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A Detailed Model of the Primary Visual Pathway in the Cat: 
Comparison of Afferent Excitatory and lntracortical Inhibitory 
Connection Schemes for Orientation Selectivity 

Florentin WMg6tter” and Christof Koch 

Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125 

In order to arrive at a quantitative understanding of the dy- 
namics of cortical neuronal networks, we simulated a de- 
tailed model of the primary visual pathway of the adult cat. 
This computer model comprises a 5”~ 5” patch of the visual 
field at a retinal eccentricity of 4.5” and includes 2048 ON- 
and OFF-center retinal B-ganglion cells, 8 192 geniculate 
X-cells, and 4096 simple cells in layer IV in area 17. The 
neurons are implemented as improved integrate-and-fire 
units. Cortical receptive fields are determined by the pattern 
of afferent convergence and by inhibitory intracortical con- 
nections. Orientation columns are implemented continuously 
with a realistic receptive field scatter and jitter in the pre- 
ferred orientations. 

We first show that realistic ON-OFF-responses, orienta- 
tion selectivity, velocity low-pass behavior, null response, 
and responses to spot stimuli can be obtained with an ap- 
propriate alignment of geniculate neurons converging onto 
the cortical simple cell (Hubel and Wiesel, 1962) and in the 
absence of intracortical connections. However, the average 
receptive field elongation (length to width) required to obtain 
realistic orientation tuning is 4.0, much higher than the av- 
erage observed elongation. This strongly argues for addi- 
tional intracortical mechanisms sharpening orientation se- 
lectivity. 

In the second stage, we simulated five different inhibitory 
intracortical connection patterns (random, local, sparse-lo- 
cal, circular, and cross-orientation) in order to investigate 
the connection specificity necessary to achieve orientation 
tuning. Inhibitory connection schemes were superimposed 
onto Hubel and Wiesel-type receptive fields with an elon- 
gation of 1.78. Cross-orientation inhibition gave rise to dif- 
ferent horizontal and vertical orientation tuning curves, 
something not observed experimentally. A combination of 
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two inhibitory schemes, local and circular inhibition (a weak 
form of cross-orientation inhibition), is in good agreement 
with observed receptive field properties. The specificity re- 
quired to establish these connections during development 
is low. We propose that orientation selectivity is caused by 
at least three different mechanisms (“eclectic” model): a 
weak afferent geniculate bias, broadly tuned cross-orien- 
tation inhibition, and some iso-orientation inhibition. 

The most surprising finding is that an isotropic connection 
scheme, circular inhibition, in which a cell inhibits all of its 
postsynaptic target cells at a distance of approximately 500 
pm, enhances orientation tuning and leads to a significant 
directional bias. This is caused by the embedding of cortical 
cells within a columnar structure and does not depend on 
our specific assumptions. Thus, anisotropic behavior can 
arise from isotropic long-range connections, making it likely 
that directional tuning is to some extent dependent upon the 
establishment of orientation selectivity. 

The visual system of vertebrates is one of the most elaborate 
information-processing systems known to man. Despite three 
decades of intensive research, there is still an amazingly high 
degree of disagreement on even the basic mechanisms under- 
lying visual signal processing. One of the most salient differences 
between cells in visual cortex and their afferents in the LGN is 
that the former are much more particular about what they re- 
spond to. Thus, in order to fire cells in cat visual cortex, the 
visual stimulus, most commonly bars or gratings, must have a 
certain orientation and very often move in a specific direction, 
while LGN cells are largely insensitive to variations in these 
parameters. A number of models have attempted to account for 
the origin of this behavior. The first, and most influential, model 
for orientation selectivity was proposed almost 30 years ago 
(Hubel and Wiesel, 1962; referred to here as “HW model”). It 
postulated that orientation selectivity arises from an appropriate 
alignment of synaptic input from the LGN, such that geniculate 
cells whose receptive fields fall along a row excite a cortical cell. 
Alternative models have invoked orientation-selective genicu- 
late cells (Vidyasagar, 1984, 1987; Shou and Leventhal, 1989) 
or, more commonly, the use of inhibition to shape orientation 
tuning (Benevento et al., 1972; Blakemore and Tobin, 1972; 
Bishop et al., 1973; Sillito, 1975, Braitenberg and Braitenberg, 
1979; Sillito et al., 1980; Heggelund, 1981, 1986; Morrone et 
al., 1982; Orban, 1984; for a review, see Ferster and Koch, 
1987). The majority of these models are related to so-called iso- 
and cross-orientation inhibition models. In its simplest form, 
iso-orientation inhibition requires one of two cortical cells with 
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partially overlapping receptive field and similar orientation pref- 
erence to inhibit the other cell. The inhibited cell will then fail 
to respond (or respond in a reduced manner) over that part of 
its receptive field where the overlap occurred. This reduces the 
width of its receptive field relative to the length, leading to 
enhanced orientation selectivity. In cross-orientation inhibi- 
tion, inhibition originates from a cortical cell with spatially 
overlapping receptive field but orthogonal orientation prefer- 
ence. Any stimulus exciting the inhibitory cell then results in a 
reduction of the response to the nonpreferred orientation in the 
inhibited cell, thereby sharpening its orientation tuning. 

At the current time, conflicting and contradictory electro- 
physiological as well as pharmacological evidence exists sup- 
porting one or the other class of models (for recent reviews, see 
Ferster and Koch, 1987; Martin, 1988). Some of the arguments 
favoring HW-like models are that simple cells receive powerful 
monosynaptic excitation from relay cells in the LGN (Ferster 
and Lindstrijm, 1983) that EPSPs evoked by bars of light are 
strongly tuned for orientation, and that several properties of 
visually evoked EPSPs can be well fit by simple quantitative 
models based on the HW scheme (Ferster, 1986). Furthermore, 
the absence of nonoriented inhibitory interneurons in cat area 
17 (as required by the standard iso-orientation scheme; Heg- 
gelund, 198 1) .and the absence of intracellular IPSPs during 
stimulation in the nonoptimal orientation (Ferster, 1987; Doug- 
las et al., 1988; Koch et al., 1990; but see Creutzfeldt et al., 
1974) argue against cross-orientation inhibition. 

Evidence favoring inhibitory schemes is provided by exper- 
iments in which the action of the principal cortical inhibitory 
neurotransmitter, GABA, is blocked by application of bicucul- 
line and other GABA antagonists (Sillito, 1975, 1977, 1979; 
Tsumoto et al., 1979; Sillito et al., 1980; Wolfet al., 1986). This 
leads to a reduction or to a loss of orientation and direction 
selectivity in about half of all simple cells. Elevating the activity 
of the cortical cell by using a conditioning stimulus at the op- 
timal orientation (Bishop et al., 1973; Morrone et al., 1982) or 
by excitatory amino acids (Hess and Murata, 1974; Ramoa et 
al., 1986) reveals the suppressive effects of a test stimulus at the 
nonoptimal orientation. Furthermore, inactivating small 
amounts of cortical tissue by iontophoretic application ofGABA 
at distances of OS-l.5 mm from the cortical cell under inves- 
tigation reveals loss of orientation tuning, arguing for additional 
cortical mechanisms contributing towards orientation selectiv- 
ity (F. Worgdtter and U. T. Eysel, unpublished observations). 
Cross-correlation analysis reveals inhibitory interconnections 
among cells with different but not orthogonal orientation pref- 
erences (Hata et al., 1988). Another fact in disagreement with 
a purely HW model is that the orientation tuning of simple cells 
is only weakly correlated with their width-to-length aspect ratio 
(r = 0.47; Watkins and Berkley, 1974). Finally, a purely feed- 
forward HW model will fail to demonstrate significant amounts 
of gain control in response to changing contrast, different from 
inhibitory feedback models (Wehmeier et al., 1989). All these 
and many more arguments have been used in the debate about 
the origin of orientation selectivity. One way to resolve this 
apparent dilemma is to argue for an “eclectic” model, incor- 
porating both geniculate afferents arranged in a row and cortical 
inhibition (Koch, 1987; see also Orban, 1984; Martin, 1988). 
Furthermore, all of the models discussed above neglect any 
contribution the excitatory corticocortical connections can make 
towards orientation tuning. Given the large fraction ofexcitatory 
synapses on a typical pyramidal cell originating from other cor- 

tical pyramidal cells, such a contribution could be vital to ex- 
plain the properties of receptive fields (see, e.g., Douglas et al., 
1989). 

We believe that one way to cut the Gordian knot of the origin 
of orientation selectivity is via a detailed modeling approach, 
incorporating as much anatomical and electrophysiological data 
as possible. This will enable us to investigate the different models 
and will give us a quantitative assessment of which wiring 
schemes are consistent with the evidence at hand. It has been 
our experience that detailed simulations very often also reveal 
inconsistencies in the models not apparent upon mere reflection. 

A small number of simple quantitative models have appeared 
over the years (e.g., Nielsen, 1983; Ferster, 1987; Soodak, 1987). 
The majority of these models have been restricted to single-cell 
receptive fields, and none have investigated the temporal dy- 
namics of a population of interacting cortical neurons. The ob- 
vious advantage of such models lies in their tractability and in 
the transparency of the associated parameter ranges, while their 
disadvantage is the unrealistic assumptions inherent in these 
models (e.g., stationary nonlinearities, no cortical interactions, 
absence of jitter in receptive fields, etc.). The computational 
complexity and cost associated with investigating the detailed 
dynamics of realistic cortical networks with massive interac- 
tions, such as in our study or in that of Finkel and Edelman 
(1989; see also Wilson and Bower, 1989, and Traub et al., 1989, 
for similar complex models of olfactory cortex and hippocam- 
pus, respectively), make this endeavor much more difficult. Such 
simulations may contain hundreds of parameters! It is obvious 
that, with this degree of freedom, virtually every type of be- 
havior can be generated. It thus becomes crucial for modelers 
to carefully constrain their parameters using available experi- 
mental data. If such data are missing or incomplete, as is usually 
the case, modelers should avoid the pitfall of demonstrating 
each and every known phenomenon by simply raising the level 
of complexity of the model. Instead, the burden of proof should 
be toward showing that no simpler structure can generate any 
particular behavior. This is the principal reason why large-scale 
brain models are only useful in answering well-defined questions 
if they are intended to go beyond a mere reproduction of existing 
data. 

Even at a reduced level of complexity, both large-scale brain 
models and real cortex share at least one property: their overall 
system behavior is not readily understood in terms of the prop- 
erties of individual components. Thus, because a large-scale 
search through the parameter space is prohibitively expensive, 
intelligent use must be made of a combination of analytical 
insight and numerical modeling. Another problem shared by 
modelers and experimentalists alike is how to study, analyze, 
and display the activity patterns of tens of thousands of neurons 
as they evolve over time (Wilson and Bower, 1989). We have 
resorted to using in our computer simulations exactly the same 
methods and conventions experimentalists use routinely when 
recording from animals: poststimulus time histograms (PSTHs), 
population responses, and tuning curves. 

