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SUMMARY AND CONCLUSIONS 

I. Simple cells in the visual cortex have been subdivided into 
nondirection-selective (NDS), direction asymmetric ( DA), and 
direction-selective (DS) cells. DA cells reverse their preferred di- 
rection with reversal of the stimulus contrast: DS2 cells respond 
with the same preferred direction for light and dark stimuli, 
whereas DS, cells respond only to one (light or dark) contrast. 
Also, four velocity response groups have been distinguished: veloc- 
ity broadband, low-pass, high-pass, and -tuned cells. This study 
describes an analytic model of feed-forward spatiotemporal inter- 
actions within a receptive field that reproduces these basic features 
of cortical simple cell behavior in the cat. 

2. The spatial structure of the receptive fields is simulated with 
Gabor functions. Two neurobiologically plausible mechanisms, 
temporal low-passfiltering and intracortical spatial distribution of’ 
activity, are modeled. The central feature of the study is the imple- 
mentation of both mechanisms in a spatially continuous way. The 
model is analytic, but an equivalent neural network diagram was 
drawn and is used to explain the features of the model. 

3. First-order temporal low-pass filtering is performed both 
after convolving the stimulus light-intensity function with the Ga- 
bor type receptive field and also at the final output step of the 
model. In the circuit diagram this would correspond to low-pass 
filtering in lateral geniculate nucleus (LGN) and cortical cells. Fil- 
tering was adjusted to have a -3-dB drop-off frequency of 2-3 Hz, 
corresponding to the drop-off frequencies observed in response to 
temporal modulation of sine-wave gratings. 

4. The mechanism that we call intracwtical distribzrtion ofactiv- 
ity is implemented along the axis of stimulus motion. A response 
elicited from the part of the receptive field that is stimulated at a 
given time will spread out in the receptive field, influencing re- 
gions that have not been stimulated. It is equivalent to spreading 
of activity on the cortical surface. This mechanism extends the 
existing ideas of discrete interactions between subfields to a contin- 
uous scheme throughout the whole receptive field. It is based on 
findings that intracortical interactions exist even within single 
subfields. The impact of distributing the activity is assumed to 
decrease exponentially with the Euclidian distance between the 
stimulated region and the region under consideration. 

5. Thresholds are implemented only at the level of the cortex. 
Both the activity distributing mechanism and the output of the 
cell being studied are thresholded. 

6. For odd Gabor functions, mere low-pass filtering without 
activity distribution and thresholding results in DA cells with ve- 
locity low-pass or velocity broadband behavior. Widening the re- 
ceptive field makes the cells more sensitive to higher velocities. 

7. Velocity-tuned DS (DS,) cells can be modeled by including 
the activity distribution mechanism. These cells require phase- 
shifted odd symmetrical receptive fields, which are common 
among cortical cells. 

8. In real cells the response to a moving dot is, in most cases, 
stronger if the dot moves along the receptive field’s long axis than 
if it moves across. This result is directly reflected in the model with 

or without activity distribution. The preferred axis of motion for a 
dot is 90” apart from those for a bar. Reports of shifts in the 
preferred axis of motion ~90” are explained in the model by as- 
suming that the center of rotation of the stimulus was not exactly 
centered on the excitatory zone of the receptive field. 

Y. The model predicts that the optimal velocity for a moving 
dot should always be higher than those for a bar. Also the sharp- 
ness of the tuning for a moving dot should increase with increasing 
velocity, whereas the sharpness of tuning for a bar should decrease. 

IO. In the present study simple cells are described in an analytic 
form. The model reproduces the basic spatiotemporal behavior of 
real cells and makes two predictions that can easily be tested exper- 
imentally. In a possible extension of this approach, the computa- 
tionally simple model cells could be treated as direction- and veloc- 
ity-selective modules in an artificial neural network architecture. 

INTRODUCTION 

The receptivefield of a nerve cell originally was defined as 
the spatial field that must be stimulated to drive a neuron 
that receives input from the associated receptors (Hartline 
1938). However, the response of a neuron also strongly 
depends on the temporal pattern of stimulus presentation, 
so a more complete definition of the receptive field also 
includes the temporal domain. Following the first descrip- 
tions of cell responses in the visual cortex (Hubel and Wie- 
se1 1962), receptive fields have been described in the spatial 
domain (Daugman 1980, 1984; Field and Tolhurst, 1986; 
Jones and Palmer 1987a,b; Kulikowski et al. 1982; 
MarEelja 1980) and also with respect to spatiotemporal in- 
teractions ( Baker 1988; Baker and Cynader 1986; Bishop et 
al. 197 1; Duysens et al. 1985a,b; Ganz and Felder 1984; 
Gray et al. 1989; Jones 1970; Mikami et al. 1986; Orban et 
al. 198 la,b; Pettigrew et al. 1968). 

The strongest responses from cortical simple cells in cat 
are obtained with stimuli consisting of elongated contrast 
steps (e.g., light bars, edges, or gratings). This behavior gave 
rise to two different types of models, regarding the cells as 
either feature detectors (Marr 1982; Marr and Hildreth 
1980) or spatial frequency filters ( DeValois et al. 1979; 
Maffei and Fiorentini 1973). 

Fine-structure analysis has shown that the spatial domain 
of simple-cell receptive fields usually includes several elon- 
gated ON- and oFr=zones with smooth transients between 
them and constant distance between their centers (i.e., well- 
defined spatial frequency) (Jones and Palmer 1987a). In 
addition, simple cells behave to a large extent linearly (Ku- 
likowski and Bishop 198 1). These features have been com- 
bined in approaches describing the receptive field with lin- 
ear spatial filter functions. Gabor functions (Gabor 1946) 
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have been frequently used because they optimally resolve 
the trade-off between spatial frequency and orientation reso- 
lution (Daugman 1980; Marcelja 1980). In addition, they 
give a good approximation to the actual shape of simple- 
cell receptive fields (Field and Tolhurst 1986; Jones and 
Palmer 1987b). Because nerve cells basically act as half- 
wave rectifers (they cannot have a negative firing fre- 
quency), the filter function approach makes the hidden as- 
sumption that at least two half-wave rectifiers with different 
sign act together to generate the shape of the receptive-field 
filter function. The cell response (which is the convolution 
of a linear filter with the stimulus) disregards negative val- 
ues and therefore includes a nonlinearity. Such linear-non- 
linear (LN) models are widely used (see Pollen and Ronner 
1983) and are incorporated into this study. 

Models based on Gabor functions focus entirely on the 
spatial domain. Cortical cells, however, also show temporal 
properties, the most prominent of which are direction selec- 
tivity (Hubel and Wiesel 1962) and velocity tuning (Mov- 
shon 1975; Pettigrew et al. 1968). Four subgroups of simple 
cells have been described on the basis of their responses to 
various stimulus velocities. Velocity broadband cells re- 
spond with constant strength for all but extremely slow or 
fast velocities. Velocity low-pass cells show a smaller re- 
sponse to larger velocities, whereas the reverse is true for 
velocity high-pass cells. Velocity-tuned cells show a large 
response to a particular velocity and a smaller response to 
velocities on either side (Orban et al. 198 la). Velocity 
broadband, low-pass, and high-pass cells usually exhibit 
weak direction tuning, whereas velocity-tuned cells are 
usually strongly direction selective (Orban et al. 198 la,b; 
Orban 1984) (see also Table 1). Interactions between sub- 
fields can partly account for these response types. For exam- 
ple, several studies showed that feed forward of intracortical 
inhibition reduces the response in the non-preferred direc- 
tion (Bishop et al. 197 1; Eysel et al. 1987, 1988; Goodwin 
and Henry 1975; Goodwin et al. 1975; Sillito 1975, 1977); 
there are, however, also indications that facilitation arises 
in the preferred direction (Emerson and Gerstein 1977b; 
Movshon et al. 1978b). Such mechanisms indicate that ac- 
tivity arising from stimulation of a certain region in the 
visual field does not remain entirely in the retinotopical 
projection area but is spatially distributed over larger parts 
of the cortical surface. 

