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Abstract The robust behavior, the degree of response
linearity, and the aspect of contrast gain control in visual
cortical simple cells are (amongst others) the result of the
interplay between excitatory and inhibitory afferent and
intracortical connections. The goal of this study was to
suggest a simple intracortical connection pattern, which
could also play a role in other cortical substructures, in or-
der to generically obtain these desired effects within large
physiological parameter ranges. To this end we explored
the degree of linearity of spatial summation in visual sim-
ple cells experimentally and in different models based on
half-wave rectifying cells (``push-pull models''). Visual
cortical push-pull connection schemes originated from an-
tagonistic motor-control models. Thus, this model class is
widely applicable but normally requires a rather specific
design. On the other hand we showed that a more generic
version of a push-pull model, the so-called cascaded in-
hibitory intracortical connection scheme, which we im-
plemented in a biologically realistic simulation, naturally
explains much of the experimental data. We investigated
the influence of the afferent and intracortical connection
structure on the measured linearity of spatial summation
in simple cells. The analysis made use of the relative
modulation measure, which is easy to apply but is limited
to moving sinusoidal grating stimuli. We introduced two
basic push-pull models, where the order of threshold non-
linearity and linear summation is reversed. Very little dif-
ference is observed with the relative modulation measure
for these models. Alterative models, like half-wave squar-
ing models, were also briefly discussed. Of all model pa-
rameters, the ratio of excitation to inhibition in the simple
cell exerts the most crucial influence on the relative mod-
ulation. Linearity deteriorates as soon as excitatory and
inhibitory inputs are imbalanced and the relative modula-

tion drops. This prediction was tested experimentally by
extracellular recordings from cat area 17 simple cells
and we found that about 62% showed a significant devia-
tion from linear behavior. The problem that individual ba-
sic push-pull models are hard to distinguish experimental-
ly led us to suggest a different solution. In order to gener-
ically account for the observed behavior (e.g., imbalance
of excitation versus inhibition), we suggested a rather ge-
neric version of a push-pull model where it no longer mat-
tered about (the hard-to-distinguish) fine differences in
connectivity. Thus, we introduced a new class of biophys-
ically realistic models (``cascaded inhibition''). This mod-
el class requires very little connection specificity and is
therefore highly robust against parameter variations. Up
to 25 cells are connected to each target cell. Thereby a
highly interconnected network is generated, which also
leads to disinhibition at some parts of an individual recep-
tive field. We showed that the performance of these mod-
els simulates the degree of linearity and its variability in
recal simple cells with comparatively high accuracy. This
behavior can be explained by the self-regulating properties
of a cascaded inhibitory connection scheme by which the
balance between excitation and inhibition at a given cell is
improved by the joint network effects. The virtues and the
generic design of this connection pattern, therefore, allow
to speculate that it is used also in other parts of the cortex.
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Introduction

The temporal and spatial (quasi-) linearity1 of neuronal
responses in the visual system is a key issue of visual cor-
tical physiology because linear behavior is highly desir-
able from the viewpoint of information processing in
1 The notion of linearity for nerve cell responses must remain incom-
plete, because negative impulse rates cannot be represented. Thus,
neurons can ``at best'' act as half-wave rectifiers. In order to empha-
size this, we used the term ``quasi-linerar'' throughout this study.
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any neuronal network. Thus, this aspect has been ad-
dressed in a multitude of experimental studies (Enroth-
Cugell and Robson 1966; Hochstein and Shapley 1976;
Movshon et al. 1978a; Kaplan and Shapley 1982; DeVa-
lois and Tootell 1983; Enroth-Cugell et al. 1983; Tolhurst
and Dean 1987; Palmer et al. 1991; Reid et al. 1991;
DeAngelis et al. 1993). It forms an essential trait of sim-
ple cell models, and it is also a prerequisite for many
models of image processing (Adelson and Bergen 1985;
Emerson and Citron 1988; Emerson et al. 1989; McLean
and Palmer 1989; Heeger 1993).

As a measure for the linearity of cortical simple cells
we focus on the so-called relative modulation (RM; Mo-
vshon et al. 1978a) of the spike density (i.e., the peristim-
ulus time histograms, PSTHs) of a simple cell response
that is stimulated with a drifting sinusoidal grating. It is
precisely defined in Eq. 2 and gives an estimate of the
amount of stimulus-induced periodic response compared
with the mean nonspecific activity of a cell. This measure
is often used to distinguish simple from complex cells
(Skottun et al. 1991) and previously has been applied to
draw conclusions about the (quasi-) linearity of simple
cell models (Tolhurst and Dean 1987). In addition, it
can be determined readily in experimental situations,
which is important for the experimental part of this study.

A very successful class of models of simple cells, the
so-called push-pull models were introduced more than a
decade ago (Glezer et al. 1980; Palmer and Davies
1981; Pollen and Ronner 1982; Ferster 1988; Tolhurst
and Dean 1990); they include an inhibitory component
and account much better for the properties of real nerve
cells than previously used purely excitatory models.
Push-pull models assume that an excitatory (e.g., on) in-
put is counterbalanced by an antagonisitic inhibitory
(e.g., off) input that covers the same part of the receptive
field. As has been already pointed out by Tolhurst and
Dean (1990), there are several subclasses of push-pull
models, and it is not clear how far it is possible to easily
distinguish between them experimentally. The original
push-pull model, as well as many of its ``subspecies,''
concentrated on the spatial domain, which we also do
here. (For a discussion of spatiotemporal aspects, see
Jones and Palmer 1987; McLean and Palmer 1989; Baker
and Cynader 1988; DeAngelis et al. 1993). For all push-
pull models, the amount of excitatory and inhibitory input
is a crucial issue, as has been experimentally shown by
Ferster (1988). We systematically studied the sensitivity
to an imbalance of excitation and inhibition in this paper.
In order to test this experimentally, the theoretical studies
were complemented by a series of in vivo recordings from
visual simple cells in cat. The restrictive design of the
push-pull models and the experimentally observed, rather
large variability in the linearity of cortical simple cells
(Movshon et al. 1978a) raises the question of how to im-
prove the models such that they can account for the ob-
served behavior in a more generic way.

This report is organized in the following way: In the
first part we try to show that many simple cells are rather
nonlinear (see also Movshon et al. 1978a) and that this

feature could arise from an imbalance between excitation
and inhibition at the respective target cell. We show that
(as opposed to other parameters) such an imbalance is
most strongly reflected by the behavior of the relative
modulation measure regardless of the cell model used.
On the other hand, we demonstrate that different versions
of push-pull models cannot be distinguished by the use of
the relative modulation measure. Thus, it seems that more
complex methods to distinguish between the different
model subclasses are required. Opposite to this view,
we try to advocate the idea that the high sensitivity of cor-
tical simple cells to some basic parameters (e.g., balance
of excitation and inhibition) may thwart all attempts to
design a unique push-pull model description of them. In-
stead in the second part of the study we propose that most
of the experimentally observed effects can be embedded
in a generic design of the push-pull models called ``cas-
caded inhibition.'' Push-pull models are in general not re-
stricted to visual information processing. Instead they
probably play a role in all cortical (and subcortical) cir-
cuits in which two antagonistic nonlinear inputs (e.g., in
the motor system) have to cooperate in order to achieve
different degrees of linear behavior. The rather parsimoni-
ous design of our model, which nevertheless covers the
different degrees of linearity in a rather robust way, points
to the possibility that this behavior of simple cells is an
emergent property of the cortical network and does not re-
quire specific wiring. This emergent network property to-
gether with the generic applicability of the push-pull prin-
ciple could thus be of broader relevance within cortical
microcircuits. Recent models of cortical circuitry strongly
emphasize that also other cortical cell characteristics (e.g.,
direction and orientation specificity) could be emergent
network properties (Douglas et al. 1995; Somers et al.
1995). The discussion about a rather specific design of
the connection structure in order to achieve the different
degrees of linear behavior that are experimentally ob-
served might, thus, be questioned by our more generic ap-
proach.