In the present paper, we describe how we modeled about 5” 
x 5” of the primary visual pathway of an adult cat. In a first 
step, we will demonstrate that several of the most prominent 
features of simple cells (e.g., ON- and OFF-subfields, velocity 
tuning, orientation selectivity) can be generated easily with only 
a few assumptions. In a second step, the model is used to in- 
vestigate the involvement of inhibitory interactions of various 
types (e.g., random inhibition, iso-orientation inhibition, cross- 
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Figure 1. Schematic of the cortex model. A 5” x 5” patch of the retina 
is modeled at about 4.5” excentricity. Activity from this patch is passed 
through a corresponding region of the LGN into layer IV of area 17, 
where only a subset of 2.5” x 2.5” is simulated. 

orientation inhibition). Certain conceptual problems will be re- 
vealed, and we will show that any single mechanism only pro- 
duces realistic orientation selectivity within a small range of 
parameter values. The most intriguing finding demonstrates that 
a directional bias arises from isotropic cortical connections (cir- 
cular inhibition). 

Structure of the Model 
The structure of the computer model used in this study is very 
similar to that described by Wehmeier et al. (1989), and we 
refer the interested reader to this didactic article for additional 
details of our computer implementation. 

General outline 

The model simulates parts of the early visual pathway of the 
adult cat. Thus, unless otherwise mentioned, all experimental 
data will refer to the adult cat. This animal was chosen in view 
of the considerable amount of anatomical and physiological data 
available in the literature. We simulate a monocular patch of 
5” x 5” at a retinal eccentricity of 4.5”. Because the dominant 
input to area 17 in cat comprises X-geniculate cells (Sherman, 
1985), we choose to simulate only ON- and OFF-retinal gan- 
glion cells of the X-type, corresponding to the anatomical 
p-ganglion cell class (Boycott and Wbsle, 1974). The projection 
of these cells was traced to the LGN and finally to the corre- 
sponding population of neurons in layer IV of the visual cortex. 

Figure 1 summarizes the basic topographical layout of the mod- 
el. 

Single-cell model 

The simulated neurons exhibit realistic responses based on the 
determination of the changes in membrane potential computed 
from the spiking input each cell receives. Each cell is modeled 
as a single passive compartment with a capacitance, C,,,, in 
parallel with a membrane leak conductance, g,eak, and a leak 
battery, -hear. The passive time constant T = C,,,/g,eak. Every 
synapse is described by a synaptic reversal potential (E,, or Einh, 
for excitatory and inhibitory synapses, respectively) in series 
with a transient conductance increase g,Jt) and gin,,(t). The time 
course of these induced conductance changes follows an LY 
function: g(f) = const.te-“+=k, with t,,, = 1 msec, const = 
g,d +I’lpeak, and gpeak = g(tpcak). All synaptic input is added in 
parallel. The generation of action potentials is mimicked by a 
simple threshold; that is, at the time tsplke where V,,(t) first ex- 
ceeds the voltage threshold, VThres, an action potential is gen- 
erated and relayed, with an appropriate delay, to all its post- 
synaptic cells. VThres varies from cell to cell, being uniformly 
distributed between -45 and -35 mV. An absolute and relative 
refractory period is modeled by a transient potassium conduc- 
tance, gAHP(t), in series with a potassium reversal battery, E,,, 
= -90 mV. Each time an action potential is generated, g&t) 
becomes activated, leading to an afterhyperpolarization and pre- 
venting the cell from firing for a time dependent on the ampli- 
tude and time course of g,,,,. Different from the standard in- 
tegrate-and-fire model, the cell’s potential is not reset following 
the generation of an action potential, but continues to follow 
the dictates of its synaptic input and its internal current g,,,. 
The equation describing the evolution of the state of every neu- 
ron is given by 

c dv,(O k 
-= 

2 ge.(t - #V,,(t) - L) + 

dt ,=, 

g gin& - &)(I/,&) - Ed + s,eadv,n(d - Ed 

+ g,,& - ~s,dv,&) - Ed, (1) 

where C is the membrane capacitance; k and 1 are the total 
number ofexcitatory and inhibitory synapses; the t, are the times 
of arrival of the appropriate action potential to that particular 
synapse; and tspiLe is the time the cell generated an action po- 
tential. Notice that a propagation delay is incorporated into the 
times of arrival of action potentials, depending on the location 
of the pre- and the postsynaptic cell. The lower portion of Figure 
2 shows the intracellular membrane potential of two different 
cortical cells. We choose realistic values for the cellular param- 
eters (Table l), without attempting to vary these numbers in 
any systematic way. 

Retina 

The simulated retina comprises a 2-D distribution of ON- and 
OFF-center P-ganglion cells with circular receptive fields, lo- 
cated on a noisy hexagonal grid. We modeled a l-mm* patch 
of P-cells, 1 mm away from the area centralis, which includes 
2 x 1024 cells (Peichl and Whsle, 1979). In terms of visual 
field coordinates, this represents a 5” x 5” field of view at 4.5” 
eccentricity (Bishop et al., 1962). The factor of 2 results from 
implementing the ON- and OFF-subsystem. We assume that 
the density of cells is constant across this 1 -mm2 retinal patch, 
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Table 1. Parameters for geniculate and cortical cells 

Svmbol Parameter LGN Cortex 

C 
g,.a, 
E leak 

go 

EC, 

i?,“h 
E I”h 

gAHP 

Membrane capacitance 
Leakage conductance 
Leakage reversal potential 
Peak excitatory conductance (g,.a 
Excitatory synaptic reversal potential 
Peak inhibitory conductance (g,,J 
Inhibitory synaptic reversal potential 
Peak afterhyperpolarization conductance (g,,,J 

1 nF 2 nF 
0.1 ws 0.1 fis 
-71 mV -71.0 mV 
0.15 /.ls 0.011 ps 
20 mV 20.0 mV 
- 0.055 rs 
- -71.0 mV 
0.59 ps 0.59 $3 

corresponding to about 16.5’ (minutes of arc) average distance 
between the cells on a hexagonal grid. We assume that the re- 
ceptive fields of retinal ganglion cells are linear and separable 
in space and time (for a discussion, see Dawis et al., 1984). That 
is, their response to an arbitrary intensity distribution Z(x, y, t) 
can be described by 

rbGYJ~=Jy-+J-~ 

G(x’, y’)L(t’)Z(x - x’, y - y’, t - t’) dx’dy’dt: 

(2) 

where G(x, y) is the spatial receptive field, and L(t), its temporal 
impulse response function. Following Rodieck (1965) and En- 
roth-Cugell and Robson (1966), we use the difference of two 
Gaussians (DOG) to describe the spatial receptive field 

with 

G(x, Y)= L,& Y) - Gsumun& Y)> (3) 

G(x, y) = (K/2aa2)exp[-(x2 + y2)/2u2]. (4) 

We use center and surround values for K and IJ as measured by 
Linsenmeier et al. (1982): u,,,,~~ = 10.6’, usurround = 31.8’ (corre- 
sponding to a center width of 30’; Peichl and Wlssle, 1979), 
and LdKumound = 17/l 6. The numerical evaluation of the 
Gaussian kernel is terminated at 2usurround. Thus, outside of this 
range, G(x, y) = 0. The temporal response associated with each 
Gaussian is that of a first-order low-pass filter: 

L = e-“‘/7 (5) 

with T,,,~~ = 10 msec and ‘T~“~,,““,, = 20 msec (Richter and Ullman, 
1982). Subtracting these two responses results in a transient, 
band-pass-like behavior, in good agreement with the known 
temporal response of retinal X-cells. We include a delay of 6t 
= 3 msec between the center and the surround response (Enroth- 
Cugell et al., 1983). The response of an individual cell is then 
given by 

WC Y, t) = rce.dx7 14 0 - rsurround(x, y, t - W. (6) 

At every point on the hexagonal lattice, the positive part of R(x, 
y, t) is carried by an ON-center and OFF-surround cell (termed 
an ON-cell), while the negative part of R is carried by an OFF- 
center and ON-surround cell (OFF-cell). Binary action poten- 
tials are generated from this continuous response function by a 
Poisson process. The probability that the ganglion cell fires an 
action potential in the small interval between t and t + At (with 
At -K 1) is given by 

p(x, y, t) = p. . At R(x, y, t), (7) 

where p,, is an appropriate normalization constant. We simulate 
the effect of varying the visual contrast ofthe stimulus by varying 
pO. Our model retina results in realistic responses to visual stim- 
ulation (for several examples, see Wehmeier et al., 1989), en- 
tirely sufficient to investigate cortical activity patterns. 

Lateral geniculate nucleus 

The major projection from the retina leads to the lateral genic- 
ulate nucleus (LGN). With few exceptions, each geniculate cell 
seems to receive its innervation from a single or a few retinal 
ganglion cells of the same class, and the response properties of 
these geniculate neurons are essentially the same as those of 
their retinal counterparts (Hubel and Wiesel, 196 1; Singer and 
Creutzfeldt, 1970). Retinal X-ganglion cells project mainly into 
the A and Al layers of the LGN. Of the approximately 450,000 
cells in the LGN (Sanderson, 1971), two-thirds are located in 
the A and Al layers, and about two-thirds of these are of the 
X-type. Thus, on average, each retinal X ON-center ganglion 
cell from one eye innervates three to four geniculate relay cells. 
In our model, we assume that each retinal cell projects onto 
four neighboring geniculate cells. Thus, the 2048 retinal cells 
project onto 8 192 LGN cells, subdivided into ON- and OFF- 
cells, representing about 5” x 5” in the visual field. The projection 
is strictly topographic and preserves the spatial structure of the 
input image. Axonal propagation delays between retina and 
LGN were set between 3 and 4 msec. The current version of 
our model neglects the contrast sharpening that occurs in the 
LGN, due to inhibitory interactions (Hubel and Wiesel, 1961; 
Cleland et al., 1983; Shapley and Lennie, 1985; Eysel et al., 
1986, 1987). The time constant of geniculate cells is set at 10 
msec (Bloomfield et al., 1987). 

