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Abstract. We demonstrate that the map of the preferred 
orientations and the corresponding map of the orienta- 
tion tuning strengths as measured with optical imaging 
are not independent, but that band-pass filtering of the 
preferred orientation map at each location yields a good 
approximation of the orientation tuning strength. Band- 
pass filtering is performed by convolving the map of 
orientation preference with its own autocorrelation func- 
tion. We suggest an interpretation of the autocorrelation 
function of the preferred orientations as synaptic cou- 
pling function, i.e., synaptic strength as a function of 
intracortical distance between cortical cells. In develop- 
mental models it has been shown previously that 
a "Mexican hat"-shaped synaptic coupling function (with 
a shape similar to that of the autocorrelation function) 
can produce a realistical-looking pattern of preferred 
orientations. Since optical imaging performs surface 
averaging, we discuss the possibility that the connection 
between the two maps is a measurement artifact of 
optical imaging. Whether this is the case can only be 
decided by combining electrode penetrations with optical 
imaging techniques for which we suggest experiments. 
We present a model for the generation of both maps from 
a single computational concept. The model is based on 
inverse Fourier transform of rather simple two- 
dimensional annulus-shaped spectra which will produce 
a column structure very similar to real data. Thus, our 
approach shows that the complex appearance of cortical 
orientation columns has a rather simple description in 
the Fourier domain. Our theoretical analysis explains 
why singularities in the cortex do not have vorticities 
other than _ 1/2, a result which corresponds to recent 
experimental findings. This study combines the results 
from several modeling approaches with recently avail- 
able optical imaging data to construct a model of both 
aspects (angle and strength) of the cortical orientation 
column system. This could alter ideas about cortical 
development if the link between the two maps can be 
established as a physiological result. 

Correspondence to: F. W6rg6tter 

1 Introduction 

It has been known for several decades that visual cortical 
cells prefer elongated stimuli and that each cell has its 
individual preferred orientation (Hubel and Wiesel 1962) 
and its own orientation tuning strength. In the following 
report we will define orientation preference as the orienta- 
tion measured in degrees of the visual field of a bar or 
grating-like stimulus leading to the strongest response. 
Orientation tuning strength will be defined as the rate at 
which responses fall off with increased difference between 
stimulus and preferred orientations. Neurons with high 
or low tuning strength respond over a narrow or broad 
range of angles, respectively. Orientation preferences are 
not randomly distributed over the cortical surface; in- 
stead, their organization follows several principles: 

1. Except for isolated points (singularities) and possibly 
lines (fractures) (see Blasdel and Salama 1986; Blasdel 
1992a, b), the preferred orientations change gradually 
along the cortical surface so that adjacent cells tend to 
have similar preferred orientations (Hubel and Wiesel 
1968, 1974; Albus 1975; Humphrey and Norton 1980). 
2. All preferred orientations occur within an approxim- 
ately constant interval called a "hypercolumn" (Hubel 
and Wiesel 1963, 1974). 
3. Plotting the preferred orientations against their sur- 
face location leads to curved slab-like structures that 
contain similar preferred orientations (Albus 1975; 
Blasdel and Salama 1986; Grinvald et al. 1986; Swindale 
et al. 1987; Ts'o et al. 1990; Bonhoeffer and Grinvald 
1991). 
4. At relatively few points of this interlaced structure all 
orientations meet. Such points are called "singularities" 
(Swindale 1982; Blasdel and Salama 1986; Swindale et al. 
1987; Baxter and Dow 1989; Bonhoeffer and Grinvald 
1991), and the angle of orientation preference at a 
singularity is not well defined (Swindale 1982; Baxter 
and Dow 1989). 
5. Possibly, the orientation tuning strength is low in 
a singularity (Braitenberg and Braitenberg 1979; 
Swindale 1982; G6tz 1987, 1988; Baxter and Dow 1989, 



but see Bonhoeffer and Grinvald 1991). In monkey many 
singularities are associated with zones of high cyto- 
chrome oxidase reactivity (cytochrome oxidase blobs, 
Blasdel 1992a, b). 
6. Singularities can be characterized by their "vorticity" 
(Elsdale and Wasoff 1976; Swindale 1982; Baxter and 
Dow 1989) which is a measure of how often all preferred 
orientations occur in the vicinity of a singularity. 

We will call these attributes the structural features of 
an orientation column system, because they are most 
prominent in cortical organization. In this study we will 
consider only the above-mentioned structural features 
even though more features might exist. 

Many developmental models have been designed that 
reproduce some or all of the structural features of cortical 
orientation columns. Most models utilize reinforcement 
mechanisms between adjacent cells, starting off with an 
orientation bias which is either introduced as biased 
afferent convergence or develops as a result of the prob- 
abilistic noise in the system (von der Malsburg 1973; 
Nass and Cooper 1975; Perez et al. 1975; Cooper et al. 
1979; vonder Malsburg and Cowan 1982; Swindale 1982; 
Linsker 1986a, b; Miller 1990). Related to this approach 
is work which shows that self-organizing feature maps 
(Kohonen 1990) generate column structures which share 
many properties with orientation (or ocular dominance) 
columns in visual cortex (Obermayer et al. 1990, 1991). 
Similar maps are obtained if one assumes that the con- 
nections between neurons satisfy some geometric con- 
straints (Soodak 1987). Basically, the maps minimize the 
total length of connections between like neurons, with 
the exception of a few long-range connections (Durbin 
and Mitchison 1990). In addition, some theoretical con- 
siderations have been published that tried to link the 
structural features to basic geometric design principles 
that could underlie cortical column systems (Braitenberg 
and Braitenberg 1979; Braitenberg 1985; G6tz 1987, 
1988; Baxter and Dow 1989; Bauer and Dow 1991). 
These approaches emphasize the distribution and vortic- 
ity of the singularities and regard them as possible foci 
from which the organization of a column system could be 
initialized (Braitenberg and Braitenberg 1979). In these 
reports, the actual initialization process and the develop- 
ment is not specified (but see G6tz 1988). In yet another 
approach, Rojer and Schwartz (1990) were able to obtain 
realistic-looking orientation column structures by band- 
pass filtering of white noise. From such a multitude of 
models the question arises of whether there is a minimal 
model which captures the structural features of the cor- 
tex, subsuming the results from previous studies. 