Materials and methods

Definitions for experiments and models

Response phase

Consider an idealized simple cell, with two subfields, responding to
a moving sinusoidal grating stimulus of optimal orientation. We
were interested in the (non)linearity of spatial summation between
the subfields and hence the contributions of the individual subfields
to the overall cell response. Such a range of problems could in prin-
ciple be addressed by nonlinear systems theory. In order to make our
results more easily comparable with those from previous studies,
however, we took a simpler approach. Depending on the character-
istics of the external stimulus, the responses of the individual sub-
fields show different strengths and timing, leading to a temporal
phase difference between the subfield responses: In an idealized
simple cell, the on- and off-subfields are optimally separated (non-
overlapping and without a ``gap'' between them) and of equal
width, m. In addition, we assume that there are no differences in
the response latencies between the subfields. Therefore, there is only
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one optimal spatial frequency of the drifting grating, which we call
1/l0, for which the on- and off-subfields are simultaneously stimu-
lated with optimal illumination, depicted in Fig. 1 (top).

Let us associate t0 with the moment when the positive luminance
peak of the grating is exactly located in the center of the on-subfield
regardless of the spatial frequency. This allows us to visualze the
temporal phase f between the time t0 and the time corresponding
to optimal coverage of the off-subfield by the negative luminance
(darker than background) peak in Fig. 1 (bottom) given by the equa-
tion:

f� 2p
l

l
2
ÿm

� �
� pÿ 2pm

l
�1�

where l is the spatial period of the grating (inverse of the spatial fre-
quency), m the subfield width, and l³m.
Some interesting cases are:

1. A very wide grating, l� m; with f!�p
2. The optimal grating, l� l0 � 2m; with f� 0
3. A narrow grating, l� l0=2� m; with f�ÿp
Note that f is ill-defined for l<m, i.e., when the spatial frequency is
so high that one (or more) full cycles cover a single subfield. This is
directly related to the physiological finding of the so called null-re-
sponse in the case of an ideally linear and space-time separable op-
erator, which reflects the vanishing of the response if exactly two
(opposing) half-cycles cover each subfield (Shapley and Hochstein
1975; Movshon et al. 1978a). The use of the ``response phase'' al-
lows us to treat all real and model cells independently of their recep-
tive field width.2

Relative modulation

To quantify the cell behavior, we make use of RM measure (see Mo-
vshon et al. 1978a), defined for inputs that vary sinusoidally in time.
The RM measure can be applied on the spike-density function
(PSTH) because the PSTH (as opposed to many other measurements
of the cell activity) will directly reflect the spatial summation behav-
ior of the cells. If the input-output transformation is linear, we ex-
pect the output to contain only the same frequency spectrum as
the input. Hence, deviations from the ideal output frequency spec-
trum can be used to characterize the degree of nonlinearity of the
transformation performed by the simple cell. Given a sinusoidal in-
put of a specific temporal frequency, we can assign the input-output-
transformation a family of RMs r1, r2, ¼, where the RM of order n is
defined as

rn � nth harmonic component of amplitude spectrum
d:c: component of amplitude spectrum

�2�

The fundamental frequency or first harmonic is determined by
the input, and the amplitude spectrum is calculated from the
output signal. RM compares the higher order Fourier coefficients
to the constant term of the Fourier decomposition
f t� � � a0=2�P 1

i�1 an cos nt� �� bn sin nt� �� �: RM of order n measures
how strongly the nth harmonic of the input frequency is represented
in the output as compared to the overall activity of the output signal.
Whenever we use ``RM'' without a specific order in the remainder
of the paper, we refer to RM of order 1, r1. Defining the RM as a
ratio leads to a normalization of ri with respect to the overall output.
Hence, the RM cannot directly be interpreted in terms of the abso-
lute cell response. Whereas this does not present a problem for nu-
merical treatment in the theoretical studies, experimentally the mod-
ulation frequency and its harmonics have to be detectable and sep-
arable from the noisy background in order to determine the corre-
sponding RMs ri.

Figure 2 shows the behavior of the RM for an input-output rela-
tion given by:

ys;t;y t� � � A sin t�y� ��sAÿ tA; A sin t�y� ��sA� tA
0; A sin t�y� ��sA< tA

�3�
�

This equation describes a possible PSTH of a simple cell, where the
cell output y(t) at time t is determined by the input amplitude A and
the level of spontaneous activity S=sA and output threshold T=tA of
the cell. The parameters s and t reflect the state of the cell, as well
as the contrast of the external stimulus. Because of their physiolog-
ical interpretation, we treat t and s as separate variables instead of
combining them into a single parameter. The input amplitude A in

Fig. 1 Schematic showing the
definition of the temporal phase
f between the center of the off-
subfield and the minimum lu-
minance peak of the grating,
when the maximum luminance
peak is exactly located in the
center of the on-subfield. l is the
spatial period fo the grating with
l0 corresponding to the optimal
spatial period and, thus, to zero
temporal phase. m is the subfield
width, with m=l0/2. See also
Eq. 1

Fig. 2 Relative modulation for a simple model cell with sinusoidal
input. The cell has a constant spontaneous activity S, which is added
to the sine wave input to give the total activity before rectification.
This signal is rectified at a given threshold to produce the output ac-
tivity from which the relative modulation is determined. a) shows
the relative modulation as the amplitude A of the sine wave input
is held constant and the constant portion s=S/A of the activity is var-
ied. The output is rectified at a threshold of zero activity to remain
nonnegative. Relative modulation varies from r1=2.0 for a negative
spontaneous activity to 0 for a very high positive constant activity. A
similar effect would be obtained for a fixed spontaneous activity and
variation of the threshold t=T/A from high to low values. b)±d) The
insets show the corresponding output at intermediate stages marked
by asterisks on the curve b) S=�0.75; relative modulation r1=1.9.
Only the crests of the sine wave are contained in the output. Even
though the absolute output level is low, the output is timed very well
around times of peak sinusoidal input. c) S=1; relative modulation
r1=1.0. Amplitude of sine wave and constant activity are equal.
The variations of the input are reflected over the full output range.
d) S=4; relative modulation r1=0.25. Constant activity is 4 times
higher than the amplitude of the sinusoidal input, leading to a low
relative modulation of the output

2 Commonly, spatial frequency tuning curves are plotted on a log
scale, which leads to shifts of the curves with changing receptive
field widths. For our purposes the phase is much better suited be-
cause it eliminates the receptive field width dependence altogether.
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the model is finite as the consequence of the response saturation al-
ready in the retina.

In spite of the threshold nonlinearity, one usually refers to the
ideal half-wave rectifying case (S=0, T=0) as linear, since this is
the closest that a half-wave rectifying cell without spontaneous dis-
charge can follow the sinusoidal input. To avoid confusion with the
case r1=1.0, where the modulation of the output follows the full sine
wave, we call this behavior quasi-linear. In this case we obtain a rel-

ative modulation of r1 � p
2

.

Experimental methods

Anesthesia and general procedures

Six adult cats (2±3.5 kg), inhousebred were used in the study. Fol-
lowing the international guidelines for animal research, the animals
were initially anesthetized with sodium thiopental (50 mg/kg). An-
esthesia was then maintained with urethane (20 mg/kg per hour),
gallamine triethiodide (Flaxedil, 10 mg/kg per hour), glucose
(200 mg/kg per hour) in Ringer solution (i.v.). The animals were ar-
tificially respirated with room air and the end-expired CO2 was kept
at 3.8±4.0%. Atropine was used to dilate the pupils, phenylephrine
for retraction of the nictitating membranes. We used contact lenses
to keep the eyes wet and adjust the refraction to a vieweing distance
of 28 cm. Body temperature was kept at 37.5� C using a feedback-
controlled heating pad. The electroencephalographic activity
(EEG) above the frontal cortex and the electrocardiographic activity
(EKG) were monitored to ensure the necessary depth of anesthesia.
A local anesthetic, procaine (0.4%) was applied to wound and pres-
sure points. An opening of the skull, was made above the projection
area of the central »0±30� of the visual field in area 17 (see also
Wörgötter and Eysel 1991). Especial care was taken in order to ob-
tain a stable experimental situation. After all, the measured linearity
of a simple cell could in principle also be affected by changing the
state of anesthesia, for example.