Any distribution of activity cannot be purely spatial be- 
cause of the signal transmission delays between spatially 
separated interacting cells and their intrinsic low-pass be- 
havior. The low-pass time constants can be determined 

TABLE 1. Various types of velocity response curves and their 
jkequency in cortical cells* 

NDS + DA, % DS, % Total, % 

Broadband 76 24 21 
Low pass 77 23 64 
High pass 78 22 4 
Tuned 39 61 10 

NDS, nondirection selective; DA, directional asymmetrical; DS, direc- 
tional selective. * Recompiled from Orban (1984). 

from the responses to gratings moving at different temporal 
frequencies (Ikeda and Wright 1975a; Movshon et al. 
1978~). Time constants measured in this way are >50 ms, 
indicating that low-pass filtering in cortical cells is caused 
by network interactions rather than by temporal integra- 
tion at the membrane alone, which would result in time 
constants of -20 ms. 

In a recent study W&getter and Eysel ( 1989) showed 
that the response of many cat cortical cells to a moving dot 
is strongest if the dot moves along the long axis of the excit- 
atory zone of the receptive field. This axis is approximately 
orthogonal to the preferred direction of a long bar and has 
been referred to as the axial response.’ From these results it 
has been concluded that temporal facilitation occurs along 
the receptive-field long axis. One possible explanation is 
that spatiotemporal mechanisms are not limited to interac- 
tions between subfields but can also occur within one sub- 
field itself. Thus the response would be facilitated as long as 
the stimulus travels within an excitatory zone. This idea is 
supported by the high convergence onto cortical cells, 
which results in substructure even within individual sub- 
fields (Martin 1988). 

Many models have been proposed that generate motion- 
dependent responses. They can be subdivided into models 
in which the implemented mechanisms are either separable 
or nonseparable in space and time. Separability means that 
the impulse response HSt(x, t) can be decomposed into 
H,,(x, t) = H,(x) X Hf( t), its spatial and temporal compo- 
nents (see Adelson and Bergen 1985). Experimental evi- 
dence suggests that separable mechanisms can only account 
for a weak directional tuning (McLean and Palmer 1989; 
see, however, Baker and Cynader 1988). 

This study combines the spatial structure of the receptive 
fields (Gabor functions), low-pass behavior, and a mecha- 
nism of distributing activity within the receptive field (i.e., 
distributing activity on the cortical surface) into an analytic 
model of cortical simple cells. Interactive mechanisms have 
been discussed for a long time as existing between subfields. 
However, we require that all spatiotemporal interactions 
occur continuously throughout the whole receptive field. 
This idea is consistent with the high intracortical conver- 
gence onto each cell, which accounts for substructure even 
within subfields. The model consists of two stages, and we 
show that most aspects of direction, orientation, and veloc- 
ity tuning as well as axial responses of cortical cells can be 
reproduced. Experimentally testable predictions are made 
about the velocity tuning of cells to dot stimulation and 
about the tuning of cortical cells to nonoptimal bar stimuli. 
We will discuss the effects of nonseparability on the actual 
response characteristic of our model and show that weakly 
directionally tuned cells remain separable, whereas direc- 
tion selectivity requires a nonseparable mechanism. 

’ The term “axial response” in this study is used in a completely differ- 
ent way from the definition of “axial response” given by Henry et al. 
( 1974a). These investigators claimed that the axial response is parallel and 
not orthogonal to the orientational response and that no change in the 
preferred axis of motion occurs between long and short stimuli. Results 
from Worgotter and Eysel ( 1989) disagree with this finding. An extensive 
discussion of possible reasons for this discrepancy is given in that paper: we 
believe that a redefinition of the term axial response is necessary. 
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Structure of the model In our model cortical processing occurs in two layers of . GENERAL OUTLINE. We simulated measurement of orien- 
units (the top 2 layers of circles in Fig. 1). The hypothesized 

tation and direction tuning of a cell to narrow moving bars. 
activity distrihzrtion arises from the connection pattern be- 

The bar length varied between 0.1 (for a dot) and 10” (for a 
tween the LGN and the first layer. Activity distribution is a 

long bar). Velocity tuning curves were computed with the 
mechanism by which activity in one part of the receptive 

bar moving along the axis of maximum response. 
field is spread to the rest of the receptive field, influencing 

The schematic diagram in Fig. 1 shows the components 
even regions that have not been stimulated. This corre- 

of the model. The spatial shape of the receptive field is given 
sponds to the spreading of activity across the cortical sur- 

by the following odd and even Gabor functions 
face. Activity is distributed not just between discrete recep- 
tive-field regions but continuously throughout the receptive 

g(x, y) = exp - --& - & 

( x Y 

( 

x2 y2 
g0, y) = exp - 9 - 2a 

X Y 

sin (271-&x + 4) 
field, allowing interactions to occur even within subfields. 

(0 The actual shape of such an interaction so far has not been 
measured experimentally; we assume that it falls off expo- 
nentially with distance because this form is computation- 
ally simple. A point (x’, ~7’) adds to the activity of the point 
(s, v) an amount proportional to 

I 
In this model the connection pattern that gives rise to the I+‘( “Y --- .I-‘, j’ - y’) = exp - 

( 

V(x - x’)2 -I (y -- y’)’ 
(3) 

Gabor-like spatial structure of the cortical receptive fields is 
x 

assumed to be generated at least in part by the convergence The above expression for the activity distribution mecha- 
of lateral geniculate nucleus (LGN) cell inputs. LGN cells, nism is convolved with the spatial structure g(x, V) of the 
however, are not explicitly mode,led, and they appear in the cortical receptive field to yield the activity of the middle 
figure only for display reasons. layer of cells in Fig. 1 

We assume that as the signal is passed through LGN it is 
smoothed by a first-order temporal low-pass filter, 11(x, j’, 1) = ss 

h’( x’, y’) C( x’, j”, I) E’( .\- - A-‘, J’ -- y’)d\-‘df (4) 

becoming These cells have oriented receptive fields. In fact, for static 
t 

qx, y, t) = 
s 

I(& J’, t - t’)L,J t’)dt’ (2) or flashing stimuli the spatial structure of their receptive 
0 fields is given by 

where L#) = e-t’/rL/TL, and I(x, y, t) is the stimulus light 
intensity function (the input to the retina at a point at a 
particular time). which is similar to a Gabor function. 
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FIG. 1. Schematic of the model. Basic stages (re- 
flected in the equations) arc represented by sub- and in- 
tracortical processing of the visual signals. LGN cells act 
as low-pass filters (ky. 2). The pattern of convergence 
determines the spatial structure of the receptive field (the 
Gabor function). Distribution of activity, F(s - .I’, J’ --- 
.v’). occurs intracortically through threshold units (cir- 
cles): their activity is given by B(.Y, J*. 1) ( Ey. 4). Finally 
there is a second low-pass filter and threshold in the top- 
most cortical cell (Ky.v. 6 and 7). 

LGN 

t 
Stimulus 
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In addition, these units behave like velocity low-pass 
cells. The “charging curve” for a low-pass filter is shown in 
Fig. 24 the longer there is positive input, the larger the 
filtered response becomes. Because a faster moving stimu- 
lus stays in the receptive field for less time, the unit will 
respond less. In other words, it is like a velocity low-pass 
cell. This effect can be shown in a diagram by drawing the 
receptive field with a smaller peak height for higher 
velocities. 

