given

problem(-domain). The elegance of the basic RL-methods is this way often lost in a wide variety of add-on

mechanisms and add-on parameters.

Curse of Dimensionality

In general it is difficult to define appropriate state- and action spaces in all real-world RL problems. Most often the

tiling of the state space has to be rather fine to cover all possibly relevant situations and there can also be a wide

variety of actions to choose from. As a consequence there exists a combinatorial explosion problem when trying to

explore all possible actions from all possible states. Solutions to this problem apply scale-spacing methods and/or

function approximation methods to reduce and/or interpolate the searchable value-space. Both methods try to

generalize the value function.

(Temporal) Credit Assignment Problem

This is a related problem. It refers to the fact that rewards, especially in fine grained state-action spaces, can occur

terribly temporally delayed. For example, a robot will normally perform many moves through its state-action space

where immediate rewards are (almost) zero and where more relevant events are rather distant in the future. As a

consequence such reward signals will only very weakly affect all temporally distant states that have preceded it. It is

almost as if the influence of a reward gets more and more diluted over time and this can lead to bad convergence

properties of the RL mechanism. Many steps must be performed by any iterative reinforcement-learning algorithm

to propagate the influence of delayed reinforcement to all states and actions that have an effect on that

reinforcement. Similar strategies as above are applied to solve this problem.

Partial Observability Problem

In a real-world scenario an RL-agent will often not know exactly in what state it will end up after performing an

action. Basic RL-algorithms cannot be used in this case, because they require full observability. Furthermore states

must be history independent. Hence it must be irrelevant how one has reached a certain state (systems must be

Markovian). Often POMDP methods (POMDP=partial observable Markov decision problems) are used to address

this problem. Many solutions to POMDPs have been designed and cannot be reviewed here. A simple introduction

is given by (Anthony R. Cassandra: [2] (http://www.cs.brown.edu/research/ai/pomdp/tutorial/index.html) ) for more

advanced literature one should mainly consult the work of Littman and Kaelbling et al [3] (http://www.cs.duke.edu

/~mlittman/topics/pomdp-page.html) .
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State-Action Space Tiling

In view of the above problems it turns out that deciding about the actual state- and action-space tiling is difficult as

it is often critical for the convergence of RL-methods. Alternatively one could employ a continuous version of RL,

but these methods are equally difficult to handle.

Non-Stationary Environments

As for other learning methods, RL will only work quasi stationary environments if the dynamics change slowly.

This is a fundamental problem and cannot be mitigated. If the world changes too fast, you cannot learn. As indicated

above, many times RL-algorithms do not converge very fast. Hence, slowly converging RL-methods may even fail

in slowly changing environments.

Credit Structuring Problem

After deciding about the basic structure on which the RL-agent should operate we are still not done, because one

also need to decide about the reward-structure, which will affect the learning. Several possible strategies exist:

external evaluative feedback: The designer of the RL-system places rewards and punishments by hand. This

strategy generally works only in very limited scenarios because it essentially requires detailed knowledge about

the RL-agent's world.

internal evaluative feedback: Here the RL-agent will be equipped with sensors that can measure physical

aspects of the world (as opposed to 'measuring' numerical rewards). The designer then only decides, which of

these physical influences are rewarding and which not.

For a driving robot with battery, finding the charging station ought to be very rewarding, while hitting a wall should

create a punishment. This strategy can be more generally applied, but might create a partially observable situation.

In addition, evaluative feedback will always require influence of the designer. This can even lead to substantial

problems if the world-model of the designer does not match to that of the RL-agent. Pure correlation based methods

(e.g. differential Hebbian methods like ISO/ICO) do not use evaluative feedback, because their feedback from the

environment is not pre-labeled "good" or "bad" by the designer. Rather the task defines the learning goal which has

the advantage that feedback is not limited to a one-dimensional signal such as the reward but can use

multidimensional feedback from the environment.

Alternatively one could employ evolutionary methods that evolve their own reward function over a series of

generations and avoid the assignment of rewards to environmental stimuli by the experimenter.

Exploration-Exploitation Dilemma

RL-agents need to explore their environment in order to assess its reward structure. After some exploration the

agent might have found a set of apparently rewarding actions. However, how can the agent be sure that the found

actions where actually the best? Hence, when should an agent continue to explore or else, when should it just exploit
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its existing knowledge? Mostly heuristic strategies are employed for example annealing-like procedures, where the

naive agent starts with exploration and its exploration-drive gradually diminishes over time, turning it more towards

exploitation. The annealing rate, however depends also on the structure of the world and especially also on the

graining of the state space and cannot be decided without guided guessing. Recently Singh et al, 2002 have

developed more efficient solutions for the exploration/exploitation dilemma.
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