While the spatial pattern of orientation preference has 
recently been characterized using optical imaging tech- 
niques and a rather complete picture seems to emerge 
(Albus 1975; Blasdel and Salama 1986; Grinvald et al. 
1986; Swindale et al. 1987; Ts'o et al. 1990; Bonhoeffer 
and Grinvald 1991; Blasdel 1992a, b), the spatial distribu- 
tion of the orientation tunin9 strenyth is still a matter of 
controversy. Optical imaging reveals a low orientation 
tuning strength in the vicinity of singularities and frac- 
tures (Blasdel and Salama 1986; Bonhoeffer and 

Grinvald 1991; Blasdel 1992a, b), which is in accordance 
with predictions of developmental as well as structural 
models of cortical maps (Braitenberg and Braitenberg 
1979; Swindale 1982; G6tz 1987, 1988; Baxter and Dow 
1989; Obermayer et al. 1991). However, low orientation 
tuning strength may also be the result of spatial aver- 
aging involved in optical imaging. Experiments linking 
electrode penetration data with optical imaging results 
could, in principle, resolve this issue. The results reported 
so far, however, are still controversial (Blasdel and 
Salama 1986). 

In our paper, as in many developmental approaches, 
we will focus on intracortical mechanisms which could 
produce cortical maps. First, we will investigate in detail 
the relationship between orientation preference and tu- 
ning strength as revealed by optical imaging. We will 
show that both maps are correlated and can be trans- 
formed into one another by a rather simple mathematical 
procedure. These results will then be juxtaposed with the 
hypothesis that the tuning strength map is an artifact of 
the optical imaging method and that it arises by spatial 
averaging. We will, however, adopt the point of view that 
the measured tuning strength map does, in fact, reflect 
the distribution of orientation selectivity in cortex, and 
we will investigate the consequences of this assumption. 
We will show that the link between orientation prefer- 
ence and tuning strength permits description of the prop- 
erties of both maps (preferred orientation and orientation 
strength) with a minimal set of parameters which prob- 
ably also underlie most of the previously proposed 
models of cortical map formation and structure (vonder 
Malsburg 1973; Nass and Cooper 1975; Perez et al. 1975; 
Cooper et al. 1979; vonder Malsburg and Cowan 1982; 
Swindale 1982; Linsker 1986a, b; Soodak 1987; Durbin 
and Mitchison 1990; Miller 1990; Obermayer et al. 1990, 
1991). 

2 Linking the orientation maps 

In the following two sections we will show that the map 
of the orientation tuning strength can be obtained by 
band-pass filtering of the preferred orientation map. We 
will show that a straightforward way to compute this is 
to use the autocorrelation function of the map of the 
preferred orientations. Figure 1 gives an outline of the 
way we will present the results. The autocorrelation func- 
tion is most easily computed using Fourier notation. 
Therefore, we will define the maps and develop the link 
between them in Fourier space. A second reason which 
justifies this procedure is that the two complicated-look- 
ing maps have a single consistent description in Fourier 
space, as will be shown below. 

2.1 Establishin9 the link 

The orientation tuning of a cortical cell can be described 
by the tuning strength and the angle of preferred orienta- 
tion. Because the angle of preferred orientation is ap- 
proximately constant in every column perpendicular to 
the cortical surface, we disregard the third dimension and 
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Fig. 1. Scheme for the computational process which transforms the 
map of the preferred orientations into the corresponding map of the 
orientation tuning strength 

define the angle of the preferred orientation 4~(x, y) and 
the orientation tuning strength O(x, y) as functions of 
two variables x and y in the cortical plane. A concise 
notation is obtained by defining the preferred orientation 
in terms of a complex function f (x,  y): 

f(x, y) = R e [ f  (x, y)] + i l m [ f ( x ,  y)] 

= cos[2~b(x, y)] + i sin[24~(x, y)] (1) 

where Re and Im describe thereal and imaginary parts 
of the function. Following the method of Swindale et al. 
(1987), the angle of orientation preference ~b(x, y) is then 
represented by*: 

Im [f(x,  
q~(x, y) = 1/2 arctan ~ y)] y)] (2) 

Note that the amplitude 

x/Re 2 If(x, y)] + Im 2 [f(x, y)] (3) 

is unity for all (x, y). Let 

1 
F (k~, kr) = ~ ~ I f (x ,  y) exp( - ikxx) 

x exp( - ikyy) dx dy (4) 

be the two-dimensional Fourier transform of f (x,  y). 
Then obviously we can write: 

. . . .  Im{IFT[F(k~, k,)]) (5) 
4~(x, y) = l/z arctan ~ k,)] } 

where IFT denotes the inverse Fourier transform, defined 
as 

IFT IF (k~, k,) ] = f (x,  y) = I I F (kx, k,) exp (ik. x) 

x exp(ikry) dkx dky (6) 

Although (5) is, of course, just a rewriting of the definition 
of q~ in (2), it will help us to analyze the orientation 
columns in Fourier space. The usefulness of this ap- 
proach is seen when we consider the power spectral 

* Concerning angle doubling, the reader is referred to Batschelet (1981), 
Swindale (1982), and Swindale et al. (1987), who discuss at great length 
the resulting distortions of the spectra without angle doubling 

density. Every Fourier spectrum F (k~, ky) can be written 
as" 

F (kx, ky) = ]F (k~, ky) lexp[i~(k~, k,)] 

= ~ k,) exp[ig'(k~, k,)] (7) 

where P(kx, ky) is the two-sided power spectral density 
and g'(k~, ky), the phase spectrum. 