Recording, visual stimulation, and data collection

Extracellular recordings were made with single-barrel glass pipettes,
with an outer tip diameter of 1.5±3 mm, filled with 4 M NaCl solu-
tion or glass-coated tungsten electrodes with a tip diameter of 2±
4 mm at retinal eccentricities between 0� and 25�. Stimulus presen-
tation and data acquisition were controlled by an 80386 PC. Visual
stimuli were generated by a Picasso image generator (Picasso; Inn-
isfree, Cambrige, Mass.) and presented on an oscilloscope screen
(Tektronics 608) 28 cm in front of the cat's eyes. The stimulus
was presented monocularly to the dominant eye.

Drifting sine wave gratings were used as stimuli. The spatial fre-
quency was adjusted to different values mostly in 5±15 steps to cov-
er a wide range of temporal phases, maximally �180�. Alternatively,
recordings were ended with those two (high and low) spatial fre-
quencies that did not elicit reliable responses anymore. The spatial
frequency range we used in the total cell sample was between
0.05 cycles/deg and 3.0 cycles/deg. Contrast was set to a low value
(40%) to avoid saturation effects and kept identical in all experi-
ments. This procedure is generally used when assessing the linearity
of simple cells, because at high-contrast values nonlinear effects are
naturally induced partly due to saturation effects. Orientation, drift
direction, and temporal frequency of the grating were adjusted indi-
vidually for each cell to elicit optimal responses and remained un-
changed during recording of the same cell.

The total recording time at an initial temporal resolution of 1 ms
was 120±500 s for each spatial frequency tested, depending on the
response strength of the cell and on the temporal frequency. This re-
sulted in up to 900 grating cycles. Pauses were interspersed between
every (approx.) 50 cycles to avoid adaptive effects. Spontaneous ac-
tivity was measured before presenting the grating stimuli.

As a control, narrow light and dark bars (0.5��10�) were moved
at optimal orientation and optimal speed across the receptive field,
which also provides an additional test for the cell class. Since re-

cordings were from area 17, slow velocities had to be used, between
0.2 and 10�/s. Simple cells usually required slow stimuli, while com-
plex cell could often be stimulated with up to 10�/s. Between 10 and
50 sweeps of bar motion were made and responses were recorded
also at an initial resolution of 1 ms.

Classification of the cells

We followed the suggestion of Tolhurst and Dean (Tolhurst and
Dean 1987, 1990; Skottun et al. 1991) and based our cell classifica-
tion mainly on the value of the relative modulation. Cells with a
mean RM below 1.0 were classified as complex cells, those with
a mean value above as simple cells. Averaging was performed for
the three or four spatial frequencies closest to zero temporal phase.
In addition we assessed the subfield overlap and found in almost all
cases consistently that cells with low relative modulation values had
highly overlapping subfields, while the relative modulation grew
bigger with decreasing overlap.

Data analysis

The recorded spike trains were transformed into standard PSTHs
showing either the response to the bar (20 ms/bin) or to the grating
(2 ms/bin) stimuli. When using a grating, PSTHs representing 5 sub-
sequent cycles were displayed for graphical reasons, for Fourier
analysis the five sweeps were combined into one. Curves of the total
mean response per cycle versus the spatial frequency were also com-
puted. The PSTHs for the light and dark bars were used to measure
the receptive field width and the overlap between subfields. This
was done in a straightforward way by approximating the response
peaks with triangles and subsequently measuring them.

In order to compute the response phase (Eq. 1), we followed the
general convention and assumed that the optimal spatial frequency
1/l0 was the one that elicited the strongest response to a grating.
This corresponds to the peak of the spatial frequency tuning curve
(Ikeda and Wright 1975; Movshon et al. 1978b; Andrews and Pollen
1979). The subfield width can be deduced from the optimal spatial
frequency, for which the subfields should be optimally covered, with
m=l/2, such that f=0 as soon as l=m.

Cell counts

A total of 84 nondirection-selective simple cells were recorded in
layers II to (mostly) IV of area 17 as judged by the recording depth.
In addition, 23 complex cells were recorded for comparison. For 71
simple and 18 complex cells, curves of the relative modulation ver-
sus temporal phase were obtained. Sixty simple cells of those could
be used for analysis, because in the other 11 the curves were either
incomplete or those cells had a significant spontaneous activity. We
excluded all cells that were spontaneously active with mean of more
than 1 Hz, as well as cells with a directional tuning of more than
DI=0.5 (nondirection selective cells; Orban 1984) from this study,
because this also affects the relation between RM and temporal
phase (see Discussion). The spontaneous rates of the 71 simple cells
were distributed as follows: less than 0.3 Hz, 16 cells; between 0.3
and 0.6 Hz, 34 cells; between 0.6 and 1.0 Hz, 10 cells; more than
1.0 Hz, 11 cells (excluded from the analysis). Responses to moving
dark and light bars were recorded in 46 of the 71 simple and in 14
complex cells.

Models

Setup of the basic push-pull models

Consider a simple cell in area 17 with a receptive field divided into
several on and off subfields (e.g., two subfields in Fig. 3). To model
such a receptive field structure, we combine half-wave rectifying cells
as given by Eq. 3 to a push-pull model of a simple cell in area 17.
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The output from a model push-pull cell is then given as:

zs;t t� � � u t� ��sAÿ tA; u t� ��sA� tA
0; u t� ��sA< tA

�4�
�

where we define:

u t� � :�
X4

i�1

wiy
si ;ti ;yi
i t� � �5�

ysi;ti;yi
i is defined according to Eq. 3, and wi are positive for excita-

tory and negative for inhibitory input. Two subfields are excitatory,
two inhibitoy, leaving us with a summation of four fields in total.
For model 1 in Fig. 3 (first summation, then threshold process), we
have:

si � 0; ti � 0 i� 1 . . .4� � and s; t� 0:

Model 2 is characterized by:

s� 0; t� 0 and si; ti � 0 �i� 1 . . .4�:
In addition, we will briefly discuss push-pull models that include a
half-squaring mechanism (Heeger 1992a, b, 1993). For these mod-
els, the output is squared (after adding spontaneous activity and ap-
plication of the threshold), i.e., yi has to be replaced by yi�yi. For the
push-pull model, this implies that the parameters of the simple cell
have to be scaled accordingly.

Biophysiologically realistic model

In the biophysiologically realistic model we implement the push-
pull models in a large-scale simulator, which is built in a modular
fashion. Only a sketch of the model and the properties relevant
for the receptive field structure of the simple cells can be given here.
(Details can be found in Wörgötter and Koch 1991 and Brettle and
Niebur 1994.) The model setup is as follows: We simulated the
membrane potential of about 16000 nerve cells in the primary visual
on- and off-pathway of X cells. Cells were modeled as a single com-
partment with a leakage current, membrane capacitance, afterhyper-
polarization, and a conductance change for each excitatory or inhib-
itory input described by an alpha function. The pathway modeled led
from retinal ganglion cells via (LGN) relay cells to the primary vi-
sual cortex V1.

Since we wanted to make use of the relative modulation in our
studies, we stimulated the model cells with a moving since wave
grating with a velocity of 1.5�/s, such that each point in the receptive
field saw at least five periods of the stimulus.