Visual cortex 
Topography and cell numbers 
Layer IV in area 17 is the primary target for projections from 
the LGN. The model assumes that the X-cell projections from 
the LGN terminate in the lower part of layer IV, where the 
average cell density is 14,000 cells/mm2 (Beaulieu and Colon- 
nier, 1983). Because in this aspect of our study we are only 
concerned with inhibitory corticocortical interactions, we only 
model inhibitory GABAergic neurons in area 17. These cells 
make up about 20-25% of all cells (Tiimbbl, 1974; Winfield et 
al., 1980; Gabott and Somogyi, 1986). We do not distinguish 
between different anatomical subtypes. At the chosen eccen- 
tricity of 4.5” from the area centralis, the cortical magnification 
factor is about 1.0 mm per degree (Tusa et al., 1978). In order 
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Figure 3. Topographical arrangement of the afferent projections from 
LGN to cortex. A cortical cell consists of one to four alternating ON- 
and OFF-subfields, each of which receives on average input from three 
columns and 23 rows of equidistantly spaced LGN cells (HW-type 
receptive field). A, Locations of the center of the HW-type receptive 
fields for one row of 64 cortical cells corresponding to 2.5”. Average 
receptive field scatter of about 200 pm can be seen. Numbers from 0 to 
63 indicate the relative position of neurons (going from left to right). 
B, Preferred orientations of the cells showing the jitter in the orientation 
columns. The ideal column structure is depicted above. C, Plotting the 
outline of the receptive field of every fourth cell. 

to avoid boundary effects, we only simulated the projection of 
the central 2.5” x 2.5” onto 2.5 x 2.5 mm of cortical tissue. 
This amounts to 17,500 cortical inhibitory neurons. To decrease 
computation time, we only simulated about one-fourth of all 
these cells, 4096 in total. 

The projection from LGN to cortex preserves the topography 
of the visual field (Bilge et al., 1967; Tusa et al., 1978) but maps 
it approximately logarithmically (Fischer, 1973; Schwartz, 1977). 
At the chosen eccentricity, and taking into account that only a 
cortical patch subserving 2.5” x 2.5” of the visual field is sim- 
ulated, we can well approximate this by a constant mapping. 
Although topography is preserved, the receptive field scatter in 
the cortex prevents accurate prediction of the actual spatial 
relationship between two receptive fields if the distance between 
the cells is less than 200 pm (Albus, 1975a,b). This is shown by 
plotting the receptive field centers of one row of 64 cortical cells 
in Figure 3A. 

The divergence from LGN to cortex was assumed to be about 

220; that is, a single LGN cell projects to about 220 cortical 
cells (Wehmeier et al., 1989). Each geniculate X-cell projects 
onto a circular patch of 0.72 mm2 of cortex (Humphrey et al., 
1985). The axonal propagation delay of the geniculate-cortex 
pathway is set to 5 msec with some random variations (Hoff- 
mann et al., 1972). Small random fluctuations of the membrane 
potential were introduced into all cortical cells, leading to spon- 
taneous background firing at frequencies between 0.05 and 2 
Hz. The time constant of all cortical cells was set to 20 msec 
(Stratford et al., 1989). 

Basic connection pattern for the generation of cortical receptive 
fields 

One of the most prominent features of cortical simple cells is 
their specificity for oriented stimuli that goes in parallel with 
the elongated shape of their receptive fields. The ratios of width 
to length of their receptive fields range from 1:5 (very elongated) 
to 1: 1 (round; Watkins and Berkley, 1974; Gilbert, 1977; Jones 
and Palmer, 1987). The basic mechanism that we implemented 
in most of our simulations relies on input from aligned receptive 
fields from the LGN (Hubel and Wiesel, 1962). This type of 
connection we will call the HW type. 

Simple-cell receptive fields consist of multiple non- or sparse- 
ly overlapping ON- and OFF-subfields. From one up to four 
subfields have been implemented in the model, the sizes of the 
subfields being constant for each cell. A Gaussian probability 
distribution determined the actual number of subfields for each 
cell such that cells with two or three subfields predominate. The 
average number of rows and columns of LGN cells that form 
a subfield is fixed (see below); the actual numbers for individual 
cells varied with a Gaussian probability distribution allowing 
for deviations from the average of about ?4 for the subfield 
length and +2 for its width. 

In the following, we proceed in two stages. We first try to 
mimic as much of the cortical behavior as possible without 
intracortical inhibition, while we assess the contribution of in- 
tracortical inhibition toward orientation selectivity in the sec- 
ond stage. 

Orientation tuning in the absence of intracortical inhibition 
can only be achieved with a rather large ratio of length to width 
(called aspect ratio) of the HW-type receptive field. Thus, for 
the first stage, an average aspect ratio of 23 x 3 LGN cells was 
assumed for each cortical subfield, and the examples shown in 
the following refer to these values. Figure 4 illustrates how the 
LGN input for a typical cell in the cortex is arranged to produce 
an ON-OFF- and an OFF-ON-OFF-type receptive field. Each 
small rectangle in the diagram represents the center of an in- 
dividual LGN cell. ON (or OFF, respectively) subfields receive 
only input from ON-center (or OFF-center, respectively) LGN 
cells (Tanaka, 1983). The actual structure of the receptive field 
is illustrated on the right side of the panels, generated by su- 
perimposing DOGS according to the spatial arrangement shown 
to the left. For graphical reasons, OFF-responses are plotted as 
negative values. They are not to be confused with inhibition. 
The average topological distance between two adjacent LGN 
cells is about 0.08”. Because the receptive field size of the center 
of a retinal or LGN cell is 0.5”, the aspect ratio of a 23 x 3 cell 
arrangement (Fig. 4B) corresponds to a subfield elongation of 
3.2. Incorporating intracortical inhibition allows us to reduce 
the average aspect ratio to 13 x 5 LGN cells, corresponding to 
an elongation of about 1.8. Note that orientation tuning is di- 
rectly influenced by the aspect ratio of cortical subfields. For 
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instance, two receptive fields with the same total aspect ratio 
will have different orientation tuning if one has two, and the 
other, three subfields. Therefore, all aspect ratios given in this 
study refer to subfields (Daugman, 1980, 1984). 

Orientation-selective cells in the visual cortex are arranged 
in orientation columns (Hubel and Wiesel, 1963). A set of col- 
umns containing all orientation preferences, a hypercolumn, has 
a width of0.7-1.2 mm (Albus, 1975b). In our model, orientation 
columns were implemented using an HW type of connection 
pattern for the basic determination of orientation preference. 
The orientation in the columns varies continuously, with a spa- 
tial periodicity of 1 .O mm. We therefore implemented about 2.5 
hypercolumns (starting with orientation preference for vertical 
stimuli). The columns are vertically arranged; that is, they are 
running straight from top to bottom in the cortical patch. This 
approximation of a more realistic bent cortical column structure 
is valid over distances of about 1.5 mm (Albus, 1975b), more 
than half of our simulated patch. Within one of our columns, 
orientation preference is constant with a Gaussian distribution 
of jitter averaging 10” (Albus, 1975b). Figure 3B shows the 
orientation preferences for the same row of cortical cells as in 
Figure 3A; the idealized column structure is depicted above. 
The actual outline of the receptive fields is shown for a quarter 
of the cells (16) in Figure 3C. 

The propagation of action potentials among cortical cells in- 
cludes a delay. The value of this delay was drawn from a Gauss- 
ian distribution around a mean value determined by the axonal 
propagation velocity (which varied between 0.5 and 2 m/set) 
and the geometrical distance between the pre- and the postsyn- 
aptic cell. 

Computer implementation 

The simulations were carried out on SUN-4 UNIX-based work- 
stations. The program, written in C, was developed by U. Weh- 
meier (see Wehmeier et al., 1989) and derived initially from 
GENESIS, the Caltech-based neural network simulator (Wilson 
and Bower, 1989). The cellular potential was updated using a 
first-order backward Euler numerical procedure. Computational 
efficiency was a major issue. In some of the cases incorporating 
massive inhibitory feedback, up to 3.5 million synapses were 
being simulated. In such a case, our SUN workstation simulated 
1000 msec of real time in about 5 hr computer time (a slowing 
down of 18,000). This obviously places serious limits on our 
ability to explore large parameter variations. We are now porting 
our code onto the massively parallel Connection Machine CM-2 
and have achieved speedups of about 100 in our initial trials. 

Visual stimuli 
The intensity function Z(x, y, t) usually corresponds to that of 
an elongated and moving bar with a width of 0.5” and a length 
of more than 4.0” (e.g., Fig. 2). We also used moving spots (0.2” 
x 0.2O) or counterphasing sine-wave gratings. The contrast of 
all stimuli was usually held fixed at an arbitrary level. The actual 
contrast level is irrelevant because the level of neuronal activity 
reached at a given contrast level can be adjusted by varying the 
cellular parameters. For dark-bar stimuli, the same contrast 
level was used, but with an inverted sign. 

Data analysis 
In order to facilitate the direct comparison of our model with 
experimental data, we performed most of our data analysis in 
the same manner as our experimental colleagues. We generated 

A 

OFF-ON-OFF 

Figure 4. Typical receptive fields of cortical cells determined only by 
HW-type connections. Left. Schematic plot of the receptive field. Each 
small rectangle represents the center of an LGN cell. Different sizes 
encode the different axonal delays. Middle and right, Three-dimensional 
receptive field plots obtained by superimposing DOGS centered on the 
location of the LGN cells with positive (ON) and negative (OFF) sign 
and appropriate weights. A, Antisymmetic receptive field with ON- 
OFF-substructure. B, Symmetric receptive field with OFF-ON-OFF- 
substructure. 

stimulus-locked poststimulus time histograms (PSTHs) and dis- 
played orientation tuning curves in polar coordinates, plotting 
the peak response of each PSTH against the direction of stimulus 
motion. We also show in most cases average polar plots, ob- 
tained from 55 cells randomly selected from the central part of 
the simulated cortical patch in order to avoid boundary effects. 
All individual tuning curves were rotated prior to averaging so 
that the strongest response fell onto the 0” vector of the polar 
plot. 

Directional and orientation tuning of a response was extracted 
from the polar plots by SD0 analysis (Worgotter and Eysel, 
1987; Worgotter et al., 1990). This method amounts to a discrete 
Fourier analysis of the maximum firing rate f(a) obtained by 
moving an elongated bar with orientation (Y across the receptive 
field. The angle (Y is then systematically varied from 0” to 360”. 
f(a) can then be represented as 

l-64 = A, + f$ [A. cos(na) + B, sin(ncu)]. 

