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A parallel algorithm operating on the units (“neurons”) of an arti�cial
retina is proposed to recover depth information in a visual scene from
radial �ow �elds induced by ego motion along a given axis. The system
consists of up to 600 radii with fewer than 65 radially arranged neurons on
each radius. Neurons are connected only to their nearest neighbors, and
they are excited as soon as a suf�ciently strong gray-level change occurs.
The time difference of two subsequently activated neurons is then used
by the last-excited neuron to compute the depth information. All algo-
rithmic calculations remain strictly local, and information is exchanged
only between adjacent active neurons (except for the �nal read-out). This,
in principle, permits parallel implementation. Furthermore, it is demon-
strated that the calculation of the object coordinates requires only a single
multiplication with a constant, which is dependent on only the retinal
position of the active neuron. The initial restriction to local operations
makes the algorithm very noise sensitive. In order to solve this prob-
lem, a prediction mechanism is introduced. After an object coordinate
has been determined, the active neuron computes the time when the next
neuronal excitation should take place. This estimated time is transferred
to the respective next neuron, which will wait for this excitation only
within a certain time window. If the excitation fails to arrive within this
window, the previously computed object coordinate is regarded as noisy
and discarded. We will show that this predictive mechanism relies also
on only a (second) single multiplication with another neuron-dependent
constant. Thus, computational complexity remains low, and noisy depth
coordinates are ef�ciently eliminated. Thus, the algorithm is very fast
and operates in real time on 128£128 images even in a serial implemen-
tation on a relatively slow computer. The algorithm is tested on scenes
of growing complexity, and a detailed error analysis is provided show-
ing that the depth error remains very low in most cases. A comparison
to standard �ow-�eld analysis shows that our algorithm outperforms the
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older method by far. The analysis of the algorithm also shows that it is
generally applicable despite its restrictions, because it is fast and accurate
enough such that a complete depth percept can be composed from radial
�ow �eld segments. Finally, we suggest how to generalize the algorithm,
waiving the restriction of radial �ow.

1 Introduction

During the projection of the three-dimensional environment onto the two-
dimensional receptor surfaces of the eyes, depth information is lost. Several
ways exist for recovering depth from these projection images. Many bio-
logical and technical systems rely on the analysis of stereo image pairs. In
these systems, depth information is retrieved from the analysis of the local
image differences between the left and the right image (called disparities),
which result from the lateral displacement of the two eyes or cameras (e.g.,
correlation-based methods: Marr & Poggio, 1976; phase-based methods:
Sanger, 1988; Fleet, Jepson, & Jenkin, 1991; for a review of the older work,
see Poggio & Poggio, 1984; a recent review is by Qian, 1997). If the viewer
or the objects are moving, the motion pattern can be analyzed instead in
order to obtain depth information (Ullman, 1979; Prazdny, 1980; Longuet-
Higgins & Prazdny, 1980; Lucas & Kanade, 1981; Fennema & Thompson,
1979; Heeger, 1988; Fleet & Jepson, 1990). Ego motion orobject motion gener-
ates a so-called �ow �eld on the receptor surfaces (see, e.g., Horn & Schunck,
1981; Koenderink, 1986; Barron, Beauchemin, & Fleet, 1994a; Barron, Fleet,
& Beauchemin, 1994b). The projection of the displaced objects thereby con-
sists of curves of various shapes. In the most general case (object plus ego
motion) the curved �ow-�eld patterns cannot be resolved for depth anal-
ysis without additional assumptions (rigidity and smoothness constraints;
Poggio, Torre, & Koch, 1985; Hildreth & Koch, 1987; Yuille & Ullman, 1987).
However, even if simplifying assumptions are made, the problem of struc-
ture from motion remains rather complex.