Let us now consider the function 

L(kx, k,) = P(kx, k,)F(kx, k,) 

= F (kx, k,) F* (kx, kr) F (kx, ky) (8) 

where the asterisk denotes the complex conjugate. The 
amplitude of the inverse transformation of L (k~, ky) is 

O(x, y) 

= ~/Re 2 {IFT[L(k~, ky)]) + Im2(IFT[L(k~, k,)]} 

(9) 

In the following paragraph we show that this quantity, 
which was derived from the map of the preferred orienta- 
tions, is a description of the map of the orientation tuning 
strength from spectral information. Figure 1 summarizes 
the computational process. 

Figure 2A, B shows cortical maps measured with 
optical imaging of intrinsic signals in cat area 17 (Bon- 
hoeffer and Grinvald 1991). The map in Fig. 2A and all 
color maps which describe preferred orientations in the 
following figures are continuously color coded using 
a color circle for the maps of the preferred orientations 
and color coding from blue (weak tuning) to red (strong 
tuning) for the maps of the orientation tuning strengths 
(see figure legend for details). The similarity between 
measured and computed maps is shown by superimpos- 
ing contours of equal tuning strength of the computed 
map (Fig. 2C) onto the measured map (Fig. 2B). Even 
finer features (e.g., small "bridges" between equal tuning- 
strength domains) match at most locations. In the com- 
puted map the differences between low and high tuning 
are more strongly pronounced than in the measured 
data, and most domains are somewhat broader. This 
leads to the overly high peak in the bottom left corner of 
the computed map (Fig. 2C) where the measured data 
show only a slight increase in tuning strength. The only 
severe mismatch occurs in the upper right corner where 
a narrow peak in the computed map does not find a clear 
correspondence in Fig. 2B. As an additional test we 
computed the euclidean distance between the two maps. 
First the maps O~ (Fig. 2B) and 02 (Fig. 2C) were nor- 
malized so that the lowest and highest values are repres- 
ented by zero and one, respectively. Then the "distance" 
between the pixel values was computed as the square 
root of the normalized scalar product of the vectors given 
by the two images, i.e., 

1 
Dist [Ol(x, y), 02(x, 3,)] = ~ (x~.. x/[O~(x, y) - 02(x, y)]2 

(10) 





where N is the total number of pixels in a map and the 
sum runs over all (x, y) coordinates of the images. The 
chance distance is Dist = 0.5. For  the maps in Fig. 2 we 
found a value of 0.19, which shows that the maps match 
closely at most locations. Quite similar results are ob- 
tained for other pairs of measured cortical maps. 

2.2 Analysis o f  the link between preferred orientation and 
orientation tuning strength 

As shown in the Appendix, the strength of the orientation 
tuning O(x, y), given by (9), is equivalent to band-pass 
filtering of the map of the preferred orientations, which is 
done by convolving the autocorrelation function of the 
preferred orientation map with this map itself. How can 
this be understood intuitively? 

In previous reports it has been assumed that the 
orientation tuning map varies continuously for all 
cortical coordinates, with the possible exception of the 
"singularities" (Swindale 1982; Baxter and Dow 1989). At 
a singularity, all orientations "meet", i.e., cells with all 
preferred orientations can be found in the vicinity of the 
singular point. In order not to violate the assumption of 
continuity in a singularity, it follows (Baxter and Dow 
1989; Obermayer et al. 1990) that the cells directly at the 
singularity must have vanishing orientation tuning 
strengths (i.e., they respond equally well to stimuli of all 
orientations). This is one possible way to explain the 
existence of spots with low orientation tuning strength at 
a singularity in the maps obtained with optical imaging. 

Even if the assumption of continuity is dropped, how- 
ever, the orientation tuning strength at a singularity is 
expected to be small if one averages the responses over 
some small neighborhood. This is clear because all ori- 
entations are found in the vicinity of the singularity. 
Averaging, therefore, generates equal responses to stimuli 
of all orientations, i.e., apparently vanishing orientation 
tuning strength. The crucial point is now that optical 
imaging methods always average over some area, whose 
size is given by the resolution of the method (for the data 
in Fig. 2 about 50-100 #m; Frostig et al. 1990). As a con- 
sequence, in optical imaging, data singularities will 
always appear as regions of vanishing or very small 
orientation tuning strength, which is an inherent limita- 
tion of this technique. 

We will concentrate now on the more interesting case 
that the link between the two cortical maps demon- 
strated before reflects a physiological situation. To 
achieve band-pass filtering, we computed (see Appendix) 
the convolution of the autocorrelation function with the 
preferred orientation map. It has been demonstrated in 
several reports that the autocorrelation function of the 

preferred orientation map is a monotonically decreasing 
positive function at small cortical distances and becomes 
negative with a much smaller amplitude at distances 
of about half a hypercolumn (Swindale et al. 1987; 
Obermayer et al. 1991). For  distances larger than a 
hypercolumn width, the function is essentially zero. Thus, 
only values close to the regarded cortical coordinate will 
contribute significantly to the value of this convolution. 
In particular, after what we have said previously in this 
section, the convolution is zero or very small when close 
to a singularity because all preferred orientations coexist, 
and positive and negative contributions average out. 

The question arises if simpler filtering kernels would 
give similar results. Low-pass filtering, which is equiva- 
lent to a local averaging of the map of the preferred 
orientations, appears as a possible alternative because 
this kernel is related to a Mexican bat by only omitting 
the negative peak. We have tried several gaussian-shaped 
kernels with different widths. For  kernels with a width 
close to that of the first peak in the autocorrelation 
function, the results were similar to those mentioned 
before. The quality of the match between computed and 
measured map did not, however, exceed that obtained 
with the Mexican hat-shaped autocorrelation function 
kernel. In a gaussian kernel the width has to be manually 
adjusted, which is not necessary when using the auto- 
correlation function which represents a parameter-free 
model. 

Therefore, three arguments support the procedure we 
used: (1) it allows for a closed description of both maps in 
the Fourier domain, (2) the autocorrelation function is 
a natural kernel for filtering because the kernel shape and 
width are implicitly defined by the preferred orientation 
map itself, and (3) there are reasons to believe that the 
autocorrelation function and the synaptic coupling func- 
tion between cortical cells are related. We will elaborate 
on this last, most interesting, point in Sect. 6. 