We can write down the following expressions for the amplitude 
and the phase of the nth component: 

G,=m, (9) 

4, = arctan(B,/A,). (10) 

The zeroth-order component, A,,, describes the mean peak re- 
sponse rate for all directions of movement; thus, it reflects the 
average sensitivity of the cell to unspecific stimulation and can 
be used as a measure of the general excitability of a cell on which 
all specific directional and orientational modulations are su- 
perimposed. The first harmonic (A, and B,) is regarded as the 
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directional (D) component, and the second harmonic (A, and 
B,) as the orientational (0) component of the response f(a). 
These components directly reflect the periodicity of direction 
(3600) and orientation (1800) in the visual field. The associated 
amplitude values, G, as defined in Equation (9), define the tuning 
strength of the directional and orientational components, where- 
as the phases 4, represent the preferred direction (PD) and pre- 
ferred orientation (PO). We use normalized values of the am- 
plitude to compensate for a mere shrinkage or expansion of the 
polar plot. Thus, we define D = G,/G, = (A: + Bf)“/A,, and 0 
= G/G, = (A: + B<)“2/A,. A, is usually given in impulses per 
second (Zlsec), and PD and PO in degrees (O” 5 PD < 360”, 0 
I PO < 180”). 

More commonly, the direction index (DI; the ratio of the 
response in the preferred direction minus the response in the 
null direction to the response in the preferred direction) and the 
width of the orientation tuning at half of the maximum value 
[half-width at half-height (&,J] have been used to characterize 
cortical cells (Orban, 1984). Thus, for DI = 0, the cell is not 
direction selective, while DI = 1 implies strong direction se- 
lectivity. These parameters can be related to those obtained from 
the SD0 analysis using the following empirical relationships: 

DI = 60.9 log,,(D) - 38.7, (11) 
O,,> = -63.1 log,,(O) + 137.9. (l-2) 

The correlation r between these two sets of variables was found 
to be better than 0.85 in both cases. The rationale for these 
equations and a detailed comparison of the SD0 analysis with 
the commonly used method are given elsewhere (WGrgStter et 
al., 1990). We believe that SD0 analysis gives more reliable 
estimates of the direction and orientation tuning (WGrgGtter et 
al., 1990). However, because this method is not widely used at 
the moment, we will supply DI (in %) and Ba (in degrees) values 
in parentheses. Finally, most of our analysis is carried out on 
populations of cells, reflecting average cell properties. 

Results 
General features 
The color plate (Fig. 2) illustrates a typical example of the per- 
formance of our model. In this simulation, only HW-type genic- 
ulocortical connections from a 23 x 3 array of geniculate cells 
have been included; no intracortical wiring has been incorpo- 
rated. A vertical bright bar was swept at a speed of S”/sec from 
left to right across the retina; each vertical slab in the figure 
corresponds to a snapshot at the time indicated. The state of 
the P-type retinal ganglion cells, as well as their geniculate and 
cortical counterparts, can be monitored throughout the simu- 
lation, each little square representing a single cell, and its color 
the cell’s intracellular potential (for more details, see Fig. 2 
caption). The stimulus enters the retinal patch in the leftmost 
time slice. Excitation in the retinal and geniculate OFF-popu- 
lations travels ahead (as well as behind) of the ON-excitation, 
because OFF-center cells are ON-excited in their surround. The 
response of cortex to a vertical bar is not very specific, due to 
the lack of inhibitory interactions sharpening the orientation 
tuning. This can be seen best from the accumulated spike ac- 
tivity (top portion of Fig. 2). The size of the black squares scales 
with the number of spikes; by the end of the stimulation (right- 
most panel), three darker and three lighter regions can be dis- 
tinguished, representing columns with vertical or horizontal ori- 
entation preference (notice the smooth transition between 

columns). The intracellular recordings of two exemplar cells 
with horizontal and vertical preferred orientations are also il- 
lustrated. We refer the reader to Wehmeier et al. (1989) for more 
details concerning the response of retinal and geniculate cells to 
other stimuli. 

ON-OFF-property and velocity tuning of cortical cells 

Figure 5A shows the response of a cortical OFF-ON-OFF-cell 
to light- and dark-bar stimuli moving at S’/sec. The same sim- 
ulation parameters and only HW-type connections have been 
used as before. During stimulation with a dark bar, two sepa- 
rated peaks can be seen in the PSTH (lower panel in Fig. 5A). 
The light-bar stimulus reveals a single peak centered in the 
middle (upper panel in Fig. 5A). 

The influence of stimulus velocity and of the degree of overlap 
between the ON- and OFF-subfields is further illustrated in 
Figure 5B-G. The upper row (Fig. 5B, C’) shows that the apparent 
receptive field overlap is not influenced by the stimulus speed. 
The large degree of overlap between the ON- and OFF-response 
regions, as can be observed in the histogram, remains the same 
between l“/sec and S”/sec. We plotted the response of this cell 
as a function of the velocity of the bar in Figure 5D. It remains 
more or less flat for velocities up to 5-lO”/sec and then drops 
off toward 0. The cell ceases to respond to a bar moving at loo”/ 
sec. Without intracortical inhibition, such velocity “low-pass” 
behavior (Orban et al., 198 1) is seen in all cells. 

Figure 5G illustrates a band-pass-like velocity tuning curve 
with an optimum at a given velocity. This behavior was gen- 
erated after including intracortical inhibition (local and circular; 
see below). Although the effects of intracortical inhibition will 
not be discussed until later, this result is shown here for reasons 
of comparison. According to the terminology of Orban et al. 
(198 l), such a behavior is called “velocity tuned.” It was found 
in about 12% of the cells. 

The mean topographical distance between two adjacent LGN 
cells is about 0.08” in our simulation. Constructing a receptive 
field with the ON-subfield directly adjacent to the OFF-subfield 
leads to a rather large overlap between the ON- and the OFF- 
responses in the histograms (Fig. 5A). In real simple cells, sub- 
fields overlap to a much lesser extent. This could either be 
achieved by intracortical sideband inhibition or by a substantial 
degree of separation between the corresponding projections from 
the LGN. Figure 5, E and F, shows the overlap that arises from 
a separation of ON- and OFF-subfields by 0.16” (Fig. 5E) or by 
0.24” (Fig. 5F), respectively. The overlap in the PSTH is de- 
creased accordingly. However, even for the largest separation 
(Fig. 50, an overlap of about 35% is still seen, due to the size 
of the LGN receptive fields. 

X-cells in retina and LGN, and to a large extent, also simple 
cells in the visual cortex, display linear spatial summation. When 
stimulated with a counterphasing grating at a given spatial fre- 
quency, these cells will respond with an amplitude depending 
on the phase of the grating (i.e., its position on the receptive 
field). For these cells, there always exists at least one particular 
phase such that the influence arising from ON- and OFF-sub- 
fields will cancel out and the cell will cease to respond. This 
phenomenon has been called the null response and was observed 
in retinal X-cells (Hochstein and Shapley, 1976) and less pro- 
nounced in cortical simple cells (Movshon et al., 1978). Our 
model is able to reproduce this behavior. Figure 6 shows an 
example of an ON-OFF-cortical cell that was stimulated with 
a counterphased sine-wave grating of 1.5 cycles per degree. The 



temporal period was 600 msec, and the grating was switched 
on at t = 30 msec. Eight histograms are shown, each representing 
a phase shift of 22.5” of the grating. At a relative phase shift of 
O”, the cell stopped responding (null response). At phase shifts 
of -t90”, the responses are strongest. The phase shift between 
the -90” and the +90” histograms equals one-half of a spatial 
period; therefore, the onset of the response changes by half a 
period from the beginning to the middle of the histogram. Be- 
cause at this stage of our model no intracortical inhibition is 
implemented and the output of all retinal and geniculate cells 
is half-wave rectified, the null response of our cortical cell is 
caused by all of the individual retinal cells having a null response 
to this particular stimulus. Thus, it ultimately arises from the 
linear ON- and OFF-responses that interact linearly within sin- 
gle retinal ganglion cells. 

Responses to moving spots 
Recently, Worgotter and Eysel(1989) reported that the strongest 
response of cells in area 17 to a moving spot occurs if the spot 
travels along the long axis of the receptive field. This axis is 
orthogonal to the axis of preferred motion of a long bar. This 
response type was strongest in simple cells and is thought to be 
caused by temporal facilitation (Wiirgiitter and Holt, 1991). 
Thus, activity in one geniculate cell will excite its corresponding 
cortical target cell; the trace of this activity will persist for some 
time, dictated by the membrane time constants of all cells in- 
volved, and will facilitate the response of the cortical cell when 
the neighboring geniculate cell is activated. According to this 
analysis, HW-type connections should be sufficient to elicit this 
effect. Figure 7 shows the orientation tuning curves from three 
real and three simulated cells stimulated with a long bar (10”; 
Fig. 7A,C) and a small spot (0.2”; Fig. 7B,D-F. The cells in the 
upper part of the figure show pronounced responses to moving 
bars, with a vertical axis of preferred motion. The real simple 
cell shows strong directional tuning that is not seen in the sim- 
ulation. The axis of preferred motion observed during spot stim- 
ulation is orthogonal to that for a bar, both for real and for 
simulated cells. The polar plots are normalized, but the response 
strength is significantly reduced for a moving spot and reaches 
only 30% of the value obtained with a moving bar of half the 
contrast. In several real cells, in particular in deep layers (WBr- 
gijtter and Eysel, 1989), unusual four-lobed polar plots have 
been observed during stimulation with a moving spot (e.g., Fig. 
7E). This behavior is reproduced by the model, and cells with 
such a strange behavior are much more commonly observed in 
the simulation than in reality. This is probably due to missing 
intracortical inhibition at this stage of our simulation. 

Varying inhibitory intracortical connections 
The following section deals with the limitations in specificity 
that underlie different inhibitory corticocortical connection 
schemes. All simulations were performed with bright-bar stim- 
uli. Because the cortical OFF-system is essentially silent (num- 
ber of spikes in LGN-OFF/LGN-ON = l/ 10) during these stim- 
uli, we limited these simulations to only the ON-subsystem in 
retina, LGN, and cortex. Notice that no explicit attempt was 
made to incorporate direction-selective inhibitory wiring 
schemes. 

Hubel and Wiesel wiring scheme 
We have shown in the previous section that many cortical re- 
sponse types can be obtained when the model only includes 
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Figure 5. ON-OFF-characteristic, influence of stimulus speed, and 
subfield separation on the response of an even symmetric (OFF-ON- 
OFF) cell. The receptive field structure is shown above the panels. The 
top of each divided panel shows the response to a vertical light bar; the 
bottom, a dark bar. Stimulus speed: A, Wsec; B, 2Vsec; C, l”/sec. A-C, 
Subfields remain not separated. Stimulus speed has no influence on the 
overlap of the histograms. D, Velocity response curve. A velocity low- 
pass behavior is observed. E, Stimulus speed Y/set subfield arrange- 
ment separated by 0.16”. F, Stimulus speed S”/sec subfield arrangement 
separated by 0.24”. Even for the largest separation, about 35% overlap 
of the histograms is observed. G, Velocity response curve for another 
cortical cell after including intracortical inhibition. A velocity-tuned 
behavior is observed. 