The goal of this study is to devise a neuronal algorithm that allows the
analysis of radial (diverging) �ow �elds by the parallel operation of its in-
dividual photoreceptive sites (its “neurons”). We will show �rst that depth
information is obtained by a single scalar multiplication with a neuron-
dependent constant at each activeneuron. Thus, thealgorithm isvery simple
and so fast that it operates in real time even in our serial computer simu-
lations. The structure of our network is such that all computations remain
local, and neurons need “to talk” only to their nearest neighbors, which
permits parallelization. The locality of all calculations, however, makes the
algorithm initially very noise sensitive. Therefore we will show, second,
that the algorithm can be extended by a local predictive mechanism that re-
lies on the propagation of the excitation pattern one step into the network.
Prediction of the future excitation pattern requires only one more scalar
multiplication at each active neuron. Thus, the computational complexity
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remains low. As a result we will show that this local predictive mechanism
almost completely eliminates noise and other errors in the analysis.

The restriction to radial �ow �nds its motivation in the behavior of ani-
mals. In different species, varying strategies are observed in order to reduce
the optic �ow as much as possible to a few or, if possible, a single compo-
nent. For the house�y (Musca domestica), Wagner (1986, p. 546) stated: “Thus,
the �ight behavior and the coordination of head and body movements may
be interpreted as an active reduction of the image �ow to its translational
components.” Ideally this would mean that only forward motion exists and
that optic �ow is reduced to its radial component. In the �y, this actually
leads to the tendency to �y along straight lines, making rather sharp turns
when changing direction (Wagner, 1986). Flow-�eld reduction is pushed to
an extreme in some birds while they are walking. The intriguing head bob-
bing of pigeons serves the purpose of eliminating all optic �ow while the
bird moves its body forward “under” the motionless head (Davies & Green,
1988; Erichsen, Hodos, Evinger, Bessette, & Phillips, 1989). Similarly it has
been observed that pigeons and other birds keep their head stable during
different �ight maneuvers, such that the head pursues a smooth-motion
trajectory while the body can make rather jerky movements (Green, Davies,
& Thorpe, 1992; Davies & Green, 1990; Erichsen et al., 1989; Wallman &
Letelier, 1993). In particular, when very high accuracy is required during
landing, the compensatory head movements become very pronounced and
accurate such that relatively undisturbed radial �ow is obtained (analysis of
high-speed video data of free-�ying pigeons by J. Ostheim, personal com-
munication). Given the complexity of insect or bird �ight, the reduction of
the optic �ow must remain incomplete; the strategy to reduce the compu-
tational complexity of �ow-�eld analysis, however, seems to be pursued
widely, even in mammals (e.g., component speci�city of MST cells, Duffy &
Wurtz, 1991, 1995; Graziano, Anderson, & Snowden, 1994; see also Lappe,
Bremmer, Pekel, Thiele, & Hoffmann, 1996; Wang, 1996, for theoretical ap-
proaches on medial superior temporal area cells).

Under the assumption that �ow-�eld restriction is a biologically justi-
�ed strategy, the central goal of our study is to arrive at an ef�cient and
noise-robust algorithm that can operate in parallel on a restricted �ow �eld,
thereby making use of a task-dedicated arti�cial neural net architecture.
Although the initial motivation comes from biology, it is obvious that the
algorithmic transfer of the underlying concept into a more technical domain
immediately imposes restrictions with respect to the biological realism of
the network.

We will describe the algorithm and present results from the analysis of
arti�cial and real image sequences, which demonstrate that depth infor-
mation is retrieved with very high accuracy. A rather technical appendix
provides a detailed error analysis that demonstrates that the algorithm is
generally applicable. (This appendix is mainly of relevance for those who
wish to implement this algorithm. It may be skipped otherwise.)
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2 Description of the Algorithm

The core part of the algorithm consists of a parallel1 operating network
of neurons, called the “retina” (see Figure 1), with which we are mainly
concerned. In order to describe the algorithm, we assume a moving robot
driven by a stepper motor and a visual system consisting of one camera
with its camera plane orthogonal to the axis of motion of the robot.