3 A parsimonious model for orientation column structures 

In the previous section, we obtained a unified description 
of the map of preferred orientation as well as the map of 
the orientation tuning strength by transforming both to 
Fourier space. In this section, we will show that this 
technique is useful for generating pattern models which 
provide a very simple and parsimonious description of 
orientation columns. In addition, later sections will show 
that this parsimonious model together with some sta- 
tistical fluctuations might actually reflect reality for 
cats, whereas for monkeys the model has to be further 
extended. 

Fig. 2. Measured cortical maps of the preferred orientation (A) and the orientation tuning strengths (B) in cat and computed map of the orientation 
tuning strengths (C). Left, anterior; right, posterior; top, medial; bottom, lateral. A Color circle for the preferred orientations: 0 ~ , dark blue; 22.5 ~ purple; 
45 ~ red; 67.5 ~ orange; 90 ~ yellow; 112.5 ~ green; 135 ~ light blue; 157.5 ~ sky blue; 180 ~ dark blue. B, C Linear color scale for the orientation tuning 
strength (analog to a temperature scale): from weak to strong tuning, blue ~ green --, yellow --* red. Iso-orientation tuning strength domains from the 
computed map (C) are plotted onto the measured map (B) to show the similarity of the maps. Arrows indicate singularities 

Fig. 4. Preferred orientation map (A), orientation tuning strength map (B), and map of the degree of changes in the preferred orientations (C) 
computed from a spectrum with three delta-function peaks at the same distance from the origin as shown in Fig. 3C. Arrows indicate two singularities 
where all colors meet. For color coding of A and B see legend of Fig. 2. Color coding of C: small change to large change, blue--* red 



Swindale et al. (1987) computed the spectral density 
I F(k~, ky)l of the cortical orientation column system. In 
our study we approximate the spectra they showed by 
three infinitely small peaks ("delta-function peaks") with 
constant distance from the origin at coordinates (kxj, kyj), 
for j = 1, 2, 3 . . . . .  The phase component of the meas- 
ured spectrum was not given in Swindale's report; we 
will set it to zero for all (kx, ky). The Fourier spectrum 
F(kx, ky) is then identical to the amplitude spectrum 
IF(kx, kr)], or 

3 
F(k~,, k,) = ~ 6(kx - k=j, ky - kyfl (ll)  

j=l 
The inverse Fourier transformation can now be per- 
formed explicitly: 

f (x ,  y) = 7 7 exp(ikxx)exp(ikyy)F(kx, ky)dkxdky 
- o o  - o o  

3 

= ~ exp[i(kxjx + kry) ] (12) 
j=l 

Splitting into real and imaginary parts and applying (5), 
the preferred orientation is given by 

~b(x, y) = 1/2arctan ~3=1 sin(k~jx + krjy ) 
~-~ - -  (13) 
~ =  x cos(kxjx + kyjy ) 

and the orientation tuning strength defined by (9) reads 

_ _ J I ~  ]2 f ~  ]2 O(x, y) cos(k,,jx + kry) + sin(k~vx +kry  ) . 
VLj=I J I_j=l J 

(14) 

Note that the function L in (8) is defined (see appendix) as 
the inverse Fourier transform of the convolution o f f  with 
the autocorrelation function of f .  Equation 14 follows 
because in the singular case o f f  being a combination of 
perfect sine waves [i.e., the Fourier transform being 
a sum of delta functions, (11)], L will also be a sum of 
delta functions because the autocorrelation as well as the 
convolution of two sine functions remains a sine function 
of the same frequency. 

A shift of the column structure with respect to the 
origin can be taken into account by including nonzero 
phases. 

3.1 Results from the simplified model 

To illustrate this simple model more clearly, we first 
describe (Fig. 3A, B) some examples of orientation col- 
umn systems obtained from (13) that use fewer than three 
delta-function peaks in the spectrum. 

With a single peak (Fig. 3A) located on the k~ axis, 
(13) is reduced to 

1 sin(k=~ x) 1 
q~(x, y) = ~ arctan cos(k=, x) - 2 k~, x . (15) 

The change of the orientation angle ~b(Fig. 3B) is linear in 
x, and there is no change in y, so that a parallel straight 

A B 
k, 
Y - - I / I  X~.-- 

- - I / I X ~ - -  
- - 1 / I  X ~ - -  
- - 1 / I  \ ~ . - -  

kx - - i /  I \ ~ . - -  
�9 - - i / I  \ ~ - -  

- - i / I  \ x - -  
- - 1 / I  X ~ - -  

-r X-2/kxm 

C k, D 

�9 . . 'P" I 

Fig. 3. A, B Schematic spectrum with only one delta-function peak 
located on the x-axis and corresponding column structure. C Spectrum 
with three delta-function peaks at the same distance from the origin 
arranged with angles 0 ~ 30 ~ and 90 ~ with respect to the x-axis. This 
spectrum yields the maps shown in Fig. 4. D Annulus-like spectrum 
with multiple peaks of different amplitudes and approximately constant 
distance from the origin. This spectrum yields the maps shown in Fig. 6 

column structure is obtained. Since ky, is zero, k=, is 
directly related to the wavelength 2 of the pattern 2 2 
The wavelength is the hypercolumn width in this model. 
Note that the wavelength is given as twice the inverse of 
the distance from the DC component to the peak in the 
Fourier spectrum. Because the numerical computation of 
spectra from preferred orientation maps require an angle 
doubling as described previously, the frequencies are 
doubled in the spectrum, and the hypercolumn width (as 
the inverse of a frequency) has to be corrected by multi- 
plying by 2. 

There is evidence that the hypercolumn width is ap- 
proximately the same in all directions (Hubel and Wiesel 
1974; Albus 1975; Obermayer et al. 1991); therefore, addi- 
tional peaks must be located, all at about the same 
distance 2-1 from the origin. It is easy to see that two 
peaks yield straight, parallel patterns which are tilted 
with respect to the coordinate axes. 