The grating stimulus was temporally and spatially filtered in the
simulator to mimic the processing of the retina. The output was con-
verted into ganglion cell spikes, which served as input to the upper
stages of the simulator. Each of the ganglion cells innervated four
neighboring geniculate cells such that retinal topography was pre-
served. Projections of geniculate cells were arranged in the fashion

proposed by Hubel and Wiesel (1962) such that a nearly rectangular
array of neighboring LGN cells projected excitatorily onto a single
simple cell in area 17. One such array of receptive field centers of
LGN cells corresponded to a single receptive subfield of a simple cell
in area 17. A mean of 3 subfields with the same orientation, each
consisting of the about 3�23 presynaptic LGN cells, was chosen
for each simple cell. Because of the high LGNRF overlap, this ar-
rangement resulted in an aspect ratio of about 1:3.2 of a cortical sub-
field. In order to account for variations in the projections, we selected
only about 30% of the LGN cells at the right location to form exci-
tatory projections to a cortical cell. The preferred orientation of the
cortical simple cells varied continuously from 0� to 180� over the
simulated cortex population. A total of 2.5 hypercolumns was simu-
lated in our setup. Details that directly affect the results of the push-
pull setup in the realistic model are described in Biophysical models.

Results

Basic push-pull models

We first studied simple, so-called basic push-pull models,
in order to determine the fundamental and generic proper-
ties of push-pull models for simple cells in response to
moving sinusoidal gratings. The study of the basic models
led to predictions for the experiment and formed the basis
for the much more elaborate realistic models. One can
distinguish two versions of the basic push-pull model
(Tolhurst and Dean 1990), differing in the order in which
summation and static threshold were applied to the input
of the simple cell. In model 1, the individual contributions
to the input were first added and then submitted to a
threshold. In model 2, first each contribution was submit-
ted to an individual threshold and then the remaining sig-
nals were summed (see Fig 3). Both linear-nonlinear (L±
N) and N±L type models are part of a more general N±L±
N cascade model (Emerson et al. 1989; Jacobsen et al.
1993). However, we did not mix both versions, in order
to evaluate their individual properties. We determined
the linearity of spatial summation in the model as ex-
pressed in the RM when the spatial frequency was sys-
tematically varied. For simplicity, we set the level of
spontaneous activity and output threshold to zero (hence,
model 1 and model 2 became identical). The inhibitory
inputs were assumed to be 180� out of temporal phase
to the response of their antagonistic excitatory partners
(corresponding to a perfect match of the antagonistic re-
ceptive fields). In the case of equal amplitude of excitato-
ry and inhibitory input to the simple cell, the RM was in-
dependent of the temporal phase difference of the subfield
responses, corresponding to quasi-linear spatial summa-
tion over the whole range of spatial frequencies (Fig. 4a,
solid line). However, for real cells, there was no a priori
reason why the amplitudes of excitatory and inhibitory in-
put should be exactly balanced. When the amplitudes of
excitatory and inhibitory inputs were different, leading
to a weighted push-pull model, the relative modulations
became phase-dependent (Fig. 4a). Figure 4b shows the
dependence of the first four relative modulations on the
ratio of the inhibitory and excitatory amplitudes for a
fixed phase difference of 90� between the subfield re-
sponses.

Fig. 3a, b Push-pull models of Tolhurst and Dean. Threshold pa-
rameters are labeled T, those indicating the spontaneous activity lev-
el, S. a Model 1: first summation, then submission to threshold. b
Model 2: first threshold process, then summation. Only nonzero
thresholds are shown (LGN lateral geniculate nucleus)
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When we relaxed the restrictions on the spontaneous
activity and threshold, and chose parameter settings
S,T>0, even for equal excitatory and inhibitory input am-
plitude we observed a phase dependence of the relative
modulations. This is shown in Fig. 4c, d. Hence, phase de-
pendence of relative modulation is a generic property of
the basic push-pull models. However, the phase depen-
dence observed for threshold and/or spontaneous activity
changes are relatively moderate as compared to those
from unequal excitation and inhibition. Only for unphys-
iological values of threshold and spontaneous activity was
a strong phase dependence observed.

We then evaluated the two kinds of push-pull models
(Fig. 3) under ideal conditions, i.e., same strength of exci-
tatory and inhibitory input over a wide range of parame-

ters s and t. To limit the number of free parameters, we
arbitrarily chose a temporal phase of 90� between on and
off responses. Since we could not study all possible dif-
ferent parameter combinations, we scaled all threshold
base values by a common threshold factor t, all base lev-
els of spontaneous activity by a common factor of spon-
taneous activity s. Thus, we evaluated two-dimensional
sections of the full parameter space. Figure 5 shows the
resulting variation of the relative modulation r1 in the
two push-pull models.

In both models the relative modulation changes slowly
with varying parameter values in physiological ranges,
and many different parameter combinations lead to the
same relative modulation. In particular, for small
(Ti & A=5; Si & A=5), physiologically relevant values of
constant acitivity and threshold there is little difference
between the two models, making it impossible to gain
conclusive evidence from the RM values in favor of
one kind of the basic push-pull models. This shows that
the threshold operation (beyond half-wave rectification),
irrespective of the order in which it is applied, is a much
less sensitive parameter for the observed non-linearity
than the ratio of excitation to inhibition.

Finally, we studied the effects of using half-wave
squaring cells (Heeger 1992a, b, 1993) instead of half-
wave rectifying cells in the basic push-pull models. For
a single cell, the relative modulation r1 at zero constant
activity level with zero thresholds has a value of about
1.7, as compared to about 1.57 in the case of a single,
purely half-wave rectifying cell. Generally, the relative

Fig. 4a±d Dependence of the first few relative modulations on tem-
poral phase difference and ratio of inhibition to excitation in the ba-
sic push-pull models. The setting in a and b is Ti=T=0; Si=S=0. a In-
hibition fixed at 150%, 100%, 50%, and 25% of the excitation. Rel-
ative modulations r1 and r2 vary with temporal phase difference, ex-
cept for the 100% case. For 180� the output vanishes and the relative
modulations are set to their limiting values from below. Phase de-
pendence of relative modulation is a generic feature of the basic
push-pull models. For S¹0, T¹0 we obtain a phase dependence also
in the 100% case. b Phase difference fixed at 90�. Relative modula-
tions r1, ¼, r4 vary with ratio of inhibition to excitation. A high rel-
ative level of inhibition leads to a high relative modulation r1. In c
and d, S(i)¹0 and T(i)¹0. c Now constant activity is added,
s� 1

2si>0;Ti � T � 0. The diagram contains the phase dependence
of the relative modulation r1 for various settings of s. d In a similar
fashion, here we have ti=t>0; si=s=0, again showing the phase de-
pendence of r1
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modulation r1 is slightly larger than for half-wave rectify-
ing cells. This is due to the squaring, which emphasizes
the high levels of the periodic activity. A principal differ-
ence to the half-wave rectifying model lies in the fact that,
because of the reduced temporal overlap of the subfield
responses, the relative modulation r1 remains close to
1.4 in model 2 as the phase difference approaches 180�.
Also, already for equal amplitudes of excitatory and in-
hibitory input we find a phase dependence of the relative
modulation (see Fig. 6). Again the relative modulations
also depend on the ratio of excitatory to inhibitory input
for a fixed phase difference (data not shown). Whereas
in principle the change of relative modulation with phase
difference is a way to distinguish between purely rectify-
ing cells and cells that combine a rectification with a
squaring operation, under realistic conditions, the devia-
tions between the results remain too limited to gain con-
clusive evidence.

In summary, it can be noted that the only parameter
that has a strong influence on the RM is the balance be-

tween excitation and inhibition, which will be used in
the experimental part of this study to draw conclusions
about the convergence pattern onto cortical simple cells.