Low-pass filtering also results in a directional bias (Fig. 
2B). In a low-pass filtered unit any given value of activity 
will not be reached instantaneously but delayed according 
to the slope of the response curve (Fig. 2A ). Thus a stimu- 
lus traveling from right to left (Fig. 2B, bottowl) will lead to 
inhibition that reduces the peak response in the excitatory 
region for some time. Similarly, a bar moving in the oppo- 
site direction (Fig. 2B, top) will excite the positive region, 
reducing the amplitude of the negative peak. However, this 

Response 

Low-pass filtering 

C 

At 

1 

Distribution of Activity 

At At 

I 
I RF 

Low velocity Intermediate velocity High velocity 

FIG. 2. Simplified representation of the behavior produced by the model. A : effect of low-pass filtering. Response of a cell 
at the time when bar leaves its receptive field is plotted against amount of time the bar was in the receptive field. Faster 
moving bars remain in the receptive field of a particular cell for less time. The cell’s activity increases with time, because of 
low-pass filtering as shown; consequently a shorter exposure to the stimulus results in a lower activity. Therefore the peak 
response of cells to faster bars is less, i.e., they display velocity low-pass behavior. This can be visualized by drawing receptive 
fields with decreasing peak heights at increasing stimulus velocities. B: low-pass filtering results in direction tuning because 
the response in the nonpreferred direction is reduced due to inhibition carried over from the negative region. C: effect of 
distributing the activity from low-pass filtered cells. Maximum response of a cell to a moving stimulus occurs approximately 
at the receptive field peak (black bars). As shown above the effect of low-pass filtering at different stimulus velocities can be 
thought of as if the receptive-field peak height was changing. For a fixed time interval at, the stimulus moves a longer 
distance in the receptive field at a higher velocity (shaded areas). The activity distribution mechanism results in an accumu- 
lation of activity corresponding to the area of the shaded regions. The width of those regions is larger for higher velocities, but 
the peak height is smaller; thus these two opposing mechanisms lead to a maximal response at an intermediate velocity and 
thus to velocity-tuned behavior. 
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reduction has no effect on the cell activity because cell’s 
responses are rectified (represented by the hatched area), so 

I A(2) = s ss L&‘)H(.L y, t - t’)di.l-dvdt’ 
0 (x,y)Ebar 

they cannot have negative impulse rates. Thus first-layer 
cortical units act according to the synergy model for direc- Second, we assume that the bar is narrow and moves at 

tion selectivity (Hubel and Wiesel 1962). constant velocity. The input to the system I(x, y, t) can 

We assume that activity distribution occurs only from then be approximated by a a-function 

regions that are stimulated strongly enough because we pos- 
tulate thresholding in the first layer of cortical cells. We 

6(x - vt) if -h,/2 -c y -c b,/2 
1(x, 1’. I) = (10) 

therefore define the inputs to the top level cell in Fig. 1 by 0 otherwise 

B( 2) - T, if B(t) > T, 
B,, = 

where hl is the length of the bar. This changes Eq. 2 into 
0 otherwise if A- < vt and -hJ2 l : y < h,/2 

Up to Eq. 4 our system is space-time separable and linear. 
C’( x, j’, t ) = W) 

otherwise 

Introducing a threshold makes it nonseparable and nonlin- 
ear. Note, however, that the response still is separable for 

We do not need to integrate C(x, y, t) over regions where it 

subthreshold input (B,, is zero) and separable for large su- is zero, so Eq. 4 becomes 

prathreshold input (B& is the same as B in Eq. 4 except for 

Figure 2C shows a simplified diagram of the effect of the 
distribution of activity. For a given time interval At activity 

a subtracted constant). 

is accumulated over wider areas of the receptive field for 

VI 

Also, integrating over the area of a &function bar elimi- 

B(x, y, t) = 

nates the integral over bar width (x), and Eq. 9 changes to 

s s 
hi/ 2 
g( x’, y’)C(x’, y’, t)F(s - x’, J’ - y’)dx’dy’ ( 12) 

- ‘x2 -hi/Z 

different sweeps starting at higher stimulus velocities 
(shaded areas). For this reason, increasing the stimulus ve- 
locity at low speeds will result in an increased response. At a 
certain velocity, however, an optimum is reached, because 
low-pass filtering decreases the height of the shaded area 
(Fig. 2A) more rapidly than the width of the shaded area 
increases at high enough velocities. Therefore the cortical 
cell has its maximum response at some intermediate veloc- 
ity (velocity-tuned cell). 

The cortical cell being studied (the top cd in Fig. 1) is 
assumed to behave like another first-order low-pass filter, 
i.e., L,(f) = e -f’/7C/7c. So then the activity of the cell is the 
filtered sum of its inputs B,, 

t 

A(t) = 
s ss 

L,.(t’)B,.,(x, y, t - t’)h&dt’ 
0 

I 
SS 

h/2 
‘4(l) = I,,-( t’) B( vt, y, t - t’)dydt’ u-u 

0 -tq/2 

Finally, we assume that distribution of activity is signifi- 
cant only when it is in the direction of motion. Activity 
distributed in other directions must traverse a longer dis- 
tance to reach the region under the bar and is consequently 
less effective. Therefore F(x - x’, ~7 - y’) can be replaced by 

i 

1 x - .Y’ 1 
exp - ~ 

x 1 

Thus B(x, y, t) is independent of y. This approximation 
was tested with a number of different parameter sets and 
found to result in no qualitatively different behavior. 

The effect of the last approximation is that Eq. 13 is re- 
(‘I placed by 

Finally we implemented another threshold in the cortical I = r “I’ b”2 
cell ss s 0 -ix 

eh,g(xf, 

A(t) - T2 if A(t) > T, x F[v(t - t’) - x’]dJQLY’dt’ (14) 

AT2U) = (7) 
0 otherwise T2 is then subtracted from A(t) as in Eq. 7. 

Compared to Eq. 6, Eq. 14 contains only three integrals 
For bars moving at an angle 0 with the x axis, Eq. I can be and was used for all the simulations presented here. 
modified by substituting x0 for x PARAMETER RANGES. Although this simulation reproduced 

x-, = x cos 6, + y sin fl 
findings in several experimental animals, parameters ap- 
propriate for area 17 of the adult cat were chosen. Recep- 

l’e = - x sin 0 + y cos 8 Gu tive-field shape parameters in general were adjusted to reli- 

The complete form (Eq. 7) is computationally expensive 
ably measured values from receptive fields of simple cells 

because it has four integrals over space and two over time. 
(Jones and Palmer 1987a). We found that setting Q and 7c 

In the next section we introduce several assumptions and 
to different values did not result in qualitatively different 

approximations that lead to a simpler, computationally 
behavior. This is to be expected because the two low-pass 
nit ers 

faster form of Eq. 7. 
LL( t) and L,(t) can be combined into a single low- 

pass filter of higher order. Therefore, throughout all simula- 
APPROXIMATIONS. First we assume that only regions (i.e., 
first layer cortical cells) underneath the bar will be excited 
enough to co ntribu te to the m echanism of activity dist ribu- 
tion because of the threshold TI. As a result, we only have 
to integrate over the region of the bar in Eq. 6 

tions, Q and 7c’ were identical. A 
o-so spanning the low-pass beha 

reasonable 
vior range 

range 
found 

for 7 is 

experi- 
mentally with drifting gratings (Ikeda and Wright 1975a). 
This is not the time constant of the membrane, which typi- 
cally is on the order of 20 ms (see DISCUSSION). 
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It is more difficult to determine the range for A. Short- cortical simple cell with an excitatory zone width of - 1 O 
range interactions have been reported at distances <0.30” (Jones and Palmer 1987a). Histograms for a bar moving 
in the visual field (Ganz and Felder 1984). However, there along the preferred axis of motion (insets in Fig. 3, C and 
are indications that interactions span as much as 5” (Duy- D) show that the temporal response profile looks similar to 
sens 1987; Jones 1970). We used a range of O-2’ for A. that of cortical cells. The spatiotemporal mechanisms in- 

cluded in the simulation (7 = 80 ms, X = 0.4”) lead to a 
METHODS directionally tuned behavior for the odd-shaped receptive 