Figure 4 shows an example of a column structure 
obtained from (13), i.e., with three delta-function peaks in 
the amplitude spectrum (Fig. 3C). The map of the prefer- 
red orientations (Fig. 4A) contains all six structural fea- 
tures of cortical orientation columns in cat which were 
defined in the Sect. 1. Singularities (two of which are 
marked by arrows in the figure) arise where all colors 
meet. At most points, however, the preferred orientations 
change gradually, i.e., singularities are rare. The gradient 
of the orientation change is small in most places, but the 



singularities are linked by stretches with a larger gradient 
(Fig. 4C), the so-called fractures (Blasdel and Salama 
1986). 

Figure 4B shows the color-coded maps of the orienta- 
tion tuning strength (14) which correspond to the prefer- 
red orientation map as shown in Fig. 4A. Blue represents 
weak, red represents strong orientation tuning. The pat- 
tern shows a "blob" and "interblob" structure of alternat- 
ing weak and strong orientation tuning. The orientation 
tuning disappears in the singularities, some of which are 
marked as in Fig. 4A. 

4 Real spectra 

The concept of a hypercolumn (Hubel and Wiesel 1974) 
assumes a modular organization of the cortex (Szen- 
tagothai 1975) and leads to a periodic repetition of the 
different cell characteristics, including orientation specifi- 
city. It can be shown (Bracewell, 1986, p 224 if) that the 
repetitions cannot have exactly the same periodicity 
along every direction in the cortical surface, since this 
could only hold for a single "center" location and would 
lead to a cortex with preferred orientations spreading like 
circular waves from this center. What can be obtained is 
constant periodicity on average in all directions. The 
Fourier spectrum which corresponds to a column struc- 
ture with this property is an annulus of a certain radius 
and width containing Fourier peaks of various ampli- 
tudes (Fig. 3D). The width of the annulus represents the 
variability of the frequency, and the average radius of the 
annulus represents the average periodicity (i.e., repetition 
frequency). The inverse of the average repetition fre- 
quency can then be defined as the width of a hyper- 
column, as measured by Fourier analysis of a cortical 
orientation column system. 

The spectrum of an experimentally obtained map of 
the preferred orientations in visual area V1 of monkey is 
shown in Fig. 5 (Obermayer et al. 1991). The annulus 
shape is quite obvious for the monkey data (Fig. 5) where 
512 x 512 pixels could be used for Fourier analysis. The 
average hypercolumn width is 700 #m as measured from 
the spectrum. In previous reports estimates of the hyper- 
column width of 570 #m (Hubel et al. 1978) or 640/am 
(Hubel and Wiesel 1974) were given by applying other 
methods. 

Much lower resolution data (128 x 128) were avail- 
able for cat which were not sufficient to yield a clear 
shape in the spectrum. Therefore, this spectrum is not 
shown here; instead we refer the reader to the work of 
Diao et al. (1990). In Fig. 8 of their paper, power spectra 
for cat data are shown that display a clear blob-like 
arrangement. Such an arrangement would be the direct 
consequence of our parsimonious model if the center 
frequencies would only be spread out to blobs of a certain 
width. 

Thus, in the following discussion we restrict ourselves 
to monkey data. Figure 6A-C shows maps of the prefer- 
red orientations, the orientation tuning strengths, and 
the fractures, obtained by applying (9) and (5) to an 
artificial (and therefore ideal) annular Fourier spectrum 

Fig. 5. Power spectrum from monkey orientation column map. Field 
size for the monkey data was 512 • 512 pixels and an annulus-shaped 
spectrum results. The hypercolumn with 2 equals 700 #m = 2/annulus 
radius. The factor of two is due to the angle doubling in (1). The strong 
DC component (in the center of the figure) is probably artificially 
introduced to a large degree as a border effect because the size of the full 
preferred orientation map divided by the hypercolumn width is not an 
integer 

exemplified in Fig. 3D. Comparison with the data from 
Blasdel and Salama (1986) shows the similarity between 
these maps and the corresponding maps obtained from 
measured data. We will discuss possible differences be- 
tween cat and monkey data in Sect. 5. Note that the 
gradient at a fracture is not very strong: between two 
singularities it is by a factor 10 smaller than close to 
a singularity. The line-like appearance of the fractures 
corresponds very well to the data of Blasdel and Salama 
(1986) and Bonhoeffer and Grinvald (1991). 

5 Singularities and vorticity 

As described in Sect. 1, there are many approaches which 
produce realistical looking orientation columns. Analysis 
by "looking at the results", however, is not necessarily 
a good criterion for distinguishing which of the models 
comes closest to a correct description of reality. There- 
fore, it is important to develop other criteria which allow 
us to distinguish between different models and allow for 
a comparison with the physiological maps. In this sec- 
tion, we will argue that there is probably only one type of 
singularity in the cortex, which also gives a criterion to 
judge how realistic a particular model map is. 

Annulus spectra naturally lead to singularities in the 
pattern of orientation preferences. Singularities can be 
characterized by their "topological index" (Elsdale and 
Wasoff 1976), which is a measure of the vorticity at the 
singularity and indicates the amount  of rotation of the 
angular field around the singular point. The topological 
index of a point is computed by integrating the differen- 
tial orientation angle on a counterclockwise path which 
goes exactly once around the point (and does not include 





another  singularity). It is customary to divide the result 
by 2r~. At a singularity this integral will generally be 
different from zero. Twice the value of the topological 
index indicates the number of times all orientations occur 
in the vicinity of a singularity, and its sign indicates the 
direction of rotation of the preferred orientations (Swin- 
dale 1982; Baxter and Dow 1989; Bauer and Dow 1991). 