Experimental results

Dependence of the relative modulation on the temporal
phase of the grating

Figure 7 shows the behavior of three simple cells stimu-
lated with drifting gratings of different spatial frequen-
cies. The cell in Fig. 7c reflects a borderline case between
simple and complex cell behavior. A selection of the re-
corded PSTHs to gratings of different spatial frequencies
is shown in plots 1±5 of Fig. 7a±c. The time axis has been
normalized in these plots to always show five subsequent
cycles. The diagrams marked with short bars show the re-
sponse to a moving light or dark bar at optimal direction
and orientation. To obtain the curves of relative modula-

Fig. 5a, b Effect of parameter variation on the relative modulation
r1 in the basic push-pull models. Parameters are given in units of
the common amplitude A. The phase difference is fixed at 90�. a
Model 1: Relative modulation varies slowly and smoothly with level
of constant activity and firing threshold. For large threshold values
relative modulations close to 2.0 can be obtained, as in the single-
cell model, which is strongly reflected in this model. b Model 2:
Generally the relative modulation is smaller than in model 1, even
for a low theshold. For high threshold values of the input cells the
weak input to the simple cell results in a very low relative modula-
tion. Where the threshold exceeds the activity, the relative modula-
tion has been set to zero. Note that relative modulations for respons-
es for which the threshold exceeds the total input (and, hence, there
would be not output) have been set in a to 2.0 and in b to zero to
obtain a smooth diagram. The level of constant activity has been
set in the simple cell to half the value of presynaptic cells

Fig. 6a, b Model with half-squaring cells. a Relative modulation r1
as function of threshold in models 1 and 2 for a fixed phase differ-
ence of 90�, equal excitatory and inhibitory amplitudes, and zero
spontaneous activity. As for the half-wave rectifying case, the rela-
tive modulation in model 2 is less than in model 1. Because of the
reduced temporal overlap of the excitatory inputs, in both models
the maximum total input does ot exceed A, i.e., t£1. b The first four
relative modulations as the temporal phase difference is varied.
Spontaneous activity and thresholds are set to zero; hence model 1
and 2 are equal. Excitatory and inhibitory inputs possess the same
amplitude. The dependence of the relative modulations on phase dif-
ference is a distinctive feature of half-wave rectifying and half-wave
squaring cells as r1 remains close to 1.4 when the phase difference
approaches 180�
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tion versus temporal phase, we defined that particular spa-
tial frequency as optimal that produces the highest mean
impulse rate per sweep. Thus, we assumed that this spatial
frequency reflected twice the subfield width m and was
therefore associated with the temporal phase f=0 (see
Eq. 1). The curves show three distinctive shapes.3 The
cell in Fig. 7d, a, has a high mean RM and the curve is
flat; in Fig. 7d, b, the curve drops to low RM values for
negative values of f. In Fig. 7d, c, the curve has a peak
at f=0. Note, that the examples were selected to show
the shape of the curves and not to give maximal relative
modulation values. Therefore, they were selected to rend-
er nonoverlapping curves in Fig. 7d. From Eq. 1 it is clear
that f only reaches the value of +180� asymptotically for
zero spatial frequency. Therefore, in almost all cases re-
cordings had to be stopped at values of f much smaller
for two reasons: Either the cell would stop to respond pe-

riodically to such a wide grating as in Fig. 7c, or ± more
often observed ± the cell would start to show nonlinear bi-
phasic responses so that the second harmonic of the spec-
trum dominates. This case was observed for the cell in
Fig. 7b.

The examples in Fig. 7 were chosen to represent the
typical behavior of the complete cell sample, which is dis-
played in Fig. 8. Two basic types of behavior were ob-
served in the curves of the relative modulation versus
temporal phase. In 23 (38%) cells, the curves were flat.
Judging from the recording depth, we found these cells al-
most exclusively in the middle of layer IV. In another 37
(62%) cells, they showed a drop of the relative modula-
tion to either both sides of the origin or in cases such as
in Fig. 7b for negative values of f. To distinguish between
flat and not-flat curves, the mean RM was computed for
all data points on the curve. If the data points were scat-
tered randomly around the mean, the curve was regarded
as flat. On the other hand, if the data points close to f=0
where larger than the mean and those for |f|>>0 were
smaller than the mean, the curve was regarded as not flat.

In Fig. 8c the curves for eight complex cells are shown
for comparison. These cells were selected to show at least
a small degree of modulation (modulated C cell; see Pol-
len et al. 1978). The curves for the complex cell are al-
most always below 1.0. In Fig. 8d the curves in Fig. 8a±
c were averaged. To achieve this, the original curves,
which are plotted by linear interpolation between the data
points, were sampled with 10� steps and averaging was
performed on these samples. Error bars are not drawn, be-
cause the variance can be assessed from the original set of
curves in Fig. 8a±c. The difference between the three data
sets is quite obvious. The mean RM changes in the inter-
val of f=�90� by approximately 30% for a rather large
group of simple cells. In addition, the maximum mean
RM modulation is smaller for these cells than for the

Fig. 7 PSTHs (a±c) and relative modulation versus temporal phase
curves (d) of three simple cells. In a±c, the PSTHs (bin width 8 ms)
of the responses to gratings of five different spatial frequencies (in
order, from low to high) are displayed in panels 1±5, and in the last
panel the responses to moving light and dark bars (marked with
short bars) at optimal orientation and direction are shown (bin width
20 ms). Spontaneous activity was less than 0.3 Hz for these three
cells. a The optimal spatial frequency located at f=0 is SF=0.40 cy-
cles/deg.; drift frequency of the grating DF=0.45 Hz; preferred ori-
entation PO=88�, velocity of the moving bar V=0.70�/s; total recep-
tive field width RF=2.24�. Vertical scale for the grating responses
SC =45I/s. b SF=0.29 cycles/deg.; DF=1.55 Hz; PO=24�, V=1.7�/
s; RF=3.57�, SC=43I/s. c SF=0.25 cycles/deg.; DF=1.68 Hz;
PO=10�, V=1.6�/s; RF=5.80�, SC=25I/s. d Relative modulation ver-
sus temporal phase curves. More spatial frequency values than
shown in a±c were used to plot the curves, and the frequency values
have been converted into temporal phase values with Eq. 1

3 In Figs. 5, 6, and 11, we show the curve only for positive values of
f because for the models discussed there the curve is symmetri-
cal.
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group with a flat characteristic. This result might indicate
different weights of the excitatory and inhibitory inputs.

Statistics

So far we have assumed that the opticmal spatial frequen-
cy, which is associated with the value of f=0, is the one
with the strongest response to the grating. The question
arises whether this frequency is also associated with the

highest relative modulation value which would reflect
the ``most linear'' (quasilinear) response. In Fig. 9a the
distribution of the relative modulation values at f=0 (thin
line) and the maximum relative modulations (thick line)
are plotted as histograms. There is a small tendency for
a difference between the two histograms, but it does not
reach statistical significance at the 5% level. The means
are: 1.42 for f=0 and 1.51 for the maxima. Both cases
are below 1.57, which would represent the ideal situation
given the cells act as half-wave rectifiers.

The histogram in Fig. 9b tries to answer the question of
at what phase f the maxima are found in relation to the
chosen optimal spatial frequency (i.e., in relation to zero
phase). For this histogram we could only use those curves
that have a distinctive maximum, namely the curves in
Fig. 8b and a few others excluded from Fig. 8 (curves
too short). We plotted the distribution of the values of f
where the maxima were located and found small shift to-
ward negative phases, i.e., higher spatial frequencies
(mean f=�11.4�). Therefore, the maximum RM is on av-
erage found for a spatial frequency higher than that which
produces the maximal response. This difference essential-
ly reflects the trend found in Fig. 9a, but it also does not
reach statistical significance. Therefore, we conclude that
the best quasi-linear responses for simple cells are indeed
obtained at that spatial frequency for which they respond
maximally.