Data presentation 
field (Fig. 3 D) as explained in Fig. 2 B. The orientational 
component is approximately the same for moving and sta- 

Most of the figures include three-dimensional plots of the Ga- tionary flashing bar (Fig. 3 F). 
bor function that represent the shape ofthe receptive field. Orienta- 
tion tuning curves are displayed as polar plots. The peak response 
(the maximum value of AT,) for a given direction of motion is 

Velocity lo w-pass cells 

shown as a vector in a polar coordinate diagram. Because the Cells generally act as low-pass filters, but the importance 
experimental data were recorded in 30” steps, the same step size is of distributing activity is unclear, and this mechanism need 
also used in the simulations. Because of the lack of noise, a finer not necessarily be a feature of all cells. Figure 4 shows the 
step size does not affect any of the results reported here. All polar 
plots are normalized with respect to their peak value. 

response of the cell in Fig. 3 B without the activity distribu- 
tion mechanism. 7 was set to 80 ms on the ,efi and, to show 

Experimental procedures 

A complete review of the real data that were used to compare to 
simulation results is found in Orban ( 1984). A few previously 
unpublished results presented here’ were obtained in extracellular 
recordings from area 17 of the paralyzed and anesthetized cat. 
These data were measured during the experiments reported by 
Worgotter and Eysel ( 1989). Experimental procedures are de- 
scribed in detail in that paper. 

a limit case, to the very low value of 1 ms on the right. 
The velocity tuning curve (Fig. 4B) shows the expected 

velocity low-pass behavior (see Fig. 2A) with a -3-dB point 
(68% of maximum) of -5O /s. The velocity response curve 
is similar to curves from real velocity low-pass cells (inset in 
Fig. 4B). 

The velocity tuning curve corresponding to small 7 is flat 
for low to moderate velocities (Fig. 4 D ), resembling that of 
a velocity broadband cell. Only at very high velocities is the 

RESULTS 
activity reduced significantly; the -3-dB point is > 100°/s. 
For comparison, tuning curves from real velocity broad- 

Figure 3 shows typical examples of polar plots obtained band cells are shown in the inset of Fig. 4 D. 
with the model for moving bars (Fig. 3, Cand D) and flash- Figure 5 shows the effect of varying 7 and cX on the veloc- 
ing bars (Fig. 3, E and F). The spatial parameters of the ity tuning curves of the velocity low-pass and broadband 
Gabor functions (Fig. 3, A and B) are for an “average” cells in Fig. 4. Increasing 7 strengthens the velocity low-pass 

A C 

Movir 
Bar 

D 

E 

F 

FIG. 3. Typical simulated cell behavior. Each row represents 1 cell. A and B: Gabor functions that were used to model the 
spatial receptive-field structure. Parameters: ox = 0.4”, fly = 0.5”. A:& = 0.6 l/O. B:.fo = 0.4/O. Scale bars: 1 O. Cand D: tuning 
curves for moving bars. Parameters: T = 80 ms, X = 0.4”, hj = 10”. C: v = 3.84”/s. D: v = 25”/s. Insets: histograms for a 
forward and backward sweep in the preferred direction. ,5 and F: polar plots for stationary flashed bars centered at the peak 
of the largest excitatory region. 
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B 

Velocity deg/s 

D 

01 . 1 10 100 

Velocity degk 

FIG. 4. Results from the model with only low-pass filtering. Simulations of both velocity low-pass (left) and velocity 
broadband (right) cells are shown. The velocity low-pass cell was generated with the same parameters as Fig. 3, Band D ( CJ~ = 
0.4O, fJy = OS”& = 0.408/“, 7 = 80 ms, X = 0.4”, hl = 10”; u = 25”/s); the parameters ofthe broadband cell were the same 
except that 7 = 1 ms. A and B: tuning curves for v = 25” /s. C and D: velocity tuning curves. Insets: (modified from Orban 
1984, Fig. 8 / 5 ) typical recorded velocity low-pass and broadband behavior. Response is shown as a percentage of the largest 
value on the particular velocity tuning curve. 

behavior (Fig. 5, A and B) because increasing 7 is like shift- mechanisms together produce velocity-tuned behavior in 
ing the curve in Fig. 2A to the right. Changing ox is equiva- the cortical cells, as explained in Fig. 2C. However, with 
lent to changing the size of the cortical cell’s receptive field. odd Gabor functions the simulated cells show neither the 
A moving bar remains longer in a larger receptive field, strong direction selectivity nor the stability of direction pref- 
causing the cortical cell to respond more at all velocities. erence to contrast reversal, which most velocity-tuned cells 
However, because the curve in Fig. 2A is nonlinear, this have. An odd receptive field produces exactly the same re- 
effect is especially pronounced for high velocities. There- sponse to a light bar moving in the preferred direction and a 
fore the result in a rightward shift of the velocity tuning dark bar moving in the opposite direction because the 
curve, as can be seen in Fig. 5, C and D. This result reflects heights of the largest positive and negative peaks of the Ga- 
findings that cells with wider receptive fields respond more bor functions are equal. Therefore without additional mech- 
strongly to higher velocities (Baker 1988; Baker and Cyn- anisms the preferred directions for light and dark bars will 
ader 1986; Orban et al. 198 la). be opposite. 

Velocity-tuned cells 

Velocity-tuned cells have a velocity tuning curve with a 
distinct maximum. The low-pass and activity distribution 

However, it has been shown that few simple-cell recep- 
tive fields have exactly even or odd symmetry; in fact, val- 
ues of # (the phase shift in Eq. 1) are spread out fairly 
uniformly over possible values (Field and Tolhurst 1986; 
Jones and Palmer 1987a). An asymmetric receptive field 
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FIG. 5. Effect of parameter values on the model. Parameters that were 
not varied are the same as in Fig. 3, B and D (ox = 0.4”, c,, = OS”,& = 
0.408/O, T = 80 ms, X = 0.4”, hl = 10”; v = 25”/s). A and B: r variations. C 
and D: receptive-field size variations. The product a,fo was kept constant 
at 0.16 so that only the scale of the receptive field changed. 

will not respond equally to dark and light bars moving in 
opposite directions because the largest positive and nega- 
tive peak heights are not equal. Consequently, the threshold 
of the cortical cell can be set to eliminate the response to the 
less effective stimulus. As a result, the cell will still respond 
strongly to one contrast and not at all to the other. This 
corresponds to the behavior of the velocity-tuned direc- 
tional selective DSi cells (Ganz and Felder 1984). Obvi- 
ously DS1 cells are an extreme case; by adjusting the thresh- 
old any intermediate response to bars of reversed contrast 
can be obtained. 

Velocity tuning curves for light and dark bars moving in 
their preferred directions are shown for such a cell in Fig. 
6C. This cell responds most strongly to a light bar moving 
rightward. The histogram in the inset (Fig. 6B) demon- 
strates that thresholding, as expected, does not significantly 
affect the temporal pattern of the response. The mean direc- 
tion index ( MD12) averaged over all velocities is 66.9; the 

’ The direction index DI is defined as DZ = lOO[ (I&, - IR,,,& IR,] 
with IRp, the peak impulse rate in the preferred direction and ZRNPD the 
peak impulse rate in the nonpreferred direction. The mean direction index 
MD1 is defined as A4DI = C 

i 
IR,, DIi/ c IR,, summing the values over 1 

i 

all tested velocities i (Orban 1984). 