5.1 Vorticity in different models 

In the model proposed by Swindale (1982, 1985), the 
preferred orientation is given by the function 1/2 
arctan ~ ,  and singularities occur at simultaneous 
zeros of both functions a and b. From the annulus spec- 
t rum in Fig. 3D we computed the numerator  
a(x ,y )=Im{IFT[F(kx ,  ky)]} and the denominator  
b(x, y ) =  Re{IFT[F(kx ,  ky)]) from (5) and plotted the 
line-shaped regions where both functions a(x, y)(blue) 
and b(x, y) (yellow) are close to zero (Fig. 6D). As in the 
mdel of Swindale et al., those functions appear to meet at 
the singularities (see below). The important  point now is 
that the probabili ty for more than two such lines to cross 
exactly at the same location is zero because the two 
functions we are considering are smooth and periodic 
(i.e., not constant). One such spot where two crossing 
points apparently fall together (crossing of four lines) is 
marked (arrows) in the magnified figures (Fig. 6F, G). 
A closer inspection (Fig. 6F) reveals, however, that at this 
location the crossing points are very close to each other, 
but that they do not coincide, and this region still con- 
tains two and not one singularity. 

The singularity marked with sign symbols ( + ) in the 
four quadrants (Fig. 6G) demonstrates that the vorticity 
at the crossing point is either + 1/2 or - 1/2. The signs 
refer to the numerator  and denominator  of the argument 
of the arctan function in (5) [or (2)], and in such a four- 
quadrant  system each orientation occurs exactly once in 
the vicinity of a singularity. Singularities with absolute 
vorticity values larger than 1/2 require crossing of more 
than two lines. 

The conclusion at this point is that, provided our 
description complies with reality, all the singularities in 
the cortex are of vorticity + 1/2 or - 1/2. 

That  only the lowest possible vorticity values are 
implemented in the cortex can also be interpreted devel- 
opmentally. Periodicity arises as a consequence of the 
mult imodular  (i.e., pixel) representation in the cortex. 
That  there is only one predominant  spatial frequency 
(and not more, e.g., a double annulus) is consistent with 
the concept that the properties of the neurons vary as 
smoothly as possible in the cortical plane. In general, 
a function is said to be "smooth"  if it is continuous and 
has small derivatives. Thus, the smoothest  periodic map-  

ping of a periodic variable (e.g., orientation) is obtained 
with a linear mapping function, which has a constant first 
derivative and vanishing higher derivatives. Linear vari- 
ation of the preferred orientation (interupted by discon- 
tinuities due to singularities) is indeed observed generi- 
cally along electrode tracks (Hubel and Wiesel 1974). 
Consequently, the lowest possible vort ici tyin a singular- 
ity also reflects the smoothest possible implementation of 
a cortical discontinuity. 

Above we stated that in our model the functions 
a and b apparently cross. In our model it is obvious that 
simultaneous zeros of both numerator  and denominator  
in (2) cannot exist, since this would violate (3). Following 
(3), the denominator  must be + 1 or - 1 if the numer- 
ator is zero and vice versa. Thus, a singularity is a true 
discontinuity. Figure 6E shows the domains where the 
denominator  is either close to + 1 (white) or - 1 (red). 
At the singularities a jump from - 1 to + 1 occurs. The 
functions describing the paths of the zeros in the numer- 
ator and denominator  (e.g., Fig. 6D) can be continuously 
filled in at their crossings. The discontinuity is a "hole". 
The corresponding functions which follow the paths of 
+ 1 or - 1 (e.g., Fig. 6E) have jumps at the locations of 

the singularities which cannot be filled in continuously. 

6 Discussion and conclusion 

In this paper we have focused on intracortical mechan- 
isms which could produce cortical maps. As in many 
developmental approaches, an existing afferent bias 
(Ferster 1987; Chapman et al. 1991) is only implicitly 
included as the possible starting point of the develop- 
ment of the maps. Despite a huge body of work on the 
development and structure of maps of preferred orienta- 
tion, essentially nothing is known about  the maps of the 
orientation tuning strength, for which data have become 
available only recently. In this report; we have therefore 
focused on this topic as well as on the relationship be- 
tween the two maps. We will first compare  our model to 
related approaches and summarize the basic findings of 
our study before we discuss the details of the results. 

6.1 Related models 

Our approach is related to the models of Swindale (1982, 
1985, 1992) and of Rojer and Schwartz (1990). In the 
developmental model of Swindale (1982) the change of 
the preferred orientations between two developmental 
steps is determined by a Mexican hat-shaped coupling 
function. The actual strength of the change exerted from 
one region onto another  region is given by a function of 
the modulus Izl = v / ~ - +  b 2, where a and b are the 

Fig. 6A-G. Maps computed from the annulus-like spectrum shown in Fig. 3D. A Preferred orientation map. B Orientation tuning strength map. 
C Map of the degree of changes in the preferred orientations. Color coding as in Fig. 4. D Domains where the numerator (blue) and the denominator 
(yellow) of (5) are close to zero. The brighter (i.e., more white) the color, the closer is the value to zero. Singularities arise where both functions "cross". 
E Plot of the denominator in the domains where the numerator is close to z e r o .  White, Denominator close to + 1; red, denominator close to - 1. Note 
the jumps at the singularities. F, G Magnifications from A and D. The arrows mark a singularity with apparent vorticity other than ___ 1/2. Close 
inspection of F shows that this location actually contains two singularities very close to each other. Sign symbols give the signs of numerator and 
denominator of (5) close to a singularity 
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components of a vector z and the preferred orientation is 
defined as q~ = �89 arctan g. In his reports of 1982 and 1985, 
Swindale associates the modulus ]zl with the orientation 
tuning strength. He alluded to this concept in 1992, but 
did not give a description of the actual shape of the link 
between the orientation maps; instead this study strongly 
focused on the relationship between ocular dominance 
and orientation preference. To a certain degree our ap- 
proach appears similar to that of Swindale. Swindale, 
however, describes a developmental model which gener- 
ates the preferred orientation map iteratively. Our ap- 
proach, on the other hand, focuses on the final state of 
the system, and we tried to give a simple analytical 
description of the preferred orientation map as well as of 
the map of the orientation tuning strengths. The shapes 
of the "coupling" functions in Swindale's and our ap- 
proach are similar (i.e., Mexican hat). We extended his 
concept and suggested in our study that the (Mexican 
hat-shaped) autocorrelation function of the preferred ori- 
entation map might directly reflect the synaptic coupling 
onto a given cell. Note that this assumption only deals 
with the net excitatory or inhibitory effect as a function of 
distance; therefore, we cannot draw conclusions about 
subliminal excitation or inhibition occurring simultan- 
eously with their much stronger, and thus dominating, 
antagonistic counterparts. The autocorrelation function 
appears to be a natural choice for the Mexican-hat 
functions that appear in Swindale's and other reports 
( v o n d e r  Malsburg 1973; Nass and Cooper 1975; 
Legendy 1978; Swindale 1982; Linsker 1986a, b; Miller 
1990) because the autocorrelation function inherently 
represents local correlation and medium distance an- 
ticorrelation. 