Biophysical models

The basic push-pull models are highly abstract and do not
directly incorporate biophysical parameters such as the
membrane characteristics of the cells. In addition, their
design cannot directly be compared with the actual wiring
in a sub-cortical network. In particular, network effects
that contribute to the receptive field properties of simple
cells are not contained in the basic models. Furthermore,

Fig. 8a±d Relative modulation
versus temporal phase curves of
the complete cell sample.
a Twenty-three simple cells
with flat curves; b 37 simple
cells with non-flat curves; c 8
modulated complex cells.
d Mean curves for the different
samples shown in a±c

Fig. 9a, b Statistical results for the relative modulation versus tem-
poral phase. a The distribution histograms of the relative modulation
values at optimal spatial frequency (thin line) and the maximum rel-
ative modulation values (thick line) are shown. A small difference
can be seen between the two histograms, and the mean values are
1.42�0.17 and 1.51�0.15, respectively. A total of 71 simple cells
is shown. b The distribution histogram of the temporal phase differ-
ences between f=0 and the temporal phase where the maximum rel-
ative modulation was found. A total of 46 simple cells is shown, be-
cause only the curves with a distinctive maximum are included. The
mean value is �11.37��24.01�
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an explanation of the experimentally observed cells with a
flat RM curve would require a rather precise balance of
excitation and inhibition over a wide range of stimulus
conditions. Therefore, in this section we introduce a bio-
physically much more realistic model for cortical simple
cells, and we concentrate on the possible role of the local
cortical network in generating the experimentally ob-
served quasi-linearity of spatial summation. In particular,
we focus on three different connectivity patterns for an-
tagonistic intracortical inhibition, corresponding to the
push-pull setup described in the section Basic push-pull
models. Firstly, the strict, sparse inhibitory model: at
most two simple cells of precisely matching but antago-
nistic receptive field properties are connected to any sim-
ple cell. The target cell in turn inhibits these cortical
source cells, resulting in an overall mutual inhibition
(Fig. 10a). The specific type of inhibition (subtractive or
shunting) is not crucial. Important for a linear operation
is the fact that action potentials are eliminated at the
``right'' times, as prescribed by the input. We allow
two cortical simple cells to project to a simple cell to give
room for a small variability in order to make the model
more robust (in Fig. 10a, b only one cell is shown).

Secondly, a more discretionary model, termed weak
sparse inhibition model: the requirement of alignment
of the preferred orientations and relative positions of the
receptive fields are relaxed. But we still connect, at most,
two simple cells to a given target cell (Fig. 10b).

Thirdly, a new introduced cascaded intracortical inhi-
bition model: about 20±25 simple cells with loosely
matching but antagonistic receptive fields are connected
to a given target cell (Fig. 10c). The number of receptive
subfields for each simple cell may vary between 2 and 4
for all three inhibition schemes. Models corresponding to
the sparse mutual intracortical connection setup (i.e.,
push-pull models) have already been proposed (Glezer
et al. 1980; Palmer and Davies 1981; Ferster 1988). In ad-
dition, there is experimental evidence for the existence of
antagonistic, mutual intracortical inhibition that could
subserve a push-pull mechanism (Liu et al. 1992).

The comparatively large number of intracortical con-
nections in the cascaded connection scheme inevitably in-
troduces statistical fluctuations of the contributing indi-
vidual receptive fields, leading to a greater robustness
of the model and resulting in more specific receptive
fields of individual simple cells. In addition, the intracor-
tical network allows even net disinhibition as a second-
ary-order effect. The cascaded inhibition scheme there-
fore tolerates a much larger variation of individual recep-
tive field properties than the sparse mutual inhibition
scheme, which requires a highly accurate matching of re-
ceptive field properties. It needs to be emphasized that we
did not explicitely model inhibitory interneurons. Includ-
ing those, however, would only slightly alter the observed
behavior. Furthermore it should be noted that cascaded in-
hibition also often results in a ``shared inhibition,'' orig-
inating from one given source cell and terminating at dif-
ferent traget cells ± a situation that is often found in the
real cortex.

The receptive field setup sketched so far presents an
idealized case in which the receptive fields of all simple
cells strongly resemble each other. To account for the
variance found in nature, we have generally assigned
model parameters a Gaussian-distributed jitter. In particu-
lar, a small jitter in the size (up to 0.1 deviation from an
ideal grid position and up to 25% subfield overlap) and
orientation (�10�) of receptive subfields has been intro-
duced. In addition, the propagation delays are generally
Gaussian distributed, with a standard deviation of 25%
of the mean values.

We then investigated the behavior of the three models
for stimulation with a moving sinusoidal grating of a spa-
tial frequency, which corresponds to optimal stimulation
of an idealized simple cell. Cells were arrayed in the mod-
el on a rectangular grid whose columns corresponded to a
particular, preferred orientation of the simple cells. The
resulting relative modulation r1 in the cascaded model
for all LGN and all cortical cells is shown in Fig. 11a.
Whereas the relative modulation is about 1.57 (dark shad-
ing) in the LGN cells, the relative modulation in the cor-
tex is only high for cells with a nearly optimal orientation.
This is due to the fact that the overlap of the subfields
with the stimulus halfwaves drops with the angle between
preferred orientation and stimulus orientation. In Fig. 11b,
the mean RMs for all thalamic cells in a column and all
cortical cells in a column are plotted. The standard devi-
ation of the RM is indicated for the cortical cells only.

Fig. 10 Strict (a) and weak (b) sparse and cascaded (c) intracortical
inhibition (schematic). Note, for simplicity, inhibitory interneurons
that can mediate the inhibition are not drawn. In the biophysical
model, inhibitory interneurons have not been modeled explicitely,
but neurons were assumed to be able to provide inhibition and exci-
tation at the same time for different targets. A similar approach has
been adopted by others (Wörgötter and Koch 1991; Somers et al.
1995) without introducing significant differences in the cell behav-
ior as opposed to an explicit implementation of inhibitory interneu-
rons. For the sparse models, mutual inhibition is indicated by the ar-
rows. For the cascaded model, reciprocal connections are not drawn
to clearly show the sample wiring for a single cascade of seven cells.
In this example, several ``target cells'' (at the arrow end-points) re-
ceive inhibition from several (different or same) ``source cells.'' In
the model cascades can consist of up to 25 source cells for a single
target. Cascaded inhibition allows higher order effects of cells not
only inhibiting the target cell but also other presynaptic cells, possi-
bly leading to a reduced inhibition or even net disinhibition of the
target cell
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Note, that the spread of relative modulations has a strong
minimum for the optimally oriented cells. Some jitter is
introduced in the orientation preference of the cortical
model cells because of differing subcortical connections.

Out of the total of 8192 simulated cortical cells, we on-
ly used those cells whose preferred orientation matched
that of the stimulus. Hence, we selected all cells in the
columns corresponding to the stimulus orientation
(marked with an arrow in Fig. 11b). To avoid pitfalls dur-
ing the Fourier transformation, we excluded simple cells
with an activity below 1/s from further analysis. The
RM values for the remaining cells were sorted into bins
of width 0.1 and the distribution for all cells with different
relative modulations was drawn as a histogram for the
three different models (Fig. 12).