parameters in this simulation have been set for the lower 
limit case (MDI > 66), which qualifies a cell as direction 
selective (DS type) (see also Orban 1984). This case was 
chosen so that the cell shows pronounced response to a light 
bar and still has a perceptible response to a dark bar. It is no 
problem to eliminate the remaining response to a dark bar 
completely by changing the phase shift (4) or the threshold. 
Also, changes in the parameter set can be made to raise the 
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FIG. 6. Velocity-tuned DS cells can be generated with a phase-shifted 
Gabor function with a threshold. A: the Gabor function used. Deviation 
from odd symmetry is hardly perceivable. Parameters used: cX = 0.8”, gY = 
0.5”, 4 = 19”, .fi = 0.255/O. Scale bars are 1”. B: polar plot for a bar 
moving at 13”/s (optimal velocity). 7 = 80 ms, X = 2.0°, h, = 10”. The 
threshold used was 0.6 of the response to a light bar moving in the preferred 
direction at the optimal velocity. This cell has a mean direction selectivity 
index of 66.9. The histogram for a light bar moving along the axis of 
preferred motion at the optimal velocity is shown. C: velocity tuning 
curves for a dark and a light bar. Note that the preferred directions for dark 
and light bars are opposite. Any dark bar response of such a small ampli- 
tude will be lost in noise (maintained discharge) in a physiological experi- 
ment. Inset: ( modified from Orban 1984, Fig. 8/5) typical velocity-tuned 
behavior of real cortical cells. 
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MD1 to values close to 100. However, there is a trade-off 
between the strength of direction selectivity and the re- 
sponse strength for the nonoptimal contrast: decreasing 4 
increases direction selectivity but also increases the re- 
sponse to the nonoptimal contrast. 

Figure 7 shows the effect of parameter variation on the 
velocity tuning of the cell from Fig. 6. For the same reasons 
as for velocity low-pass cells (Fig. 4), increasing 7 lowers the 
optimal velocity (Fig. 7A), and increasing ax raises the op- 
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60 
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ox = 0.2' 0.4' 0.8O 1.6" 
\ / 

1 10 100 

Velocity deg/s 

timal velocity (Fig. 7 C). insets show cross sections of the 
receptive fields for the various values of ax. Larger values of 
X result in higher optimal velocities (Fig. 7B). This is in 
agreement with experimental findings that show that a 
longer range spatial interaction leads to a higher optimal 
velocity (Baker 1988; Mikami et al. 1986). The phase shift 
4 has essentially no effect on velocity tuning (Fig. 7 D). 
Insets show cross sections of the receptive fields for various 
values of $. 

1 10 100 

Velocity deg/s 
FIG. 7. Effect of various parameters on the velocity tuning of the cell in Fig. 6. Basic parameter set: cX = 0.8’, oY = 0.5”, 

f0 = 0.255/O, 7 = 80 ms, X = 2.0”, bl = lo”, 4 = 19”. The threshold used was 0.6 of the response to a light bar moving in the 
preferred direction at the optimal velocity. A : variations of 7. B: variations of X. C: variations of receptive-field size (holding 
a,& constant at 0.2 so only the scale of the receptive field changes). Plots to the right are cross sections of Gabor functions 
through the x-axis. D: variations of phase shift. Small plots to the right are cross sections of the Gabor functions through the 
x-axis, demonstrating how changes in ox or @I affect the shape of the receptive field. 
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Responses to moving dots 

Recently W&-getter and Eysel ( 1989) reported that the 
strongest response to a small moving dot in most cortical 
cells is obtained when the dot moves along the long axis of 
the receptive field. Figure 8, A and B, shows a result from 
this study that is reproduced in the simulation (Fig. 8, C 
and 0). Such responses are not surprising if the receptive 
field is analyzed according to the model. A dot can remain 
entirely within the excitatory region of the receptive field if 
it moves vertically, so no inhibition is ever seen by the corti- 
cal cell. A bar, however, must be rotated by 90° to cover the 
excitatory zone of the receptive field optimally. The Gabor 
receptive field is small and odd symmetrical (Fig. 8 E). This 
corresponds roughly to the shape of the real receptive field 
shown in Fig. 1 in W&getter and Eysel ( 1989), although a 
small and weak off-excited region was found in the real cell 
on the right side of the receptive-field center. 

In several cortical cells a superposition of the axial re- 
sponse and the orthogonal response to a bar was observed 
(Fig. 9, A and D) during stimulation with a short bar (bar 
length, between 0.5 and 1.3 O ) . Nondirection-selective 
(NDS) cells with this type of behavior produce a four-lobed 
polar plot (Fig. 9A). The same behavior can be obtained 

(Fig. 9B) with an even, wide Gabor function (Fig. SC). 
This corresponds to the basic shape of the real receptive 
field as measured by hand plotting (not shown). The rather 
unusual shape of the receptive field in such cells was, in 
most cases, accompanied with an indistinct separation be- 
tween ON- and om-zones, which made it difficult to classify 
the cells as clearly simple or complex. 

For some DS cells (e.g., Fig. 9 D) the dot response may be 
a bilobed polar plot with some residual direction selectivity 
along the preferred axis of motion for a bar (0’ axis, in this 
case) (compare with Fig. 3A in Worgotter and Eysel 1989). 
The model shows this direction-selective behavior for a dot 
(Fig. 9 E). An odd Gabor function (Fig. 9 F) was used, 
which is similar to the real field (see Fig. 3 B in Wiirgotter 
and Eysel 1989). A similar but less pronounced behavior 
can already be seen in Fig. 8, B and D. 

Previous investigators (Henry et al. 1974a,b) reported 
that the preferred axis of motion for a dot is the same as for 
the bar and that the dot has a wider polar plot, i.e., a re- 
duced tuning strength. This disagrees with the findings of 
W&getter and Eysel ( 1989). The discrepancy between the 
studies can probably be explained by the large dot size that 
Henry et al. ( 1974a) used (diameter >0.4O ). Also the stimu- 

FIG. 8. Recorded and simulated responses to bars 
and dots. Note that the axis of preferred motion for a dot 
is shifted 90” from that ofa bar. A and B: (modified from 
Fig. I, B and C in Worgotter and Eysel 1989) polar plots 
for moving a moving bar/dot recorded from a simple cell 
in cat area 17. C and Ik polar plots showing the response 
of the model to a moving bar or dot. Parameters: oX = 
O.l”, (TY = 0.5”,1;, = 2/O, 7 = 35 ms, X = 0.15”. Thedot 
was modeled as a very short bar ( length, 0.1 O ). Response 
to a dot is -l/2 as large as the response to a bar. E: Gabor 
function used to model the spatial receptive field. 
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FIG. 9. The model can account for some other unusual polar plots for moving bars that have been observed. A: a 
recorded polar plot for a moving bar of intermediate length (4.1 O ) (F. Worgiitter and U. T. Eysel, unpublished data). B: 
polar plot for a moving bar generated by the model. Parameters: (T, = 0.6”, cY = 0.23”,/; = 1 .O/ O, 7 = 200 ms, X = 0.9”, v  = 
1 1.5 O /s, bl = 0.95”. C: the Gabor function used. Scale bar is 1 O. D and E: polar plot of a simple cell’s response to a moving 
dot (modified from Fig. 3A in Worgotter and Eysel 1989) and a simulation of it. Parameters used in &Y were ox = 0.2”, CQ = 
OS”,f;, = 1.0/O, 7 = 100 ms, X = 0.4’, v  = 8.0”/s, bl = 0.1 O. F: the Gabor function used to generate the results in E. Scale bar 
is 1”. 

lus may have been misaligned with respect to the receptive- 
field center (see Fig. 4 in W&-getter and Eysel 1989). Under 
these conditions our model reproduces the results of Henry 
et al. 

Figure 10 shows simulations using an even Gabor recep- 
tive field and an offset stimulus that was centered on X in 
Fig. 1OA similar to the offset used by Worgijtter and Eysel 
(Fig. 4 in Wijrgiitter and Eysel 1989). The response to the 
long bar (length, 10’ ) is normal (Fig. 10B) because the bar 
is much longer than the receptive field. The tuning strength 
is reduced for shorter bars, whereas the preferred axis of 
motion remains the same (Fig. 10, C and D), correspond- 
ing to the findings of Henry et al. ( 1974a). The dot size used 
to compute the dot response (Fig. 1OE) is much smaller 
(diameter, 0.1” ) than all dot sizes used by Henry et al. Thus 
the preferred axis of motion for the dot is now different 
from that for the bar. 