HW-type connections. However, the average ratio of receptive 
field length versus width needed to obtain realistic orientation 
tuning was 23 x 3 and therefore quite high. Figure 8 shows a 
comparison of the results obtained with different aspect ratios 
ranging from 9 x 7 to 3 1 x 3. Taking the size of LGN fields 
into account, these ratios correspond to cortical length : width 
ratios between 1.16 and 4.40. The top part of Figure 8 illustrates 
the cumulative population response of one hypercolumn to 
stimulation with a moving vertical bar. A clear distinction be- 
tween the columns occurs only for the largest aspect ratio (31 
x 3); smaller aspect ratios lead to substantially reduced ori- 
entation tuning. Little selectivity remains for a 9 x 7 receptive 
field. This effect can also be seen from the orientation tuning of 
an example cell (Fig. 8, middle row) and in the averaged polar 
plots shown below. The average 0 component equals only 9.5% 
(& = 76.2“) for the 9 x 7 aspect ratio and 18.6% (57.8’) for 13 
x 5. The average 0 component in experimentally recorded 
simple cells is 75.0%, corresponding to a en of 19.5” (Orban, 
1984, his Table 7/l). 

These values are being approached in the case of the 3 1 x 3 
type of receptive fields, corresponding to an 0 value of 72.3% 
(& = 20.6”). As expected, the cells did not show any directional 
tuning, and the D components remained below 8.0%, corre- 
sponding to a DI of 16.3%. 
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Figure 7. Responses to moving bars (A. B) and spots or dots (C-F). 
The left side shows the response of real cortical cells (modified from 
Worgotter and Eysel, 1989, unpublished observations), and the right 
side, simulation results. A-D, The preferred axis of motion for a spot 
is orthogonal to that for a bar. E and F, Some cells show a superposition 
of the two orthogonal response components during stimulation with a 
spot. The simulation parameters are the same as in previous figures, 
except that twice the contrast value has been used for the spot. 
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Figure 6. Cortical null response. A cortical cell with ON-OFF recep- 
tive field (RF) is stimulated with a counterphasing grating (1.5 cycles 
per degree) with a variable relative phase shift as indicated. The cell 
stops responding at 0” relative phase shift. 

Inhibitory wiring schemes 

We assume that inhibitory intracortical wiring is superimposed 
onto an HW-like afferent orientation bias arising from an array 
of (on the average) 13 x 5 neighboring geniculate cells con- 
verging onto every cortical cell. As mentioned above, this cor- 
responds to a receptive field width : length ratio of 1.78 and 
leads to a I$,> value of 57.8”. 

We implemented two different types of connection schemes: 
long-range and short-range inhibition. The different topological 
relations that arise from long- and short-range inhibition, their 
relationship to the columnar organization, and the value of the 
associated axonal delays are all shown in Figure 9. All intra- 
cortical connection schemes are generated with the help of two 
different probability distributions. (1) The a priori probability 
determines whether or not the “topological requirements” be- 
tween source and target cell are satisfied. The two most impor- 

tant such requirements are that no connections are made be- 
tween two cells when their intracortical distance is either too 
large or too small (depending on the type of inhibition) or that 
no connections are established if the source cell appears under 
a certain angle with respect to the horizontal meridian. If the a 
priori probability is high enough, the two cells are potential 
candidates for a connection. Thus, this probability function en- 
codes the specific type of inhibition used. (2) The a posteriori 
probability, a uniform distributed random number, will then 
decide if a potential connection (according to the a priori prob- 
ability) is actually established. 

The least specific long-range inhibitory connections are de- 
fined by random wiring (Fig. 94. Here the probability of making 
a connection with the cell in the center is constant for all cells 
within the distance of half a hypercolumn, resulting in a disk-like 
structure of connected cells. 

Circular inhibition (Fig. 9B) is more specific. Only cells at an 
approximate distance of half a hypercolumn are connected with 
high probability to the center cell. The resulting structure re- 
sembles an annulus. The a priori probability distribution has 
been chosen such that the annulus is about 200 pm wide. About 
100 cells connect onto each target cell. Partial circular inhibition 
is closely related to cross-orientation inhibition (Morrone et al., 
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1982). This connection scheme assumes that only cells with an 
orientation that is approximately orthogonal to the center cell 
contribute to inhibition. Because our simulation models the 
cortical columns as vertical stripes, these cells are found at the 
distance of half a hypercolumn to the left and to the right of the 
cell in the center (Fig. 9D). Partial circular inhibition (Fig. 9C) 
uses the same annulus of cells as candidates for connections, 
but the a priori probability drops to 0 as soon as the angle as 
shown in Figure 9 is larger than 45”. Consequently, only about 
50 cells connect to each target cell. 

In local inhibition, neighboring cells with similar orientation 
tuning but laterally displaced receptive fields project onto the 
center cell (Heggelund, 1981; Koch, 1987). Thus, in the rela- 
tively unspecific “local” scheme (Fig. 9D), the a priori proba- 
bility of a connection is high between 100 and 300 pm away 
from the central cell, being very small for smaller and larger 
distances. In addition, the a priori probability is lowered along 
the long axis of the receptive field of the target cell, to provide 
the necessary asymmetry in the inhibition. About 30 cells con- 
verge onto each central cell in this connection procedure. In the 
local scheme (Fig. 9D), an overlap between inhibitory receptive 
fields similar to that shown in the right part of Figure 9E occurs, 
but arising from many more cells and also much more unspecific 
than for the sparse local inhibition wiring. Sparse local connec- 
tions (Fig. 9E) are defined by only two cells that inhibit the 
center cell. The two cells were selected in a highly specific man- 
ner as those cells whose receptive fields maximally overlap the 
field of the center cell. We explored the functional consequences 
of this wiring scheme in order to understand the limiting case 
of a very specific inhibitory wiring. 

Figure 10 shows simulated activity functions for one cell dem- 
onstrating how the different inhibitory connection schemes in- 
fluence the shape of the receptive field. Connections to the cell 
were determined by the simulator; gain values for the connec- 

Figure 8. Orientation selectivity as a 
function of the aspect ratio in the ab- 
sence of any corticocortical inhibitory 
connections. Different arrangements 
according to the HW model are char- 
acterized by the number of geniculate 
cells converging onto each cortical cell 
(e.g., nine rows by seven columns of 
geniculate cells). This amounts to re- 
ceptive field width:lenath ratios of 1.16. 
l.?S, 3.18, and 4.40 t%r the 9 x 7, lj 
x 5, 2 1 x 3, and 3 1 x 3 receptive field 
arrangements, respectively, and leads 
to the average orientation tuning indi- 
cated in the bottom row. The average 
tuning of inhibition was obtained from 
55 cells randomly selected and rotated 
to a common preferred direction prior 
to averaging. The middle row illustrates 
the response of one “typical” cell. The 
same cell will also be shown in the mid- 
dle row of the following figures. The top 
row shows the cumulative spike count 
across one orientation column, accu- 
mulated during a 1 OOO-msec-long stim- 
ulation with a moving vertical bar. Cells 
with an approximately horizontal pre- 
ferred orientation are represented on the 
left side of each panel, whereas cells with 
vertical preferred orientation are clus- 
tered on the right side. 

tions were set to the average gain for each connection scheme 
multiplied by a normalization factor to achieve similar peak 
heights. Figure 10, A and B, represents a cortical receptive field 
generated by a convergence of 5 x 13 LGN receptive fields 
viewed edge-on from two different angles. As expected, the 
receptive field elongation is about 1.7. Inhibitory cells contribute 
to the receptive field shape of the target cell in all other panels. 
The remaining panels illustrate the effect of superimposing the 
various inhibitory schemes onto the basic HW connectivity 
(negative regions denote inhibition). Random inhibition (Fig. 
1 OC, D) influences the receptive field elongation least of all and 
leads to a more or less isotropic “bowl” of inhibition around 
the center peak. Circular inhibition (Fig. lOE,o and partial 
circular inhibition (Fig. lOG,H) act very similarly on this par- 
ticular cell, increasing the elongation of the receptive field sig- 
nificantly. The “bowl” of inhibition disappears, and more re- 
alistic side bands can be observed. Local inhibition (Fig. lOZ,J) 
has the strongest effect on the receptive field elongation because 
the inhibitory cells are located close to the target cell. This, 
however, also reduces the length (Fig. 104 of the receptive field 
substantially. The side bands are pronounced, but there is also 
some inhibition along the long axis of the receptive field (Fig. 
1OZ). This effect arises due to the low specificity of the local 
connection scheme and disappears for sparse local inhibition 
(Fig. 1 O&5). The influence of the two inhibitory cells is clearly 
discernable, and true sideband inhibition can be observed. Ap- 
parently the “right” inhibitory receptive field (Fig. 1 OK) is closer 
to the center of the peak than the “left” field. 

Unless otherwise mentioned, the gain values for the LGN- 
to-cortex connections were held at the same level during the 
simulations shown in the remaining figures. The gains of the 
inhibitory connections were adjusted to obtain similar overall 
activity levels. The same “example” cell as in Figure 8 is shown 
in Figures 1 l-l 5. 
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Figure 9. Different intracortical in- 
hibitory connection schemes. The cen- 
tral cell (large spot) receives inhibitory 
input from cells indicated by the small 
squares. The size of these squares en- 
codes the axonal delay. Because the de- 
lays for local connections are much 
smaller than those for long-distance 
connections, their size has been exag- 
gerated graphically. A sketch of the 
column structure as determined by the 
afferent LGN connections is superim- 
posed in A and D (solid bars). 

C 
Partial circular 

(Crossorientation Inhibition) 

The central topic of this study is to compare the specificity for random inhibition, whereas circular inhibition requires al- 
of various intracortical connection schemes. Let us therefore ready two parameters (the outer and the inner radius of the 
define what we mean by “specificity.” The specificity of a con- annulus), and partial circular inhibition, yet another parameter: 
nection scheme is related to the number of parameters that the angle within which connections are made. Thus, the level 
specify whether a connection between two given cells is estab- of “specificity” in these connection schemes increases from ran- 
lished. For instance, only the radius of the disk has to be specified dom to partial circular inhibition (and similarly from local to 

one example cell. Diagrams show re- 
ceptive field activity functions com- 
puted from a superposition of basic re- 
ceptive field types viewed edge on. A 
and B, A superposition of DOGS (see 
Eq. 6) determines the HW-type recep- 
tive field of the target cell. C-K, The 
HW fields of the inhibitory cells are de- 
termined in a similar manner and are 
then subtracted from the excitatory re- 
ceptive fields for the different inhibitory 
connection schemes. 
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Figure 10. Effects of the different in- 
hibitory connection schemes on the 
spatial shape of the receptive field of - 
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Figure I I. Orientation selectivity achieved with HW-type connections 
(aspect ratio, 13 x 5) and additional random inhibition (see Fig. 9.4). 
A, Cumulative spike count across one orientation column (lOOO-msec 
sweep, vertical-bar stimulus). B. Example cell. C, Average orientation 
tuning. 

sparse local). In the following, we will always use “specificity” 
in this sense of minimal description length. 