Since all three models belong to the push-pull class,
we did not expect drastically different behavior. Most no-
table was the difference between distributions corre-
sponding to the sparse inhibitory and the cascaded inhib-
itory connection models. Whereas the former showed a
bimodal distribution of relative modulations, in the latter
we observed only a single, somewhat more pronounced
peak around a relative modulation of 1.5. This means that
the cascaded model allowed more simple cells to respond
efficiently, i.e., with a substantial stimulus-induced mod-
ulation, to the input stimulus. If the simple cells in our
model were true half-wave rectifiers, we would expect
the peak number of cells to be clustered precisely around
r1=1.57. If one of the other parameters, such as the ratio
of excitation and inhibition or the level of spontaneous ac-
tivity, is drastically varied, the differences between the
models deteriorate. This is due to the reduction in the
RM, which is already present in the basic models. There
is, however, a major difference in the robustness to such
variations between the sparse and the cascaded models:
The cascaded model is much less sensitive to local varia-
tions of these parameters, because these tend to cancel in
the cascaded cortical network. Only a global variation
over the whole cascaded network has a similar effect as
for the sparse models. The peak at low relative modula-
tions r1 corresponds to simple cells that have not found
an antagonistic partner that matches closely enough their
own receptive field properties (corresponding to a pure
push model). Accordingly, in the sparse models more
simple cells (about 24% of the total for both types) have
a relative modulation r1£1.0 than in the cascaded model
(about 8% of the total). Similarly, the broadening of the
second peak in the strict versus the weak case corresponds
to several target cells having found only a single matching
partner instead of the maximum number of 2. In the area
where the push-pull mechanism is fully effective
(r1>1.0), there is little difference between the models.
The cascaded model can be implemented, on the comput-
er or biologically, with much less rigor than its sparse
companions. It is less sensitive to the specific properties
of individual cells and more robust to changes in the pre-
synaptic network. In addition, the distribution of the rela-
tive modulation values looks realistic. The degree of lin-
earity obtained with cascaded inhibition nicely reflects

Fig. 11 a The RM is plotted in a population plot (for similar plots
see Wörgötter and Koch 1991) for all 16384 cells in the simulated
area of LGN and V1. Cells are arranged on a rectangular grid of
64�256 (x�y) cells. The RM r1 is plotted as a black rectangle for
each cell. A large rectangle indicates high r1, a small rectangle,
low RM. The stimulus size has been chosen to result in a phase dif-
ference of 0�. Cortical cells are connected according to the cascaded
model. LGN cells possess a nearly constant RM of about 1.57. In the
cortex, r1 is only high for simple cells whose preferred orientation
matches that of the stimulus. The bars at the top indicate the pre-
ferred orientation of the simple cells at the particular rows. b All
RMs in a column are collapsed into a single value for LGN (dotted
line) and cortex (dots with error bars). RM of the cortical cells co-
incides with a very small error with the relative modulation of the
precortical cells only for the optimal orientation. Elsewhere we ob-
serve a sinusoidally shaped dependence of RM on the preferred ori-
entation of the simple cells. c The phase dependence of RM in the
three detailed models, based on the RM at 0�, 45�, 90�, and 135�
phase difference. Only cells with optimal orientation preference
have been selected, and the mean out of all cells with r1³1.0 has
been taken. Because of the skewness of the RM distribution, the
mean RM is lower than the ideal value of 1.57. Whereas the relative
modulation in the cascaded scheme only shows a weak phase depen-
dence, the RM in the strict and weak sparse models falls off more
strongly with increasing phase difference
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the ``linear'' subpopulation of simple cells, which we
found to be 38% of the total. It is, however, much easier
to obtain nonlinear behavior by means of the same cas-
caded connection pattern just by using short, imbalanced
cascades that lead to imbalanced excitation and inhibition.

It remains to be investigated how far the complicated
receptive field structure introduced by the cascaded mod-
el could explain other properties of simple cells. This ap-
plies in particular to temporal effects not discussed here,
e.g., phase differences leading to direction selectivity or
facilitatory effects in other simple cells.

We now address the question of how sensitive the sim-
ple cells in the detailed model are to changes of the spatial
frequency of the stimulus, i.e., we discuss the temporal

phase dependence of RM as in the previous section for
the basic push-pull models and for real cells in the exper-
imental part.

In order to determine the phase dependence in the de-
tailed models, we simulated the behavior of the sparse and
cascaded models for a temporal phase difference of 0�,
45�, 90�, and 135� in the response from the on and off
subfields.

When we selected all cells with optimal orientation
and varied the phase difference by using grating stimuli
of different spatial period, we obtained the phase depen-
dence of the RM shown in Fig. 11c. We averaged all
RMs r1 above 1.0 and plotted the mean against phase dif-
ference. Because of the skewness of the distributions, the
mean was shifted toward lower RMs.

Both of the sparse models show a greater phase depen-
dence of relative modulation than the cascaded model.
This could be an indication that the phase-insensitive cells
found in the experiment are connected according to the
cascaded connection scheme, whereas a sparse connection
scheme more readily results in a phase dependence of the
RM. It also implies that quasi-linear behavior of simple
cells over a relatively wide parameter range can be easily
achieved in a cascaded setup.

Discussion

The goal of this study was threefold: (1) show the limita-
tions of a widlely used method (relative modulation); (2)
provide evidence that specific push-pull models may be
rather hard to distinguish experimentally; and (3) try to
devise a parsimonious model for an antagonistically orga-
nized intracortical inhibition. In particular, our last goal
was meant to contribute beyond visual cortical physiology
to the discussion about general cortical design principles.

We first briefly discuss the basic push-pull models and
the limits of the relative modulation measure before we
try to argue in favor of the generic cascaded inhibition
model, which might incorporate the most important as-
pects of cortical linearity.

The basic push-pull models

The relative modulation measure is relatively crude be-
cause it is based on a spatially and temporally extended
stimulus. Hence, it is not the aim of this study to analyze
the fine structure of the receptive field of a simple cell, for
which much better methods exist such as the structural
cascade models (Pollen and Ronner 1982; Adelson and
Bergen 1985; Korenberg and Hunter 1986; Emerson and
Citron 1988; Emerson et al. 1989) or the mapping tech-
niques with or without reverse correlation between cells
response and stimulus (DeAngelis et al. 1993; Jones and
Palmer 1987; McLean and Palmer 1989; Baker and Cyna-
der 1988). On a scale that takes into account the stimulus
limitations, however, the spatial summation between sub-
fields of a simple cell can already be studied in the basic

Fig. 12 Distribution of relative modulation r1 in the detailed mod-
els. Using a bin size of 0.1, the distribution of relative modulation
is shown for the strict sparse inhibitory model, the weak sparse in-
hibitory model, and the cascaded intracortical inhibition scheme
for stimulation with a grating of optimal spatial period. Distributions
in the top two cases are bimodal, whereas in the cascaded model we
observe a single peak with a maximum around r1=1.57. Indicated
are the number of cells in the distribution N, the mean RM, calculat-
ed from all cells with r1³1.0, and the corresponding standard devi-
ation of the mean s. Because of the skewness of the distribution,
the mean RM is shifted toward lower r1-values when compared with
the ideal value 1.57
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push-pull models that represent a very simple sketch of a
neuron in the visual system. It turns out that the sensitivity
of the relative modulation, being a measure of the linear-
ity of spatial summation between the subfields, to changes
of most parameters in the basic models is relatively weak.
Various different model constellations may lead to the
same relative modulation. The introduction of a half-
squaring cell model does not qualitatively alter this situa-
tion. Ambiguity in the relative modulation remains, even
though the squaring operation increases the modulation
depth of this output and hence magnifies changes caused
by different parameter settings. Thus, the studies of the
weighted basic push-pull model (Fig. 4) show that the ra-
tio of excitation to inhibition is the only parameter in the
present models which ± within physiological ranges ± ex-
erts a rather strong influence on the relative modulation.
This relatively strong sensitivity to relative modulation
to the balance of excitation and inhibition seems to be re-
flected in the experimental part of this study, where we
find a large class of simple cells with a phase-sensitive
relative modulation.