In contrast to the examples with correct stimulus align- 
ment (Figs. 8 and 9), in this case the preferred axis of mo- 
tion for the dot is tilted ~90” to that of the bar. A properly 
aligned dot always moves along the ridge of the Gabor func- 
tion when it moves vertically; a misaligned dot, on the other 
hand, can produce a larger response if it moves at a slight 
angle from the vertical, because then it will cross the ridge. 
In the report Wiirgotter and Eysel ( 1989) found this behav- 
ior in -30% of the cells. Our model suggests that this was 
caused by a small misalignment between the receptive-field 
center and the center of rotation of the stimulus. 

Predict ions 

VELOCITY TUNING FOR DOT STIMULI. Velocity tuning curves 
for a simulated velocity low-pass and a velocity-tuned cell 
in response to bars and dots are shown in Fig. 11 B for the 
Gabor receptive field in Fig. 11 A. Velocity tuning for the 
bar is measured conventionally along the preferred direc- 
tion and for the dot at right angles to that. The velocity 
tuning curves for dot simulation are shifted to higher veloci- 
ties than for a bar. This effect can be expected because the 
response to different velocities is influenced by the recep- 
tive-field size. In the horizontal direction the width of the 
receptive field is determined by the spatial period, 1 /f,. In 
the vertical direction the effective width (i.e., length) de- 
pends only on Q. As shown above (see Figs. 5 and 7 ), cells 
with wider receptive fields have a higher response at larger 
velocities. Consequently, the response along the long axis 
has a higher optimal velocity than the response across. 
ORIENTATION TUNING AT NONOPTIMAL VELOCITIES FOR BAR 

AND DOT STIMULI. From the above result (Fig. 11) one 
would also expect that the polar plot of a cell might be 
different at different velocities because the velocity tuning 
curves of stimuli moving in different directions are differ- 
ent. For the receptive field shown in Fig. 11 A, the response 
to a bar moving in the vertical direction decreases less than 
the response in the horizontal direction (see above), so the 
tuning curve for a bar should be broader at high velocities. 
Figure 12, A-E, show this result for a velocity-tuned cell. 
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Velocity deg/s 

FIG. 1 1. Optimal velocity for a dot is always higher than for a bar. All 
parameters are the same as in Fig. 3..1 ((r.\- = 0.4”. u3, = O.S”,.j~ = 0.6 13/O, 
r 7 80 ms. X -L 0.4”. i), ~1 10”). ..I : the Gabor function. Scale bar is 1 O. B: 
velocit!, tuning curves for bars and dots moving along their respective 
optimal axes of stimulation for a simulated velocity low-pass and velocity- 
tuned ~11. 

Velocity is increased in four steps starting at 0.1 O/s, includ- 
ing the optimal velocity 2.5” /s (Fig. 12C). Scale bars un- 
derneath the polar plots show the response strength relative 
to the optimal response. A similar, although much less pro- 
nounced, effect occurs for a velocity low-pass cell. In these 
cells for the highest velocities tested the tuning is reduced to 
an extent similar to that shown in Fig. 12D. 

The reverse effect-sharpening of tuning with increasing 
velocity-arises for the moving dot (Fig. 12, F-J). The op- 
timal velocity for the dot ( 15O /s) is higher than that for the 
bar and falls in between Fig. 12, H and I. 

FIG. 10. If the bar is not passed exactly over the center of the receptive 
field. the axis of preferred motion for a dot will not be rotated 90” relative 
to that of a bar. ,,I : contour plot of the Gabor function used. Areas where 
the Gabor function is negative are hatched. The center of the function is 
marked by a dot: the bar’s center of rotation is marked by the X, which 
corresponds to a shift ofO.17” in the -v-direction and 0.4” in the J-direction. 
Parameters: oT, = 0.4O, 0). = 0.9’. .fo = 1.0/O. 7 = 80 ms. X = 0.8’, C = 
8.0”/s. Scale bar is 1 O. H-I:‘: for shorter bars a widening of the polar plot is 
observed until for a very short bar ( i.e., dot) the axis of preferred motion is 
shifted 90” away from that of a long bar. Relative response amplitudes 
( from toll to /WUWH) arc I, 0.6, 0.46. and 0.15. 
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FIG. 12. Polar plots for bars and dots moving at various velocities. As velocity increases the tuning sharpens for a dot and 
widens for a bar. All parameters are the same as in Fig. 10 (ox = 0.4”, G,, = O.S”,fO = 1.0/O, T = 80 ms, X = 0.8”). Velocities 
used (from k$ to right): 0.1, 0.5, 2.5 (optimal velocity for a bar), 20, and 5OO”/s. Scale bars below the figures indicate the 
relative amplitude of the response. Amplitude of the dot response is much smaller than that of a bar at the same velocity. For 
purposes of comparison, it has been scaled up by a factor of 4. 

DISCUSSION 

Many aspects of simple cell behavior can be explained by 
LN models, and the use of Gabor functions to describe a 
receptive field has been very successful in predicting the 
response to stationary (i.e., flashing or counter-phasing) 
stimuli (Daugman 1980, 1984; Jones and Palmer 1987b; 
Kulikowski et al. 1982; Marcelja 1980). Static stimuli, how- 
ever, ignore temporal effects, which also characterize a cor- 
tical cell. Therefore, in our model, Gabor functions are sup- 
plemented with neurobiologically plausible spatiotemporal 
mechanisms. We combine the low-pass behavior of the 
cells (Ikeda and Wright 1975a; Movshon et al. 1978~) and 
the mechanism of distributing the activity (Bishop et al. 
197 1; Emerson and Gerstein 1977b; Eysel et al. 1987, 1988; 
Goodwin and Henry 1975, 1978; Goodwin et al. 1975; 
Movshon et al. 1978b; Sillito 1975, 1977) in a rather simple 
model that is much more analytically manageable than net- 
work models of cortical cells ( Wijrgijtter and Koch, 199 1). 

The large number of inputs that converge onto one corti- 
cal cell (Freund et al. 1985a,b; Martin 1988) suggests that 
even the well-distinguishable ON- or or+subfields in fact 
consist of a multitude of “microsubfields,” which all con- 
tribute to the response of the subfield. This is also supported 
by results demonstrating that direction selectivity can be 
elicited within small regions of one subfield (Ganz and 
Felder 1984; Goodwin et al. 1975). The central idea behind 
this study is that all spatiotemporal mechanisms included 
in the model act continuously in space and time. We found, 
somewhat unexpectedly, that such a simple model can ac- 
count for the majority of important aspects of direction 
selectivity and velocity tuning in cortical cells. In addition 
the more recently reported axial response to dot stimula- 
tion (W&getter and Eysel 1989) is also reproduced with 
our model. However, some aspects of cortical cell behavior 

(e.g., DS, cells) can be explained only with additional modi- 
fications discussed below. 