Unspec$c random inhibition 
In comparing the specificity of the different schemes, random 
inhibition serves as a control to illustrate the sharpening of 
orientation tuning that can be achieved without very specific 
inhibitory connections (Bonds, 1989). This can be seen most 
easily when one considers the value of the O,,, parameter of the 
orientation tuning curve. The more activity is subtracted from 
this curve, the more the tuning curve will be clipped (an effect 
called “iceberging”) and O,,* will change. Thus, the effect of un- 
specific inhibition onto the orientation tuning depends in a non- 

Inhibition D 

Figure 12. Orientation selectivity achieved with HW-type connections 
(aspect ratio, 13 x 5) and additional circular (A-C) or partial circular 
(D-F) inhibition (see Fig. 9&C’). A and D, Cumulative spike count across 
one orientation column (lOOO-msec sweep, vertical-bar stimulus). B 
and E, Example cell. C and F, Average orientation tuning. Note the 
significant average directional bias generated with circular inhibition 
(0 

linear way on the basic activity level that the cells show without 
inhibition. Random inhibition sharpens the orientation tuning 
more efficiently at lower basic activity levels. However, because 
we are primarily interested in the differences of specificity that 
can be achieved by different connection schemes, we operate 
our simulation in the linear range. Thus, we use reasonably large 
values of activity arising from the HW-type connections. There- 
fore, on average, only a weak effect of sharpening the orientation 
tuning with random inhibition is seen in Figure 11 C [0 = 20.7% 
(54.9”) as compared to 18.6% (57.8”) in Fig. 8B]. The orientation 
columns (Fig. 11A) remain about as fuzzy as for the mere HW- 
type connections, and the example cell even shows a loss of 
orientation tuning [0 = 26.6% (48.0”)] as compared to Figure 
8B [0 = 37.3% (38.7”)]. However, with random inhibition, a 
slight directional bias arises [Fig. 11 C, D = 12.6% (28.3%)]. This 
effect was relatively robust against variations of gain parameters 
and also occurred with other inhibitory connection schemes (see 
Figs. 12-l 5). 

Circular and partial circular inhibition 
Circular inhibition increases the orientation tuning more than 
does random inhibition; however, the resulting average tuning 
strength [Fig. 12C, 0 = 32.2% (42.7”)] is still much weaker than 
the one found in real simple cells. Circular inhibition results in 
a rather strong directional bias with an average D component 
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Figure 13. Differences in the average orientation tuning for cells with 
vertical (A, C) and horizontal (B, D) preferred orientations obtained by 
circular and partial circular inhibition added onto HW-type receptive 
fields (aspect ratio, 13 x 5). The average orientation tuning is similar 
for both populations implementing circular inhibition (A, B) and sig- 
nificantly different using partial circular inhibition (C, 0). 

of23.0% (44.2%), twice as much as for random inhibition. This 
result is intriguing, because circular inhibition seems to be en- 
tirely isotropic. Any inhibitory influence that arises along a par- 
ticular direction of stimulus motion should be, on average, iden- 
tical to that from the opposite direction. Although the cells for 
averaging have been selected from the central part of the sim- 
ulated patch, a possible asymmetry between the responses in two 
opposite directions could arise from border effects in the sim- 
ulation. To rule out this artifact, we separated the 55 cells ac- 
cording to their location and relative to their preferred direction 
of motion. The actual preferred direction was then compared 
with the preferred direction that would be predicted by the 
border-effect artifact. Thus, border effects do not contribute 
significantly to the directional bias. The actual reason for the 
generation of a directional bias is a hidden anisotropy (see In- 
tracortical inhibitory mechanisms, in Discussion). 

Partial circular inhibition (Figs. 8B, 12~fl has a more pow- 
erful effect on orientation tuning. This connection scheme is 
more specific than circular inhibition, because it assumes that 
only cells on the annulus within a given angle (45”) will be 
connected to the center cell. Because those cells have a preferred 
orientation approximately orthogonal to that of the center cell, 
partial circular inhibition is closely related to cross-orientation 
inhibition.The column structure is significantly sharpened (Fig. 
120). The average tuning is about as strong [Fig. 126 0 = 
73.7% (20. lo)] as those found in real cells, and the directional 
bias is reduced [D = 10.2% (22.7%)]. 

Another intriguing finding resulting from long-range inhibi- 
tion is shown in Figure 13. Cells with a vertical and a horizontal 
preferred orientation exhibit different average tuning strengths 
when using partial circular (i.e., cross-orientation) inhibition 
[Fig. 13C,D; 0 = 96.0% (12.8”) vs. 0 = 55.2% (28.0”)]. This 
difference disappears for circular inhibition [Fig. 13A,B; 0 = 
33.9% (4 1.3”) vs. 0 = 29.6% (45.0”)]. The difference between 

Sparse Local 
Inhibition 

Figure 14. Orientation selectivity achieved with HW-type connections 
(aspect ratio, 13 x 5) and additional local (A-C) or sparse local (DLF) 
inhibition (see Fig. 9D,E). A and D, Cumulative spike count across one 
orientation column ( 1 OOO-msec sweep, vertical-bar stimulus). Note that 
local inhibition destroys the columnar structure. Band E, Example cell. 
C and F, Average orientation tuning. 

partial and circular inhibition can be explained by an anisotropy 
that involves the arrangement of inhibitory cells and their target 
cell relative to the stimulus orientation. When using a flashing 
elongated bar stimulus, a cell with vertical preferred orientation 
receives its cross-orientation inhibition from cells with hori- 
zontal preferred orientations half a hypercolumn away. A hor- 
izontally oriented bar stimulus will cover the receptive fields of 
these cells optimally and thus induce strong inhibition. In turn, 
horizontal-oriented cells receive cross-orientation inhibition from 
their orthogonal counterparts at the same distance. In our ar- 
tificial vertical-stripe column system, a vertical-bar stimulus, 
however, will basically stimulate only cells within the same 
column. Thus, in this case no cross-orientation inhibition is 
induced, and consequently, orientation tuning is not sharpened. 
This simplified argument excludes the existing receptive field 
overlap and does not elaborate on possible effects caused by the 
artificial (stripelike) column structure. These questions are ad- 
dressed elsewhere (Worgiitter et al., 199 1 b). Suffice it to say that 
this study provides evidence that the unwanted inherent aniso- 
tropic behavior of cross-orientation inhibition can also persist 
in a real cortex. We feel that this makes it unlikely that this 
particular cross-orientation inhibition scheme exists in real cor- 
tex. This is the principal reason for us to consider a modified 
cross-orientation scheme, circular inhibition. 
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Figure 15. Orientation selectivity achieved with HW-type connections 
(aspect ratio, 13 x 5) and additional local as well as circular inhibition. 
A, Cumulative spike count across one orientation column (1 OOO-msec 
sweep, vertical-bar stimulus). B, Example cell. C, Average orientation 
tuning. 

Local inhibition 
Local inhibition can be implemented in less specific (“local,” 
Fig. 9D) or in a more specific manner (“sparse local,” Fig. 9E). 
Both mechanisms strengthen the orientation tuning substan- 
tially (Fig. 14B,C,E,F), and average values of 0 = 48.7% (3 1.4“) 
are reached with local and 0 = 39.7% (37.0”) with sparse local 
inhibition. With sparse local inhibition, the column structure is 
enhanced (Fig. 14D), whereas the unspecific local inhibition 
destroys the columnar structure (Fig. 14A), even though ori- 
entation tuning is stronger (Fig. 14B, C). The loss of orientation 
columns is due to the fact that many cells that originally be- 
longed to a horizontal column change their behavior and now 
respond best to vertical stimuli (Fig. 14B). The effect of strength- 
ening the orientation tuning with the unspecific local connection 

Real 
Cells 

Simulated 
Data 

Figure 16. Comparison of the average orientation tuning of real cor- 
tical simple cells with that obtained from the model. A, Average ori- 
entation tuning of observed cortical simple cells. B, Average orientation 
tuning of cortical simple cells after removal of intracortical inhibition 
during microiontophoretical application of GABA lateral to the re- 
corded cell (Worgiitter and Eysel, unpublished observations). C, Average 
orientation tuning of simulated cells achieved with HW-type connec- 
tions (aspect ratio, 13 x 5) and additional local as well as circular 
inhibition. (Gain parameters were chosen differently from those used 
in Fig. 15.) D, Average orientation tuning of simulated cells after re- 
ducing the gain of intracortical inhibition to 10% of their original value. 
Note the similarity of the orientation tuning between A and C and 
between Band D. The average directional tuning of real cells, however, 
is larger than that of the simulated cells. 

scheme is very robust against variations in the parameters that 
determined the actual connections. 

The strongest enhancement of orientation tuning with sparse 
local inhibition was found when the distance between the re- 
ceptive field of the source and the target cell was larger than 
0.1 S’, because otherwise, inhibition will affect all orientations 
of the target cell in a similar manner. 

Both connection schemes result in a rather strong directional 
bias [Fig. 14C,F, D = 18.7% (38.8%) and 15.3% (33.4%), re- 
spectively]. Only a few (for sparse local, only two) cells con- 
tribute inhibition to the center cell. Thus, any random asym- 
metry between the total inhibition that arises for an optimally 
oriented stimulus along both directions of motion will result in 
a net difference between the responses and, thus, in a directional 
asymmetry. 

Combining local and circular inhibition 
The low-specificity mechanisms (local and circular inhibition) 
alone are not sufficient to generate realistic orientation tuning. 
Combining both with different gains (which distinguishes this 
combination from random inhibition), however, resulted in a 
reasonable strength for the orientation specificity (Figs. 15, 16c). 
The column structure is clearly visible (Fig. 1 St), but, as in the 
real cortex, a significant number of cells are found that respond 
to stimuli orthogonally oriented to their expected preferred ori- 
entation. The directional bias is substantial [Fig. lSC,D, D = 
22.2% (43.3%) and 25.0% (46.4%), respectively], but still much 
weaker than the average observed directional tuning of simple 
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cells [Fig. 16A;D = 57.2% (68.3%)]. Otherwise, the averaged 
simulated tuning curve [Fig. 16C, 0 = 69.6% (2 1.6”)] looks very 
similar to the average observed cortical tuning [Fig. 16A; 0 = 
73.5% (20. l”)]. 