In 1987, Swindale et al. used Fourier methods to 
analyze cortical column structures. At that time only the 
first reports had appeared on optical imaging of the 
visual cortex (Blasdel and Salama 1986; Grinvald et al. 
1986). We were able to analyze optical imaging data and 
confirm that a "modulus" as in (9) can actually reflect the 
orientation tuning strength. The definition of the 
modulus, however, is somewhat more complicated than 
that proposed by Swindale because the functions a and 
b from his definition of the preferred orientation cannot 
be used directly. Singularities occur in Swindale's (1985) 
model and in our model at the joint zero-crossings of the 
functions a and b. At that time no final conclusion could 
be drawn about the actual vorticity of the singularities. In 
our model we were able to give theoretical reasons that 
the vorticity of the singularities in cortical maps is prob- 
ably always + 1/2. This is strongly supported by the 
most recent data (Bonhoeffer and Grinvald 1991). 

Rojer and Schwartz (1990) explicitly use an annulus 
spectrum to generate the map of the preferred orienta- 
tions in monkey by a computational process very similar 
to the one we used, but they restricted their analysis to 
the case of orientation preference only. We have extended 
this analysis to include orientation tuning strength and 
provided a closed description of both maps. Rojer and 
Schwartz (1990) proposed that a completely isotropic 
annulus spectrum will better fit monkey than cat orienta- 
tion column data. We agree with them on this point, but 

do not wish to elaborate on it; instead, we refer the reader 
to their detailed study. 

6.2 Relation between preferred orientation and 
orientation tuning strength 

Orientation tuning strength varies with the stimulus 
parameters used. It can change with the shape of the 
stimulus (e.g., grating vs bar), the velocity, spatial fre- 
quency, and other parameters. The preferred orientation 
is much less affected by those variations. In view of this, 
the following discussion will treat the map of the orienta- 
tion tuning strength as a relative measure dependent on 
the particular stimulus used. It can be assumed, however, 
that a change in the stimulus parameters will affect all 
regions of the map in the same way. It is likely that 
regions with different orientation tuning strength will 
maintain this difference (perhaps on a changing scale) 
even though the absolute tuning strength value is shifted 
up or down by a change in stimulus. 

As was already mentioned, current optical imaging 
methods always average over an area of a diameter not 
smaller than 50 #m and often larger. In the light of this 
limitation, we have to ask if the observed relation be- 
tween the maps of preferred orientation and orientation 
tuning strength is an artifact of the optical imaging 
method. This question has to be decided by electrode 
experiments which have a much higher resolution. 

The orientation tuning strength in one column seems 
to be fairly constant over depth ranges of several hun- 
dreds of micrometers (Lee et al. 1977) but can change 
significantly between the cortical layers [Orban (1984) 
reviews these results]. Since optical imaging also per- 
forms depth averaging over 100-300/~m (Bonhoeffer and 
Grinvald 1991), tuning constancy over depth is a pre- 
requisite without which the corresponding map would 
only reflect an averaging effect. 

Based on the assumption that the column system is 
continuous, several authors have suspected that singular- 
ities coincide with regions of low orientation tuning, 
which would mean that there is a physiological link 
between the maps of preferred orientation and the ori- 
entation tuning strength. There is some evidence for this 
in monkey. Here singularities seem to be associated with 
cytochrome oxidase blobs which contain predominantly 
cells with low orientation tuning (Blasdel 1992a, b). 
Bonhoeffer and Grinvald (1991 and personal commun- 
ication) reported that they found mostly cells with signifi- 
cant orientation tuning strength when recording with an 
electrode in a singularity. Edwards and Kaplan (1992), on 
the other hand, reported that they observed both situ- 
ations close to a singularity: either predominantly cells 
with low orientation tuning or simply a high degree of 
orientation scatter with regularly tuned cells. Thus, at 
this point no clear conclusions can be drawn concerning 
this question. 

Another argument in favor of a physiologically 
relevant link is based on present theories of cortical 
development. Very likely, intracortical interaction plays 
an important role in the development of the orientation 
column system. Most developmental models assume 



synaptic links which reinforce the similarity between the 
orientation preferences of adjacent cells (positive correla- 
tion). The strength of this reinforcement mechanism de- 
creases with distance, and most models introduce inhibit- 
ory coupling at larger distances, which results in a nega- 
tive correlation of the activity of the cells which then 
develop (nearly) orthogonal orientation preferences (von 
der Malsburg 1973; Nass and Cooper 1975; Legendy 
1978; Swindale 1982; Linsker 1986a, b; Miller 1990, 
1992). 

There is physiological evidence that such a Mexican 
hat-shaped coupling function is reflected in the distribu- 
tion and weighting of the synapses onto a given cell (Hess 
et al. 1975; Toyama et al. 1981a, b; Hata et al. 1988; 
W6rg6tter and Eysel 1991). As previously explained, 
a Mexican hat-shaped coupling function will lead to 
a similarly shaped autocorrelation function for the pre- 
ferred orientations. Thus, the shape of the autocorrela- 
tion function might directly mirror the shape of the 
synaptic input function with central excitation and peri- 
pheral circularly arranged inhibition (Niebur and 
W6rg6tter 1990; W6rg6tter et al. 1991) at a distance of 
half a hypercolumn, which amounts to a weakly tuned 
"cross-orientation inhibition". 