Two restrictions are introduced:

1. The robot is assumed to move only along the optical axis of the camera.

2. The environment is regarded as stationary (i.e., no moving objects).

The �rst restriction leads to a purely radial �ow �eld on the camera plane,
and this condition seems fatally strong, limiting the algorithm to a special
case that exists only during short intervals of robot motion. In particular,
during a curve, the focus of expansion is no longer aligned with the motion
trajectory, rendering the algorithm useless. Initially the restriction to radial
�ow was biologically motivated. However, it will almost always be suf�-
cient to approximate the complete “depth percept” by such linear motion
segments provided the robot makes rather sharp turns, (similar to the �y-
ing pattern of a �y) during which it is “blind.” The high camera frame rates
and the speed of the algorithm ensure that a novel depth percept builds
up rather fast after a turn, such that periods of “robot blindness” remain
short. The second restriction can also be partly waived, as explained in the
discussion.

2.1 The Retina. The retina consists of radially arranged neurons that
are connected only to their nearest neighbors in both directions on the same
radius.

Ina radial �ow�eld, thevirtual speedof the projected objects on the retina
increases with thedistance from theoptical axis, and the retina locationof the
projected image for the geometrical camera arrangement shown in Figure 3
is inversely proportional to the distance of the object from the nodal point
(conventional hyperbolic projection geometry). The goal now is to design
an arrangement that takes care of this projection geometry and allows for a
uniform sampling of the scene along the locations on the radii during radial
�ow.

We can restrict ourselves to a single radius and de�ne the neuronal den-
sity by the hyperbola

D(rn) D
1

rn ¡ rn¡1
n 2 [1, . . . , N], (2.1)

1 “Parallel” means that this structure can in principle be implemented and operate in
parallel. All computational results shown in this study, however, are based on regular
workstations, such that all computations are performed serially.
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Figure 1: Layout of the retina. Neurons are arranged according to equation 2.4.

where rn is the location of neuron n on a retinal radius and N C 1 the total
neuron number on every radius.

As a consequence of the hyperbolic projection geometry, we �nd that the
neuronal density D at a given retinal location x should be directly propor-
tional to 1 /x. Since we deal with a discrete neuronal placement problem,
this reads:

D(rn) » 1
n

. (2.2)

This requirement is ful�lled for the following de�nition of rn:

rn D
1
2

kn2 C
1
2

kn C r0, (2.3)

because in this case we get

D(rn) D
1

rn ¡ rn¡1
D

1
kn

.

Let r be the radius of the retina. Then we place one neuron in the center
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of the retina (i.e., r0 D 0) and one on its border (rN D r ) and get:

rn D
r

N(N C 1)
¢ n(n C 1) D h ¢ n(n C 1). (2.4)

A VLSI design that basically emulates this structure already exists, but
without the required connections between the neurons (Pardo, 1994).

2.2 Flow Diagram of the Algorithm. The individual neurons are de-
signed to perform only very simple operations: reading, comparing, and
storing gray-level values; reading the stepper motor count of the robot,
computing (two) scalar multiplications; raising or lowering a counter; and
transferring the output as speci�ed below. Thus, they contain a “memory”
and a simple processing capability.

For now, we assume an ideal situation, which consists of noise-free gray-
scale images. We say that a neuron is excited as soon as the luminance at
this neuron changes signi�cantly. In order to explain the algorithm, let us
further restrict the situation to a robot that moves in an environment with
only a single black-dot object somewhere in the distance.