Recently, Worgotter and Eysel (unpublished observations) re- 
ported that the orientation tuning of cortical cells can be strongly 
influenced by microiontophoretic application of GABA to the 
upper cortical layers at a lateral distance of about 0.5 mm (see 
also Sillito, 1975; Sillito et al., 1980). The most common effect 
found was a loss of orientation specificity due to increased re- 
sponses in the nonpreferred orientations. This resulted in an 
average orientation tuning of 0 = 34.6% (40.8”), as shown in 
Figure 16B. Reduced orientation tuning due to increased re- 
sponsiveness was interpreted as a loss of inhibition, caused by 
inactivation (via the GABA application) of intracortical inhib- 
itory interneurons. We simulated GABA application by re- 
moving most intracortical inhibition for the last simulation. In 
the run shown in Figure 160, the gain of the inhibitory intra- 
cortical mechanisms was reduced to about 10% of their original 
values. The simulated orientation tuning [0 = 39.6% (37. lo)] is 
remarkably similar to the observed tuning curve upon GABA 
application (Fig. 16B), though it is still stronger than with mere 
HW-type connections (Fig. 8B). 

Discussion 
Assumptions 
This numerical study examines the question of the wiring scheme 
underlying orientation selectivity in the input layer of primary 
visual cortex of the adult cat. With one exception (see below), 
we did not study the network properties underlying other op- 
erations, such as direction selectivity or stereo disparity. Fur- 
thermore, we have made no attempt to study the developmental 
origin of the various inhibitory connection schemes. We briefly 
consider below the question ofwhich connection scheme is more 
likely to arise during development without postulating highly 
specific mechanisms. 

Our computer model was primarily constrained by two fac- 
tors, the lack of sufficient anatomical and electrophysiological 
data and the long simulation times. Let us here briefly restate 
our main assumptions and their limitations. 

Underlying our network simulation is a model of a single 
neuron representing an elaboration of the much simpler “leaky 
integrate-and-fire” model, but stopping short of a full Hodgkin 
and Huxley (1952) type of description. It shows all of the basic 
properties characterizing neurons: electrotonic response, thresh- 
old, absolute and relative refractory period, nonlinear interac- 
tion among synaptic conductance inputs, and finite axonal prop- 
agation velocity. Its principal drawback is the assumption of a 
one-compartment neuron. Thus, local nonlinear interaction 
among synaptic inputs in the dendrite of cortical cells (Koch 
and Poggio, 1987) or local membrane nonlinearities in the den- 
drites are not incorporated into our current model. However, 
we have seen no evidence to date implying the necessity of such 
nonlinear interactions to explain orientation selectivity. We do 
believe, however, that a more complete network model, incor- 
porating the selectivity of individual cortical cells to orientation, 
motion, color, depth, texture, and so on, requires cells with 
many compartments to support local, nonlinear operations prior 
to the somatic nonlinearity (Koch and Poggio, 1987). 

Our model of the early visual pathway of the adult cat is quite 
realistic with regard to cell numbers, degree of anatomical di- 
vergence and convergence, and basic receptive field properties. 

We studied in great detail the contribution made by local and 
long-range inhibitory wiring schemes to orientation selectivity. 
There is evidence for the existence of long-range inhibition 
(Martin et al., 1983; Gilbert, 1985) and its role in the generation 
of orientation selectivity has been discussed (e.g., Benevento et 
al., 1972; Sillito, 1979; Bonds, 1989; see also Martin, 1988). 
We restricted ourselves to investigating the effects of different 
long-range schemes on orientation tuning instead of other pos- 
sibilities (e.g., contrast gain control; but see Wehmeier et al., 
1989). We completely disregarded in this study excitatory cor- 
ticocortical connections as explicitly modeled by Douglas et al. 
(1989). We first wanted to understand the contributions made 
by the negative feedback pathways before attempting to assess 
the contribution made by positive feedback circuits. Excitatory 
cortical connections can lead to a very rich dynamic behavior, 
including oscillations, chaos, and epileptic seizures (Wilson and 
Cowan, 1972; Hopfield, 1984; Kammen et al., 1989). Because 
of this restriction, we need not explicitly model excitatory cor- 
tical cells, such as pyramidal cells, because in the absence of 
such excitatory corticocortical connections, the receptive fields 
of excitatory pyramidal cells will be identical to that of inhib- 
itory cortical cells. This assumes that a given pyramidal cell 
receives the same pattern of inhibition as inhibitory cells. In 
the next phase of our project, we will include a large population 
of excitatory pyramidal cells, providing excitatory feedback. 

Finally, we wish to point out that this article represents but 
an interim report in our multiyear effort to understand infor- 
mation processing in realistic cortical structures. 

The Hubel and Wiesel model 
As shown by Figures 5-7, many basic features can be mimicked 
by an HW-type afferent arrangement. These include null re- 
sponse (Movshon et al., 1978) and velocity as well as orientation 
tuning. However, several features are not explained in a satis- 
factory manner by the HW scheme. 

In order to achieve nonoverlapping ON-OFF-subfields with- 
out intracortical inhibition, the spatial separation of the pro- 
jections from LGN to cortex had to be rather large (Fig. 5E,F). 
In fact, we only found realistic separation between ON- and 
OFF-subfields with a spacing of 0.5” or larger between the center 
of LGN cells. Sillito (1975) stated that application of bicuculline 
resulted in a loss of the ON-OFF-subdivision in simple cells. 
In addition, experiments (Worgotter and Eysel, unpublished 
observations) involving removal of intracortical inhibition led 
to a substantial widening of the subfields, interpreted as a loss 
of side-band inhibition. This supports the view that cortical 
subfields are highly overlapping and that this overlap is reduced 
or eliminated by intracortical inhibition. 

Without cortical inhibition, our simple cells have an approx- 
imatively constant response if the velocity of a moving bar is 
varied between 0.1 and S”/sec. Velocities higher than 5-l O”/sec 
lead to a monotonic decreasing cellular response (Fig. 5D). Such 
“velocity low-pass” behavior is typical for about 60% of simple 
cells in cat area 17 (Orban et al., 198 1). Band-pass, that is, 
“velocity-tuned,” behavior (Orban et al., 198 1) was only found 
in 12% of the cells following the introduction of intracortical 
inhibition. Such behavior is the natural consequence of a low- 
pass-velocity cell inhibiting other low-pass cells (subtracting two 
low-pass filters leads to a band-pass filter). 

The HW model also reproduces the response of cortical cells 
to moving spots (Fig. 7), a response that is stronger parallel to 
the long axis of the receptive field than orthogonal to this axis 
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(Wiirgiitter and Eysel, 1989). Hence, the preferred axis ofmotion 
for a spot is orthogonal to that of a bar. This phenomena is 
caused by subsequent stimulation of two sites within the recep- 
tive field of a cell, resulting in a larger response than the sum 
of the two individually elicited responses. This effect is due to 
the temporal integration that occurs at all stages in the model 
(Henry et al., 1978; Wiirgijtter and Holt, 199 1). Thus, if a spot 
travels exactly along the long axis of the receptive field, the 
longest possible path for such a stimulus to stay within the 
receptive field, this temporal summation will lead to a stronger 
response than motion orthogonal to the long axis. 

As evident in Figure 8, the orientation tuning of simple cells 
is directly related to the aspect ratio oftheir associated geniculate 
input, that is, to the length: width ratio of the receptive field. 
The only study to have correlated aspect ratio to 19,,* in cat simple 
cells (Watkins and Berkley, 1974) found a relatively small cor- 
relation coefficient of r = 0.47 between these two variables. For 
instance, many cells with very small aspect ratios still possess 
reasonable orientation tuning, because they consist of multiple 
subfields, each of which has a much higher aspect ratio (Daug- 
man, 1980, 1984; Jones and Palmer, 1987). In fact, in order to 
account for the average orientation tuning in cat area 17 simple 
cells (with O,,2 less than 20”; Orban, 1984) the ratio of length to 
width has to be 4.0 or higher. While there undoubtedly exist 
cells with such aspect ratios, they are rare in the input layer but 
are much more frequent in layer 5 and, in particular, layer 6 
(Gilbert, 1977). Thus, although in principle the HW model can 
by itself account for the strong orientation tuning observed, the 
small number of cells with large receptive field elongation in- 
dicates that additional mechanisms must be involved. 

A further reason for arguing against a pure HW model is its 
lack of gain control. If the contrast of the bar stimulus is de- 
creased, geniculate cells will fire less. Ultimately, there will be 
a point at which cortical cells will fail to respond, because not 
enough geniculate-induced EPSPs are present to exceed the volt- 
age threshold. If, however, cortical inhibition is superimposed 
onto the HW scheme, as in this study, a reduced geniculate 
input will cause less EPSPs but also less IPSPs. Thus, the re- 
sponse to cortical cells should be far less dependent on contrast 
in the mixed models than in the pure HW threshold model. In 
other words, models relying on negative feedback have inherent 
gain-control properties not shared with feedforward threshold- 
type models. This has been demonstrated in our earlier simu- 
lations (see Wehmeier et al., 1989, their Figs. 10.7 and 10.8). 
It has been shown experimentally using cats adapted to varying 
levels of contrast that the orientation tuning of area 17 simple 
cells changes little when varying the contrast between 2% and 
80% (Skottun et al., 1987). However, in order to rule out long- 
term adaptation of cortex due to shifts in firing threshold caused 
by second-messenger-mediated responses, these experiments 
should be repeated by randomly intermixing bars of low and 
high contrast in the stimulus sequence. 

An alternative candidate mechanism is based on orientation- 
sensitive geniculate input. It has been reported (Vidyasagar and 
Urbas, 1982; Cleland et al., 1983; Schall et al., 1986; Vidyasagar, 
1987; Shou and Leventhal, 1989) that geniculate cells are not 
circularly symmetric, but do show significant asymmetries for 
the orientation of bars and gratings. This orientation sensitivity 
is particularly pronounced at spatial frequencies above 1 cycle 
per degree. While we have assumed rotational invariant LGN 
receptive fields in our model, oriented geniculate cells would be 
difficult to distinguish from an HW type of arrangement. Of 

course, both mechanisms could well contribute toward cortical 
orientation selectivity. 

The multitude of effects that can be explained using an afferent 
bias in orientation strengthens the view that the fundamental 
cortical response characteristic is, in fact, generated by such a 
connection scheme. For this reason, we are interested in the 
question of what cortical wiring scheme has to be superimposed 
to better mimic experimentally observed behavior. 