Spatiotemporal mechanisms-the parameter 
ranges of the model 

Both spatial interactions between the units of a “direc- 
tion detector” and purely temporal mechanisms can con- 
tribute to direction-selective behavior (Barlow and Levick 
1965; Hassenstein and Reichardt 1956). In early studies it 
was demonstrated that spatiotemporal feed forward of activ- 
ity is involved in the generation of direction selectivity and 
velocity tuning (Bishop et al. 197 1; Goodwin and Henry 
1975 ). Inhibitory feed forward along the nonpreferred di- 
rection has been commonly suggested as a major mecha- 
nism (Bishop et al. 197 1; Eysel et al. 1987, 1988; Sillito 
1975, 1977). Facilitation along the preferred direction has 
also been found (Emerson and Gerstein 1977b; Movshon 
et al. 1978’0). In most of the studies, however, a clear separa- 
tion between purely temporal mechanisms (e.g., delays) 
and purely spatial mechanisms (e.g., distance, convergence 
pattern, etc.) was not made. A recent study by Reid et al. 
( 1987) showed that direction tuning can only be achieved if 
the receptive fields include two asymmetries: one in the 
spatial and the second in the temporal domain. An example 
of such a mechanism is given by Soodak ( 1986) who mod- 
eled a directional selective field by including a phase lag 
between the excitatory and inhibitory regions of the sub- 
fields (Hassenstein and Reichardt 1956). Our approach 
makes use of the basic observation of Reid et al. ( 1987), 
and like them we found that true directional selectivity is 
achieved in our model only after including a strong thresh- 
old nonlinearity. 
TEMPORAL DOMAIN. Cortical and subcortical cells show re- 
sponse latencies and low-pass behavior, both of which can 
contribute to a delay mechanism (Soodak 1986). The la- 
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tency includes multiple propagation delays between the 
photoreceptors and the actual cell. For cortical cells the 
latency to flashing bar stimulation falls within a range of 45 
and 80 ms (Baker 1988). This mechanism is not modeled, 
and the possible effect of including it in the simulation will 
be discussed below. 

Low-pass filtering also embodies aspects of a delay mech- 
anism because, during stimulation with a step function, the 
maximum response amplitude will be reached only after a 
delay that is determined by the time constant of the filter. 
The temporal response of the population of simple cells to 
flashing stimuli is not homogeneous. Although the cell re- 
sponses are basically linear (mostly showing the null-re- 
sponse to counter-phasing gratings at a given phase shift) 
(Movshon et al. 1978a), many of them show a fast and 
steep phasic component at stimulus onset and settle only 
after a longer time to a certain tonic response level. Phasic 
and tonic components are expressed with different strength 
throughout the entire simple cell population (Duysens et al. 
1982; Ikeda and Wright 1975a,b), making it even more 
difficult to determine the actual low-pass filter time con- 
stant. Also, the time constant is not simply the passive 
membrane constant but is much longer (Baker 1988; 
Emerson and Gerstein 1977a; Ganz and Felder 1984) im- 
plying additional mechanisms. The most reliable estimates 
are obtained from curves showing the response amplitude 
to moving sinusoidal gratings of optimal spatial frequency 
at different temporal frequencies (Holub and Morton-Gib- 
son 198 1; Ikeda and Wright 1975a; Movshon et al. 1978~). 
Cells in area 17 show low-pass behavior with a -3-dB falloff 
at -2-3 Hz, corresponding to time constants of 53-80 ms. 
Most of the simulation results were obtained within this 
parameter range, although we have also included rather 
long time constants (maximum 160 ms) to show extreme 
cases. 

SPATIAL DOMAIN. Experimental evidence suggests that spa- 
tial interactions exist within the receptive field (Bishop et 
al. 197 1). For example, inactivation of small regions of cor- 
tical tissue at - 1 mm lateral distance of the cell under study 
can result in an altered direction specificity (Eysel et al. 
1988). Near the projection equivalent of the area centralis, 
a distance of 1 mm represents the outer regions of the recep- 
tive field. Also, the results of Henry et al. ( 1978) show that 
there is a nonlinear contrast dependency of the response to 
two simultaneously flashed bars. Furthermore, an experi- 
ment using simultaneously flashed double bars was done by 
Heggelund ( 1986a,b), which clearly indicates a nonlinear 
spatial interaction. 

None of these experiments clearly shows the shape of the 
interaction; for this reason we chose to use a decaying expo- 
nential because it is computationally simple even though it 
excludes a specific long-range connections as those de- 
scribed by Gilbert (for a review see Gilbert 1985). The spa- 
tial interaction constant X (see Eq. 3) is varied between 0 
and 2”, corresponding to many of the findings about inter- 
actions between (or within) subfields (Bishop et al. 197 1; 
Duysens 1987; Ganz and Felder 1984; Heggelund 1986b; 
Jones 1970). 

MAPPING THE MODEL ONTO LGN AND CORTLX. Without 
doubt, the model is an oversimplification of the compli- 

cated cortical network. Because it is meant to implement 
general mechanisms that are likely to exist within this net- 
work, its basic task is not to reproduce the structure of the 
cortex [for such an approach see Wijrgiitter and Koch, 
( 199 1 )]. Nevertheless, several features of the cortical net- 
work are inherently present in our simple model. For exam- 
ple, it is very likely that velocity low-pass cells reflect a 
simpler computational level than velocity-tuned cells (see 
Orban 1984). Accordingly, velocity low-pass behavior can 
already be obtained from the cells in the intermediate level 
in Fig. 1, whereas only the top level cell exhibits velocity 
tuning. Furthermore, the cells in the intermediate level also 
exhibit orientation-selective behavior because they receive 
input from a row of LGN cells (Hubel and Wiesel 1962). 
Thus the model does not require unoriented cortical cells, 
in agreement with cat data. In addition, as long as we as- 
sume that any feedback connection strength in the cortex is 
small (which is likely given the high convergence), the 
straight feed-forward architecture of our model can approx- 
imate the realistic cortical network, which also contains 
feedback (Shamma 1989). In general, there exists a trade 
off between the transparency of a model and its realistic 
detail. The analytic approach taken here enables us to in- 
vestigate some basic mechanisms while at the same time to 
implement the model so that a coarse mapping onto LGN 
and cortex is still possible. 

Relationship between direction selectivity 
and velocity tuning 

Visual cortical cells are classified as velocity broadband, 
low-pass, high-pass, or tuned (Orban 1984; Orban et al. 
198 1 a). [Only three classes are used for direction selectiv- 
ity: nondirection-selective (NDS &UX < SO), direction 
asymmetric (DA; 50 < lMD1 < 66) and direction selective 
(DS MDI 2 66)]. According to Orban and co-workers (Or- 
ban 1984; Orban et al. 198 1 a,b), most velocity-tuned cells 
are DS. Table 1 shows this and also that the other classes 
(velocity low-pass, high-pass, and broadband) are predomi- 
nantly NDS or DA. Also, velocity high-pass cells constitute 
only a small minority of the cells in area 17 of the cat (Or- 
ban 1984; Orban et al. 198 la); in monkey area V 1, no 
velocity high-pass cells are found at all (Orban et al. 1986). 
Therefore we excluded velocity high-pass cells from our 
study, although we observed that eliminating the last low- 
pass filtering step in the model results in a high-pass behav- 
ior (not shown). 

Orban ( 1984) discusses velocity low-pass behavior as a 
passive cell property in which the smaller response to larger 
velocities reflects only the shorter duration of stimulus ex- 
posure with increasing velocity. Velocity low-pass cells are, 
in fact, generated by the model using only the low-pass 
mechanism. Depending on the values for 7, a simulated cell 
will behave like either a velocity low-pass or a broadband 
cell, so the division between these two classes is continuous 
in the model. In real cells this division is not as pronounced 
as the division between these two groups and the velocity- 
tuned cells (Movshon 1975; Orban 1984; Orban et al. 
198 la). Figure 4 shows a DA velocity low-pass cell (Fig. 
4A ) and a NDS velocity broadband cell ( Fig. 4B). In princi- 
ple, any combination of NDS and DA cell behavior with 
velocity low-pass or broadband tuning can be achieved with 
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the model varying 7 and the shape of the receptive field ( ax, 
&). However, achieving true DS with low values of 7 (i.e., 
in velocity broadband cells) requires unrealistic spatial 
parameter settings. It is much more likely that DS velocity 
broadband cells are generated by convergence of many DS 
velocity-tuned cells with uniformly distributed optimal 
velocities. 