Before the robot starts to move, all neurons will be reset and their memory
deleted. At time-step t1 the black dot will excite neuron 1 (see Figure 2A).
Since its memory does not contain any information, the neuron will transfer
only the gray-level value (“black”) to the next outer neuron (neuron 2). After
some time, the projection of the black dot will have traveled to neuron 2 (see
Figure 2B). This neuron compares the newly read gray-level value with the
one stored in its memory and �nds that they are similar within a reasonable
range. It will then read the stepper motor count (DZ D 8; see Figure 2B)
and compute the cylinder coordinates of the object (R1, Z1)Q. In addition
it will assign a label—say L D a—to this object (see Figure 2B). From the
coordinates and the known motion pattern of the robot, neuron 2 can then
also compute thestepper motor count,which will be expectedat the moment
when neuron 3 will be excited (DZp D 6; see Figure 2B). Neuron 2 will
transfer the predicted value (DZp), the gray-scale value (“black”), and the
label (a) to neuron 3. The coordinates [(R1, Z1)Q] of the object, as well as the
label (a), will be read by the common read-out to generate the depth map.
As soon as neuron 3 is excited (see Figure 2C), it compares the gray-level
values; after having found a match, it also compares the predicted and the
actual stepper motor count. If they match within a certain tolerance (e.g.,
DZ D DZp § 1), the object is regarded as con�rmed and the con�rmed
counter (C; see Figure 2C) is increased. In this way, object positions become
more reliable, the detection error is reduced, and false object positions are
soon rejected. The object coordinates will be recomputed [(R2, Z2)Q], and
the object position with label a in the depth map will be updated. In the
case that the recon�rm failed (e.g., | DZ ¡DZp | > 1) the object is considered
new, and a new label is assigned to it. In this case, the old object with label
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a is regarded as unreliable and removed from the depth map. If an object
has already been con�rmed several times, it will not be directly eliminated
from the depth map, but the con�rmed variable will be lowered gradually
until it reaches zero (“slow death”).2

2.3 Equations. Figure 3 shows the geometrical situation for which the
equations are de�ned. Most equations are de�ned in cylinder coordinates
[(R, Z)Q], and only at the end will we give the �nal result in Euclidean coor-
dinates (X, Y, Z). We will �rst describe how to obtain the object coordinates
(Rn, Zn) from the excitations of the neurons and then compute the predic-
tion value DZp for the next expected excitation occurring at (RnC1, ZnC1).
In addition, at �rst we will use vector notation (¡!s ), which does not im-
pose any restrictions on the geometry, and only later include the already
described retinal neuron arrangement.

To get the object position, we have to solve the following equation by
eliminating k and l:

k ¢ ¡!sn C
¡!
DZ D l ¢ ¡¡!sn¡1. (2.5)

Since we assume that the robot motion contains only a Z-component, we
get:

k ¢
³

sn,r
sn,z

´

Q

C
³

0
DZ

´

Q

D l ¢
³

sn¡1,r
sn¡1,z

´

Q

. (2.6)

Note that the angular component Q of the cylinder coordinates is de�ned
by the angle of the neuron chain on the retina. Thus, for each neuron chain,
it is constant. For the radial and the Z-component, this reads:

k ¢ sn,r D l ¢ sn¡1,r, and k ¢ sn,z C DZ D l ¢ sn¡1,z. (2.7)

From this we get:

k D
DZ

sn,r
sn¡1,r

sn¡1,z ¡ sn,z
. (2.8)

The actual object position can now be computed by:
³

R
Z

´

Q

D k ¢
³

sn,r
sn,z

´

Q

D DZ ¢ ¡¡!
(Pn)Q. (2.9)

2 In the current implementation of the algorithm, all information exchange remains
local and thus restricted to subsequent neurons. In this case, slow death leads only to the
prolonged persistence of highly con�rmed objects. In a more elaborate version, informa-
tion transfer could be implemented over more than two neurons, such that Zp is computed
for them. This could better compensate for single misses.
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Figure 2: Flow diagram of the algorithm.

So far the equations do not impose any restrictions on the neuron posi-
tioning and also leave other geometrical constants open. However, it makes
sense to assume that the Z-components of the vectors ¡!s are identical to the
focal length (i.e., sn¡1,z D sn,z D f ). Furthermore from equation 2.4, we get:

sn,r

sn¡1,r
D

rn

rn¡1
D

n C 1
n ¡ 1

. (2.10)
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Figure 3: Geometry of the projection of a black-dot image onto one radius of
the retina. This geometry de�nes the equations used to compute the object co-
ordinates.