Experimental findings

In the theoretical part, we discussed several reasons that
can lead to a curved relation between relative modulation
and temporal phase. This effect occurs with nonzero
spontaneous activity, but we have excluded such cells
from the study. Furthermore, the experimentally observed
bend sets in gradually starting from f=0, which is not sim-
ilar to the bend of the simulated curves that was intro-
duced by increasing the spontaneous activity. In this case
a noticeable bend only occurs for large values of f. In ad-
dition, firing thresholds unequal to zero lead to bended
curves. To get a strong effect of this kind, the firing
threshold, however, would have to be unphysiologically
high. Another problem is posed by the question of wheth-
er a deviation from the true half-wave rectifier model by
exponents unequal to 1.0 (e.g., a half-squarer has the ex-
ponent 2) could account for the bend in the curves. While
higher exponents have been proposed by others (Albrecht
and Geisler 1991; Heeger 1992a, b, 1993), in our hands
there is no conclusive evidence in favor or against them.
In case of higher exponents, we would expect larger RM
values and a bend of the curves which occurs starting
from these larger values, which we did not observe. A
combination of these parameters could also account for
the bend in the curves, but only if the exponent would
be less or equal to one while spontaneous activity and
threshold would have to deviate significantly from zero
at the same time. While this would in prinicple be possi-
ble, the bend in the curves is more generically explained
by an imbalance between excitation and inhibition. Palm-
er et al. (1991) discussed several models that include such
an imbalance, one of which (their ``model 3'') includes
imbalanced lateral inhibition for which indirect support
exists (Sillito 1975; Hata et al. 1988; Wörgötter and Eysel
1991).

In addition to such a later inhibition, an imbalance
could also be introduced by a displacement between the
excitatory and inhibitory subfields with respect to each
other. In the detailed simulation (Figs. 10±12), we have
proposed a cascaded intracortical inhibition scheme in
which many (»25) cells converge on and inhibit each oth-
er. This structure is easy to implement during develop-
ment and excludes and exact balance between excitation
an inhibition in almost all cases. Moreover, even com-
pletely imbalanced regions of pure excitation and/or pure
inhibition can exist (see Fig. 10). Such effects most
strongly contribute to the bent shape of the curves in
the basic models (Fig. 4). The most robust behavior was
obtained with the cascaded inhibition connection scheme,
which is directly related to the ``model 4'' proposed by
Palmer et al. (1991), in which displacements between
the on and off (i.e., excitatory and inhibitory) regions ex-
ist. A similar scheme, which possibly accounts for cortical
orientation selectivity by displaced receptive fields, was
also proposed by Heggelund (1981).

The experimental and theoretical results discussed
above make it seem likely that an imbalance between con-
verging inputs could actually introduce the experimental-
ly observed bend in the curves in Fig. 8b. Temporal ef-
fects, however, could add to this.

The imbalance between excitation and inhibition is
spatially introduced in all the cases discussed so far. It
is important to note, however, that temporal effects could
also result in an effective imbalance between excitation
and inhibition at any one point in time. Temporal delays
between the different subfields could lead to a phase dif-
ference and, this, to a drop of the relative modulation at
nonoptimal spatial frequencies. While we tried to avoid
some of the possible temporally induced effects by re-
moving all direction-selective cells from the study, this
possibility cannot entirely be ruled out with the present
set of experiments.

Regarding the high complexity of the cortical network
and also the variability of the cell behavior, one would not
necessarily expect that simple cells should have an exact-
ly balanced excitatory and inhibitory input and, thus, a
flat relation between relative modulation and temporal
phase. Nevertheless, we found about 38% of the simple
cells in Fig. 8a, b that did not show any significant change
of the relative modulation, when we varied the spatial fre-
quency of the grating. The mean relative modulation
(1.49) for these cells was close to 1.57. Therefore, this
sample seems to reflect rather ideal simple cells, with a
behavior that closely represents quasi-linear summation.
Judging from the recording depth, we found these cells al-
most exclusively in the middle of layer IV. This cell
group probably corresponds to the ``linear simple cells''
described by Movshon et al. (1978a). The range and the
mean of the relative modulations shown in Fig. 8a corre-
sponds to that found by others (Dean and Tolhurst 1983;
for a review see Skottun et al. 1991). After the previous
discussion, the question must arise of how far these qua-
si-linear cells might principally differ from the cells that
are more sensitive to the changes in the stimulus, if one
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wants to avoid the awkward assumption that excitation
and inhibition have been well balanced by chance over
the whole set of stimulus conditions and recording time.

Biophysically realistic models

From the sections above, it becomes clear that basic push-
pull models are designed in a specific way, which might
not correspond to the actual connectivity pattern found
in the visual cortex. In addition, some of the fine distinc-
tions between the different flavors of basic push-pull
models could be difficult to assess experimentally. In gen-
eral, however, all these models are very sensitive with re-
spect to an imbalance between their excitatory and inhib-
itory inputs. From these observations the question arose of
whether there is a generic way to design a cortical net-
work such that it will produce an (almost) quasilinear be-
havior, while exceptions from linearity will also be ex-
plained within this wiring framework.

Massive inhibitory intracortical connections as in the
cascaded inhibition scheme easily leads in a robust way
to some degree of linear spatial summation in simple
cells. In addition, the variability of the cells' linearity
can also be accounted for by this connection scheme, be-
cause many times an incomplete balance between excita-
tion and inhibition arises as the consequence of this wir-
ing pattern. One should in particular note that the effect of
cascaded inhibition is more than a mere effect of in-
creased inhibition. This can be seen firstly by increasing
the level of inhibition in the sparse connection models,
which does not lead to the same result as in the cascaded
model. Secondly, in the cascaded model the relative mod-
ulation of a simple cell's output is less sensitive to chang-
es in the phase difference of the individual responses from
the the receptive subfields. It is the range of spatial pa-
rameters (position and orientation) and temporal parame-
ters (delays) of the whole network, that aids the simple
cell in the cascaded model to respond more uniformly
(as measured with relative modulation) to a variety of
spatial frequencies of the stimulus. Size and orientation
of subfields of real nerve cells vary slightly even for sub-
fields of the same simple cell. Such a variability has larg-
er consequences for the detailed sparse models than the
cascaded model, because the latter involves an averaging
process over a larger number of cortical cells, leading to a
greater robustness with respect to variations in cell param-
eters and also in stimulus properties. In particular, this ex-
tends to the ratio of excitation to inhibition, because the
local inhibitory feedback network tends to normalize the
cell response to a certain extent. Additional properties
such as the presence of disinhibitory secondary order ef-
fects in the cascaded network are predictions from the
cascaded push-pull model, which might eventually also
be tested experimentally. A recent study of Ferster et al.
(1996) questions the role of the intracortical network in
generating the orientation tuning of cortical simple cells.
Even though it is not the aim of the cascaded inhibition
model to explain orientation tuning in simple cells, a cer-

tain amount of ``pull action,'' i.e., inhibition from other
cortical simple cells with spatially opponent receptive
field structure, is necessary in the cascaded inhibition
model to overcome the flaws of a pure push model. If this
condition is fulfilled, the cascaded setup presents a gener-
ic way to account for quasilinear as well as nonlinear be-
havior within a single model framework.

Analytically tractable models are elegant and lead to a
more intuitive understanding of the behavior of a system.
One of them, the fundamental push-pull model is largely
accepted for the explanation of many aspects of cortical
simple cell behavior. The specific design of this model,
however, represents a tremendous oversimplification of
real cortical wiring. Recent models of cortical direction
and orientation selectivity make use of the intrinsic prop-
erties of a highly interconnected network such as the visu-
al cortex and the cell specificities arise in these models as
an ``emergent'' network property (Douglas et al. 1995;
Somers et al. 1995). In light of this changing viewpoint,
the approach of shaping the cells' linearity through the ac-
tion of the intracortical network (as by means of cascaded
inhibition) seems preferable to an approach of solely de-
signing increasingly sophisticated models of single cells
to explain the experimental data.
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