Simulated DA cells behave according to the synergy 
model for direction selectivity (Hubel and Wiesel 1962) 
reversing their preferred direction when the stimulus con- 
trast is reversed. DS and DA cells constitute 54% of all (sim- 
ple and complex) cells in area 17 (Orban 1984); according 
to different reports, - 15-40% of the simple cells are DA- 
type cells (Ganz and Felder 1984; Orban 1984; Pettigrew et 
al. 1968). The clear majority of the real DA cells are veloc- 
ity low-pass or broadband cells (Table 1) and show reversal 
of the preferred direction when the stimulus contrast is re- 
versed (Bishop et al. 1974). 

Velocity-tuned cells are predominantly strongly DS (Or- 
ban 1984). DS cells make up 30-60% of the simple-cell 
population (Ganz and Felder 1984; Orban 1984; Pettigrew 
et al. 1968). They have been subdivided into DS, and DS, 
cells according to their response to contrast reversal of the 
bar stimulus (Ganz and Felder 1984). Ganz and Felder 
( 1984) found that 3 1% of DS cells (in their study 24.6% of 
the simple cells) respond to only a light or a dark stimulus 
(DS, cell behavior). The model reproduces this with phase- 
shifted odd symmetrical Gabor fields and a threshold 
(which also improves directional selectivity). 

DS, cells respond with the same preferred direction to 
light and dark bars. About 20% of the cells show this behav- 
ior (Ganz and Felder 1984) which cannot be simulated by 
our model. However, summing two DS, cells with receptive 
fields phase shifted by 4 = 180” would result in DS, 
behavior. 

Problem ofspatiotemporal separahilit v - 

Our model has two levels of complexity that are reflected 
by either excluding or including the mechanism of activity 
distribution. Without activity distribution it is not neces- 
sary to consider the top-level cell in Fig. 1, because the cells 
in the intermediate level basically produce the same DA 
velocity low-pass behavior as the top-level cell. The equa- 
tions that generate this behavior ( Eqs. l-4) reflect a system 
that is separable in space and time. It is conceivable that the 
separable cells observed by Baker and Cynader ( 1988) be- 
long to this category. Unfortunately, no clear account on 
the actual direction selectivity of the cells is given in this 

Dot responses 

Visual cortical cells respond more strongly to a dot mov- 
ing along the long axis of the receptive field than to a dot 
moving across (Wiirgotter and Eysel 1989). Because this 
response can even be stronger than the response to an opti- 
mal flashing bar, it has been suggested that temporal facilita- 
tion is involved. The temporal mechanisms in the model 
enable it to reproduce this behavior. Also, depending on the 
shapes of the Gabor functions for the receptive fields, some 
unusual tuning curves regarding superposition of the bar 
and dot responses are reproduced (Fig. 9). This shows that 
a dot response is a fairly straightforward result, which can 
probably be achieved with the majority of linear filter mod- 
els that include temporal interactions. 

The transition from the bar response into the orthogo- 
nally oriented dot response was not sufficiently explained 
in the previous report (W&-getter and Eysel 1989). In par- 
ticular, it remained unclear why some cells seem to show a 
preferred axis of motion for the dot (90” apart from that 
for the bar. Both results can be entirely explained by the 
model if the center of stimulus rotation is offset from the 
center of the receptive field. The older statement (Henry et 
al. 1974a), that dots and bars apparently have the same 
preferred axis of motion but different tuning strength, is 
also explained by the model if, in addition, the dots are too 
large. 

Worgotter and Eysel ( 1989) also show examples of cells 
with an asymmetrical response for a moving dot. In these 
cells the response is larger for motion in one direction along 
the receptive-field long axis than for motion in the opposite 
direction. Such a behavior was predominantly found in 
“end-stopped” cells and indicated the existence of inhibi- 
tory end-zones with different strength on either end of the 
receptive field. This behavior could be easily introduced in 
the model by the use of modified Gabor functions with a 
periodicity also along the y-axis of the receptive field. 

The model predicts that the optimal velocity for the dot is 
significantly higher than that for the bar. This effect is pre- 
sumably due to the elongation of the receptive field. It has 
been observed that cells with wider receptive fields have 
higher optimal velocities for bars. In analogy to this, the 
optimal velocity for a dot measured along the long axis of 
the receptive field is larger than the optimal velocity for a 
bar that is measured along the short axis. Furthermore, the 
tuning strength for the dot increases with increasing veloc- 
ity, whereas for the bar it decreases (Fig. 12). This effect 
was strong in the simulated velocity-tuned cells and much 
weaker in velocity low-pass cells (-25% of the effect in 

report, which seems to conflict with the observation of velocity-tuned cells). 
McLean and Palmer ( 1989). They find that predominantly 
nonseparable cells exhibit true direction selectivity. How- 
ever, it is possible that both studies subsample the cortical 

Improving the model-additional mechanisms 

cell population and that, in fact, separable receptive fields Including a response latency would not change the quali- 
are associated with low direction tuning, whereas nonsepar- tative behavior of the model. Shorter time constants could 
ability is accompanied by strong direction selectivity. This be used in the low-pass filter, resulting in a sharper onset of 
is also suggested by our model. We do not get direction the response. 
selectivity without introducing the activity distribution Adaptation effects in cortical cells lead to continuous re- 
mechanism with its associated thresholds, i.e., only after duction of the response during prolonged stimulus presenta- 
implementing a nonseparable receptive field ( Adelson and tion. In some cells the response can be completely elimi- 
Bergen 1985). nated after a while. The time constants for adaptation are 
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rather long (Baker 1988) so this effect is probably impor- work approaches toward more complicated (e.g., complex) 
tant only for very slow velocities. cell behavior. 

Including discontinuities in the spatiotemporal interac- 
tions is probably the most interesting way to improve the The authors are grateful to U. Eysel, R. Freeman, F. Perez, H. Suarez, 

model. It is a crude approximation in our model to assume and D. Van Essen for critical comments on the approach and the manu- 

that the distribution of activity is isotropic. It might be 
script. In particular, we thank C. Koch for many fruitful discussions. F. 

more realistic to assume inhibition is distributed only in the 
Worgijtter was supported by Grant Wo 388- 1 of the Deutsche Forschungs- 
gemeinschaft, Federal Republic of Germany. The authors gratefully ac- 

nonpreferred direction, and facilitation only in the pre- knowledge the support from the Air Force Office of Scientific Research 

ferred direction. Isotropic distribution of activity results in and of a NSF Presidential Young Investigator Award and funds from the 

a velocity-tuned behavior along the preferred and the non- James S. McDonnell Foundation to C. Koch. 

preferred direction. Most cells, however, show velocity low- 
Address for reprint requests: F. Worgiitter, Institut fur Physiologie, 

Ruhr-Universitat Bochum, D-4630 Bochum, Federal Republic of 
pass behavior in the nonpreferred direction (Orban 1984). Germany. 

This could be easily achieved by assuming that spatiotem- 
poral interactions occur only along the preferred direction. 
However, analytical implementation of an anisotropic 
filter function complicates the model to an extent that ex- 
tinguishes the model’s basic merit, its simplicity. 

nal intention of implementing an analytic form for the re- 
ceptive field. 

Direction selectivity can be generated in cortical cells 
even with very small stimulus displacements (Ganz and 
Felder 1984; Goodwin et al. 1975). This shows that even 
with a subfield there is substructure. The continuous spa- 
tial-temporal interactions included in the current model 
partly account for such behavior. There are, however, indi- 
cations that inhibitory interactions can be elicited even 
within an excitatory region. This suggests that inhibitory 
cells converge onto the cell under study with a receptive 
field that overlaps its excitatory zone. The amplitude of the 
inhibition, however, it not sufficient to eliminate the excit- 
atory response, so the overall response of that part of the 
field is excitatory, but it may be strong enough to modify it. 
Such a behavior could only be included in a model by sub- 
dividing the receptive field. Doing so would lose the origi- 
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