Both assumptions now lead to (for the de�nition of h see equation 2.4):

¡¡!
(Pn)Q D

1

f
¡ nC1

n¡1 ¡ 1
¢

³
h ¢ n(n C 1)

f

´

Q

D

³
h¢n(n¡1)(nC1)

2 f
n¡1

2

!

Q

D

³
h¢(n3 ¡1)

2 f
n¡1

2

!

Q

. (2.11)

The general form reads in Euclidean coordinates:
0

@
X
Y
Z

1

A D k ¢

0

@
sn,r ¢ cos Q
sn,r ¢ sinQ

sn,z

1

A D DZ ¢ ¡!
Pn . (2.12)

Again imposing the geometrical restrictions, we get:

¡!
Pn D

0

B@

h¢(n3¡1)
2 f ¢ cosQ

h¢(n3 ¡1)
2 f ¢ sin Q

n¡1
2

1

CA . (2.13)
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Thus, the object position is obtained from a single multiplication for each
component of the stepper motor count DZ with

¡!
Pn . It should be noted

that
¡!
Pn [or

¡¡!
(Pn)Q in equation 2.11) is constant but different for each neuron.

Thus, the multiplication is effectively reduced to a scaling operation with
a different scalar factor at each neuron, which is the central feature on this
algorithm, making it exceedingly simple.

In the second step, the prediction value DZp will be computed using the
radial component R from the �rst computation. In the general case we get:

sn,z

sn,r
D

Zn

R
and

snC1,z

snC1,r
D

ZnC1

R
. (2.14)

Since DZp D Zn ¡ ZnC1 we get:

DZp D R
³

sn,z

sn,r
¡

snC1,z

snC1,r

´
. (2.15)

With the same geometrical restrictions as before, this is:

DZp D R ¢
³

2 f
h ¢ n(n C 1)(n C 2)

´
. (2.16)

The radial component R of the cylinder coordinates has been stored from
the calculation of the object position. Therefore, this equation amounts to
only a simple scaling operation because everything except R is constant.

2.4 Results. We will �rst show the results obtained with arti�cial images
of increasing realism and then how the algorithm works in a real environ-
ment. In the appendix, we present a detailed analysis of the inherent error
sources of the algorithm. All results were obtained on a SUN SPARC 10
workstation.

2.4.1 Results on Arti�cial Images. In a more realistic environment, objects
can no longer be described as single dots. Therefore, for the followingscenes,
we used the color transition that occurs at an edge as the excitation criteria
for the neurons. Consequently, all depth maps are de�ned only at the edges
of the objects. We share this characteristic with all depth analysis algorithms
that do not introduce additional regularization schemes. Figure 4 shows the
results from the analysis of an arti�cial environment without (A) and with
noise (C), which consists of three �at objects of different geometry (triangle,
vertical bar, square) located at different distances (4.0 m, 5.5 m, 7.0 m, B) in
front of a background 10.5 m away. Quantitative diagrams to supplement
the results of Figure 4 are shownin Figure5. Parameters for this test aregiven
in Table 1.3 The parameter 2 Position indicates the maximal position error (here,

3 In this section, we will focus on the description of the basic �ndings; therefore, we
refer readers to the appendix for an explanation of some of the non-self-explanatory
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Table 1: Parameters for the Simulation Shown in Figure 4.

Parameter Value Parameter Value

Sequence 800 images Neuron chains 600
Resolution 160 £ 150 pixel Neurons per chain N · 50
Step 5 mm/image Retina radius r · 105 pixel
2 Position 10 mm 2 Displacement 0.05 pixel

1.0 cm) allowed between two subsequent depth estimates arising from two
adjacent neurons. If this parameter is exceeded, the second depth estimate
is rejected, and the point is not included in the depth map.