Intracortical inhibitory mechanisms 
Intracortical inhibition was superimposed onto HW connec- 
tions with the very low aspect ratio of 13 x 5. We did not 
investigate the effect of the inhibitory mechanisms in the ab- 
sence of afferent orientation bias, because all but the sparse local 
mechanism require at least a small bias to initiate further sharp- 
ening of the orientation tuning [Sillito (1979) discussed this 
problem for cross-orientation inhibition]. As expected, orien- 
tation tuning was strengthened substantially with any highly 
specific inhibitory mechanism. Mechanisms with low specificity 
contributed less to the sharpening of orientation tuning but were 
much more robust against parameter variations. With the un- 
specific local inhibition scheme, the predetermined orientation 
columns were destroyed (e.g., Fig. 14A). Due to the receptive 
field scatter and the variations of the predetermined preferred 
orientations within one column, the cortical topography is not 
preserved below distances of about 200 Km (Albus, 1975a). 
Thus, any local inhibition scheme that relies entirely on neigh- 
borhood relationships between cells will not be able to preserve 
the column structure. Circular inhibition acts over a radius of 
about 500 pm, within which the cortical topography is well 
defined. Combining circular with local inhibition enhanced ori- 
entation columns and generated a realistic orientation tuning 
(Fig. 15). Most experimental results about local and cross-ori- 
entation inhibition showed that the orientation tuning of the 
inhibition itself is rather broad (Blakemore and Tobin, 1972; 
Albus and Baumfalk, 1989; Bonds, 1989; Wijrgijtter and Eysel, 
unpublished observations; but see Hata et al., 1988). This is in 
agreement with our simulations with the combined low-speci- 
ficity mechanisms. The existence of long- as well as short-range 
inhibitory mechanisms in real cortex can also account for seem- 
ingly conflicting experimental results that provide evidence for 
one or the other mechanism. Biases towards either mechanism 
can in many cases be explained by the fact that the experimental 
methods cannot show both long- and short-range mechanisms 
simultaneously. A key advantage of such a combination is its 
inherent robustness against structural and parameter changes. 
From the developmental point of view, low-specificity inhibi- 
tory mechanisms are easier to create because they require only 
little structural information, for example, about dendritic tree 
radii, axonal arborization, axonal and dendritic tree orientation 
and elongation, and so on. The low-specificity mechanisms im- 
plemented in the model, however, might only reflect an early 
developmental stage because during the maturation process 
higher specificity can be achieved by eliminating inhibitory con- 
nections (Beaulieu and Colonnier, 1987). Thus, the more specific 
connection schemes (sparse local and partial circular) could be 
derived from the low-specificity mechanisms by pruning inef- 
ficient connections. 

We have excluded the OFF-subsystem while simulating the 
effects of intracortical inhibition. We are well aware that this is 
a serious omission. However, including the ON-OFF-subsys- 
tem as well as intracortical inhibition increases the computa- 
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tional time to more than 150 hr of CPU time on our SUN-4 
workstations for simulating a 1 -set experiment, making it im- 
practical to explore this wiring scheme. We could therefore not 
investigate the so-called “push-pull” class of models (Hubel 
and Wiesel, 1962; Ferster, 1988; Tolhurst and Dean, 1990) in 
which activity in ON-subfields will inhibit activity in spatially 
overlapping OFF-subfields (mediated via inhibitory cortical in- 
terneurons) and vice versa (see also Toyama et al., 1981). We 
have now started to run our simulator on the 16,000-processor 
Connection Machine, a machine powerful enough to make such 
simulations feasible. 

Cross-orientation inhibition (i.e., partial circular inhibition; 
Benevento et al., 1972; Morrone et al., 1982) resulted in different 
average orientation tuning for the populations with vertical and 
horizontal axes of preferred orientation. This effect is explained 
by the arrangement ofthe cells that contribute inhibition relative 
to the orientation of the stimulus (see Results; Wiirgijtter et al., 
199 1 b). The sharpening of orientation tuning by cross-orien- 
tation inhibition is substantial. This is in disagreement with 
recent studies on the effect of long-range inhibition finding a 
rather broad tuning (Bonds, 1989; Wijrgiitter and Eysel, un- 
published observations). A new type of long-range lateral in- 
hibition, which we call “circular inhibition,” does not lead to 
different tuning for different cell populations. In combination 
with local inhibition, it yields tuning curves very similar to 
experimentally observed ones (e.g., Figs. 15, 16) and does not 
destroy the columnar substructure as local inhibition does by 
itself (Fig. 14A). Circular inhibition will always produce a certain 
amount of end-stopping, which, however, is very common in 
layer IV of the cat (Gilbert, 1977). 

Thus, we propose that the average orientation selectivity of 
simple cells is mediated by at least three different connections: 
a weak afferent geniculate bias (Hubel and Wiesel, 1962; Vi- 
dyasagar and Urbas, 1982) superimposed onto local inhibition, 
functionally acting as iso-orientation inhibition, and onto cir- 
cular inhibition, corresponding to a very broadly tuned cross- 
orientation inhibition. In other words, we argue for an eclectic 
model of orientation selectivity. 

Recent intracellular recordings (Sato et al., 1990) do find these 
two inhibitory components: a strong iso-orientation inhibitory 
component and a broadly tuned inhibition acting primarily at 
nonpreferred orientations. Furthermore, our conclusion is also 
in agreement with that of Bonds (1989) who used two super- 
imposed sine-wave gratings to study this question. 

It should be emphasized at this point that, due to random 
variations in the connection pattern and synaptic strength (see 
Structure of the Model), the behavior of individual neurons 
varies quite a bit. Thus, in some cells the afferent geniculate 
bias is quite strong, and inhibition only contributes insubstan- 
tially toward orientation tuning, while for other cells little tuning 
is present in the absence of intracortical inhibition. Therefore, 
we propose that, to explain the average orientation tuning of 
layer VI simple cells, three different mechanisms are required, 
while some cells may only possess one or two of these mecha- 
nisms. 

Excitatory and inhibitory connections differ not only with 
respect to their action at the postsynaptic target but presumably 
also in the way they develop in the immature animal. Coacti- 
vation of the pre- and postsynaptic cells can result in the 
strengthening of an excitatory connection (Hebb, 1949). Such a 
Hebbian mechanism presumably plays a major role in the de- 
velopment of excitatory connections (Miller et al., 1989). In- 

hibitory connections cannot be strengthened by the same mech- 
anism, because activation of the presynaptic cell will silence 
instead of coactivate its postsynaptic target. Thus, the strength- 
ening of inhibitory interactions is more difficult to achieve dur- 
ing development. It is interesting to note that experimental ef- 
forts to uncover modifications of inhibitory circuits in visual 
cortex have consistently yielded negative results (Singer, 1977; 
Bear et al., 1985). Circular inhibition requires little specificity, 
because it only assumes that cells within a given distance inhibit 
the center cell. Thus, no Hebb-type enhancement of connections 
is required. 

Spontaneous generation of direction selectivity 
The most intriguing result of the simulation was the “sponta- 
neous” generation of directional bias. Thus, a rule that only 
specifies “make inhibitory synapses onto cells about 500 pm 
away” leads to the amplification of preexisting orientation se- 
lectivity as well as to the de novo generation of a directional 
bias, a bias not present in the geniculate input. 

Even though an isotropic connection scheme represents the 
“worst” case for the generation of an anisotropic effect, the 
generation of a directional bias is not directly linked to circular 
inhibition and occurs to some extent in all of our inhibitory 
connection schemes (Figs. 1 l-15). Any single pair of connec- 
tions of arbitrary length will cause directional tuning because 
the source cells are likely to have different response character- 
istics due to the noise in the column structure (noise-induced 
symmetry breaking). This can be clearly seen in the case of sparse 
local inhibition (e.g., Fig. 140. However, if the preferred ori- 
entations were arranged randomly in cortex, this effect would 
average out with increasing number of connections onto a given 
cell. But why does this not occur with circular inhibition, where 
more than 100 cells converge onto a target? Two structural 
features inherent in cortical columns underlie our effect: (1) cell 
activities are locally correlated, but (2) the correlation disappears 
over long distances. It is obvious that long-range connections 
that terminate in a locally confined region of such a structure 
will induce an anisotropic effect that will not necessarily average 
out with increasing number of connections. We show elsewhere 
that this directional bias does not depend on the specific ge- 
ometry of the columnar structure adopted (e.g., straight vs. bent 
columns; WSrgijtter et al., 1991 b). Furthermore, jitter in the 
anatomical layout and in biophysical parameters only serves to 
enhance the orientation and directional tuning obtained with 
circular inhibition. Thus, it would be difficult not to achieve a 
directional bias when considering inhibitory (or excitatory, be- 
cause this effect does not depend on the sign of the interaction) 
intracortical connections. 

The directional bias seldom exceeded values of 20%, much 
lower than the averaged observed directional tuning of simple 
cells (D = 60%; see Orban, 1984). Such a bias, however, can 
represent the starting point in ontogenesis to strengthen con- 
nection patterns that increase direction selectivity as a useful 
feature in motion recognition tasks. This view is supported by 
several findings. Sillito (1975, 1977, 1979) observed that direc- 
tional tuning of cells is more readily eliminated by microion- 
tophoretical application than orientation tuning. Similarly, it 
has been found that removal of orientation tuning eliminates 
direction tuning entirely (WGrgStter and Eysel, unpublished ob- 
servations), whereas direction tuning can be substantially re- 
duced without affecting orientation specificity (Eysel et al., 1988). 
Furthermore, there are virtually no cells in area 17 that display 
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large direction specificity but only little orientation tuning (War- 
gijtter et al., 199 la). Finally, during the early stages of devel- 
opment, only a small number of cells are directionally selective, 
while most cells are only weakly biased. Their directional se- 
lectivity increases only after the development of orientation 
tuning (Grigonis et al., 1988). This would support our notion 
that directional tuning follows the emergence of orientation se- 
lectivity. We assume that, once this directional tuning is estab- 
lished, additional inhibitory (or excitatory) mechanisms sharpen 
this bias to lead to actual directional selectivity. 

Finally, an interesting moral can be drawn from these detailed 
simulation studies. We initially did not expect any surprising 
results to emerge from our computer model, but were hoping 
for a more quantitative understanding of the mechanisms un- 
derlying orientation selectivity. Thus, we were all the more 
pleasantly surprised to be confronted with a number of phe- 
nomena that were not predicted a priori from the data, even 
though most of these phenomena can be explained a posteriori 
from simple qualitative models. 
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