As a consequence of the shape of the synaptic 
coupling function, the synaptic input for any stimulus 
orientation is closely related to the preferred orientations 
in the cortical environment of the cell. The input would 
be strongly orientationally tuned for neurons surrounded 
by cells with the same preferred orientations. Untuned or 
weakly tuned input would arise if adjacent cells had 
widely varying orientation preferences. Thus, convolving 
the synaptic coupling function (,~ autocorrelation func- 
tion) with the actual pattern of preferred orientations 
should give a measure of the orientation tuning strength 
of the input at every location (see appendix). The ex- 
pected consequence is that a strongly tuned input leads 
to strong orientation tuning in the target ceils itself, and 
vice versa. 

6.3 Simplicity of orientation columns 

The representation of the filtering process by the correla- 
tion function in Fourier space yielded a unified descrip- 
tion of the maps of preferred orientation and orientation 
tuning strength. In addition, the Fourier formalism pro- 
vided a series of simple models which generate surpris- 
ingly "good-looking" orientation column systems. Our 
models are not supposed to give any detailed insight into 
developmental mechanisms; instead, their virtue is that 
they are among the most parsimonious models proposed 
for the generation of orientation columns. Our simplest 
model has three peaks in Fourier space, and the Fourier 
transformation can be done analytically. The model can 
thus be expressed in the form of analytical expressions, 
which makes it particularly attractive for the generation 
of simple but realistic column structures for use as a com- 
ponent in other models or in computer simulations 
(Niebur and W6rg6tter 1990; W6rg6tter et al. 1990, 
1991). Our most realistic model is completely specified by 
an annulus of intensities in Fourier space, i.e., by the 
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annulus diameter and thickness. We have shown that this 
model is capable of producing orientation column maps 
whose realism rivals that of the most sophisticated devel- 
opmental models, at least if one judges by the visual 
appearance of the maps produced. Therefore, it seems 
that very simple and generic models are sufficient to 
explain the apparently complicated orientation column 
structure if an appropriate representation is chosen. In 
addition to the simplicity of this approach its power lies 
also in the fact that a combination of such a model with 
an isotropic connection scheme ("circular inhibition") 
leads to nontrivial features, such as direction and orienta- 
tion selectivity, which was quite unexpected (W6rg6tter 
et al. 1991; W6rg6tter and Niebur 1992). 

6.4 Suggested experiments 

It seems appropriate to conclude our theoretical paper 
with suggestions for experimental work. We propose to 
investigate the question whether the described relation 
between the map of the orientation tuning strength and 
the map of the orientation tuning is an artifact of the 
optical imaging method or a physiological effect. At this 
moment, no clear decision can be made between the two 
interpretations, but several experiments could lead to 
a conclusion. The first test would be a quantitative ana- 
lysis of the change in orientation tuning strength with 
recording depth in a single column. Depth constancy is 
a requirement without which a physiological link in the 
proposed form does not seem possible. Provided this 
holds, the second test could assess the change of orienta- 
tion tuning strength between closely spaced penetrations 
which should be smooth if a link between the maps exists. 
The crucial final test would involve a quantitative ana- 
lysis of the tuning strength obtained with microelectrodes 
at different locations in a previously measured map of the 
preferred orientations. It should be low if the preferred 
orientations change fast. 
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Appendix: orientation tuning, convolution, and 
autocorrelation functions 

We show here that the orientation tuning strength as 
defined in (9) is essentially identical to the convolution of 
the map of preferred orientations with its own autocorre- 
lation function. We will perform the derivation in one 
dimension, where equations are simpler than in two 
dimensions; everything is, however, completely analog- 
ous in two dimensions. 
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F r o m  t h e  o n e - d i m e n s i o n a l  v e r s i o n  o f  (4), a n d  a f t e r  
o m i t t i n g  f a c t o r s  o f  2re, t h e  F o u r i e r  t r a n s f o r m  o f f  is f o u n d  
as  

F(k) = [. e - i kx f (x )  dx  (16) 

a n d  its c o m p l e x  c o n j u g a t e  is 

F*(k) = ~ eikx f * ( x )  dx  . (17) 

As  a c o n s e q u e n c e ,  t h e  o n e - d i m e n s i o n a l  v e r s i o n  of  (8) is 

L(k) = F*(k)F(k)F(k)  

= S eikrf*(Y) dy ~ e-ikUf(u) du ~ e-ik~'f(v) dv (18) 

w h e r e  we h a v e  r e n a m e d  t h e  i n t e g r a t i o n  va r i ab l e s .  Co l -  
l e c t i ng  t e r m s ,  we ge t  

F* (k)F(k)F(k) = ~ ~ ~ e ik (y-u- ~) f *  (y) f (u) f (v) du dydv  

(19) 

= [e - i kXdx l f (u )du l f ( v ) f* (v  -- x + u)dv 

(20) 

T h i s  is t he  i n v e r s e  F o u r i e r  t r a n s f o r m a t i o n  of  t he  f u n c t i o n  

~f(u) du ~ f ( v ) f* ( v  - x + u) d r .  (21) 

N o w ,  f r o m  t h e  d e f i n i t i o n  o f  t h e  c o m p l e x  a u t o c o r r e l a t i o n  
f u n c t i o n  o f f ( v )  (see B r a c e w e l l  1986), 

f , f  (x) = ~ f ( v ) f* ( v  - x) dv (22) 

a n d  o f  t h e  c o n v o l u t i o n  o f  t w o  f u n c t i o n s ,  f a n d  9, 

f ~  9(x) = ~f (u)g(x  - u) du (23) 

it is c l ea r  t h a t  (21) r e p r e s e n t s  t h e  c o n v o l u t i o n  o f f ( x )  w i t h  
i ts o w n  a u t o c o r r e l a t i o n  f u n c t i o n ,  i.e., 

V * ( k ) r ( k  )F(k) = ~ e-ikx f o f * f (x) dx . (24) 

W e  h a v e  t h u s  s h o w n  t h a t  i n v e r s e  F o u r i e r  t r a n s f o r m a t i o n  
of  F*(k)F(k)F(k)  yie lds  t h e  c o n v o l u t i o n  o f f ( x )  w i t h  i ts  
o w n  a u t o c o r r e l a t i o n  f u n c t i o n .  
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