Figure 4 shows the changing retinal projection on the left side (column
D). The other panels demonstrate how the depth map (columns E, H, I)
and the con�rmation map (columns F, G) for this scene evolve over the 800
steps of simulated robot movement, equivalent to 4 m of traveled distance.
The con�rmation maps show the gray-scale-coded value of the con�rmed
counter (light gray=0, darker gray=1, etc.), whereas the depth maps show
all coordinates that had a con�rmed value as indicated in the �gure. The
left side was computed for the noise-free scene; for the right side, 25% of
random noise was added to each individual frame.4 After about 50 cm, the
�rst data points become con�rmed more than once, and after 1 m, the outline
of all obstacles is clearly visible in the case of no noise. With noise, only a
few data points are con�rmed twice, but after 1.5 m (not shown) enough
data points are reliable to perform for example obstacle avoidance.

The bottom part of the �gure (J–Q) shows side-view maps of the obtained
depth estimates for different con�rmed values after the complete run. The
horizontal lines pointing left from the start of the robot motion indicate the
distance traveled by the robot. The diagrams show that the depth estimates
are very accurate. Pixels overlay each other such that the total number of
depth estimates cannot be deduced from the side-view maps (but see the
histograms in Figure 5).

In such an arti�cial situation, even a con�rmed value of zero leads to
good results if no noise is present. Increasing the con�rmed value leads to
more rejections of data points and a reduced density of the depth map. With
noise, a con�rmed value of 2 is a good compromise between the accuracy
of the depth estimates and the density of the map.

parameters (e.g., 2 Displacement ) in Table 1.
4 The maximally allowed noise amplitude was 25% of the maximal gray-scale differ-

ence between the darkest and the brightest pixel in all frames. For every pixel, a random
number was drawn (�at distribution) between ¡12.5% and +12.5%, and this value was
added to the pixel value, clipping at 0 and 255 if necessary.
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Figure 5: (A, B) Depth histograms for the scene shown in Figure 4. Note four
curves overlay each other in A and B, corresponding to the values of con�rmed D
0, 1, 2, 3. In the insets, the four curves can be discerned. Each peak corresponds
to one object. (C, D) Cumulative diagram of the number of depth estimates
obtained from the triangle in Figure 4 along the robot motion trajectory. Different
diagrams for con�rmed D 0, 1, 2, 3 are shown in A–D.

To get a better estimate of the quality of the results, we have plotted the
detected depth values for the different con�rmed values as histograms in
Figure 5. The very narrow histograms con�rm the highaccuracy of the depth
map, as already suggested by the side-view maps. Opposite to those, how-
ever, the histograms quantify the total number of depth estimates, which
decreases with higher con�rmed values. To be able to discern this effect,
magni�cations of the peaks from the “triangle” located at distance 4.0 m are
shown in the insets.

A second aspect of interest in this context is how fast a reliable outline
of an object is obtained. Parts C and D of Figure 5 demonstrate for different
values of the con�rmed variable how the depth estimates accumulate along
the robot’s path toward an object. Even in the noisy scene (D), more than
300 depth estimates are obtained for a con�rmed value of 2 until the robot
is only 1 m away from the object. This amount of estimates should suf�ce
for most applications.
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Table 2: Parameters for the Simulation Shown in Figure 6.

Parameter Value Parameter Value Parameter Value

Sequence 600 images Neuron chains 400 Con�rmed 1
Neurons per

Resolution 128 £120 pixel chain N · 64 2 Position 0.5 cm
Step 0.5 cm/image Retina radius r · 80 pixel 2 Displacement 0.25 pixel

2.4.2 Results in a Seminatural Environment. In the next step we used a
scene generated by a ray tracer that resembles the operating environment
of an of�ce robot, simulating a hallway with a few obstacles and several
light sources (see Figure 6). While this scene (A) is more realistic than the
benchmarking scene used before, it still contains no real error sources (like
jitters from the robot motion). Parameters for this simulation are given in
Table 2.

Figure 6 shows the retinal projection of the �rst frame (B), where each
neuronstores that particular gray level of the image at the respective location
with which it is confronted. In part C, the ground-truth depth map is given.
The other parts show two snapshots: one after 300 frames and the other at
the end of the simulation (frame 600) of the depth map (global depth map for
con�rmed ¸ 1, right). In addition, we show the current depth map, which
re�ects the depth values computed from those neurons that are excited
within a small time window of §20 frames around the current frame. Side-
view maps shown beneath the depth maps clearly demonstrate that the
density of the depth map increases during the run and also show that the
depth estimates are rather accurate. As expected, depth errors increase with
distance (compare, e.g., the ball and background). Note as before that pixels
overlay each other, apparently reducing the density of the side-view map.
Some of the pixels lie on the �oor and re�ect detected shadows. Only a few
more are �oating in the air, representing erroneous depth estimates, which,
however, are still located rather close to the real objects.

2.5 Results for a Real Scene. Figures 7 and 8 show the results we ob-
tained by analyzing a real scene that was recorded in 540 frames over 72 sec-
onds using an NTSC zoom CCD-camera (1 /2 inch CCD chip) with autofo-
cus. The viewing angle of the camera was 55.2 £ 44.1 degrees, and the focal
length was approximately 8 mm (slightly changing during the run because
of the autofocus). We used a DataCube as frame grabber with an initial res-
olution of 512 £ 480 pixels and a frame rate of 7.5 Hz. The images were then
subsampled by a factor of two, leading to a �nal resolution of 256 £ 240,
and then immediately transferred to a SUN SPARC 10 computer for analy-
sis. The camera was mounted on a small vehicle. No special procedure was
adopted to adjust the camera axis. Adjustment to the motion trajectory was
performed only by hand while viewing the image on a regular monitor.
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Figure 6: Results from the Ray-Traced Hallway Scene.
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Figure 7: Results for a real scene. (A–E) Frames 100, 200, 300, 400, and 540. (F,
H, J) Con�rmation maps for frames 100, 300, and 540. (G, I, K) Depth maps for
C ¸ 1 for frames 100, 300, and 540. Different gray shades encode the relative
depth of the objects. (L, M) Side-view and top-view map showing all data points
in the depth map of frame 540.
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Figure 8: Aerial view onto the data clusters obtained from the real scene. Differ-
ent shades show the different objects. The black outliers along the z-axis belong
to the right rail, which was otherwise thresholded.

The vehicle was pulled across a table guided by two lateral rails. Pulling
was achieved by means of a thin thread, which was continuously wound
onto the extended axle of an electrical motor (visible in Figure 7D, left). The
total traveled distance was 1.2 m at a velocity of 16.6 mm/s, which amounts
to 2.22 mm per camera frame. The scene contained a pliers with their center
ofgravity at a distanceof 0.35 m from the startingpoint, an elephant on a post
(0.55 m), the M&M mascot (0.90 m), a white box that hides the motor, the axle
of the motor and the axle support (all at about 1.10 m), and a scissors on the
wall (1.20 m). The white box, the aluminum rails, and the (barely visible)
thread were blanked out before analysis by thresholding all low-contrast
objects. Apart from this thresholding, no other preprocessing of the image
data was performed, and the algorithm operated at the unprocessed noisy
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Table 3: Parameters for the Analysis of the Real Scene Shown in Figure 7.

Parameter Value Parameter Value Parameter Value

Sequence 540 images Neuron chains 600 Con�rmed 1
Neurons per

Resolution 256 £ 240 pixel chain N · 64 2 Position 1.2 mm
Step 2.22 mm/frame Radius r · 150 pixel 2 Displacement 0.10 pixel

gray values as they were recorded. Note that this scene—like all other real-
world scenes—is contaminated by re�ections and shadows, which could
in principle in�uence the �nal results. Table 3 lists the parameters of the
algorithm used to analyze the scene.

Parts F, H, and J show the con�rmation map for frames 100, 300, and 540,
respectively. The con�rmation maps show the gray-scale-coded value of the
con�rmed counter (light gray D 0, darker gray D 1, etc.). Thus, the con�r-
mation map contains all data points so far encountered up to that particular
frame. Most of these data points are encountered only once, which leads to a
value of the con�rmed counter of C D 0 (lightest shading). Some of them oc-
cur more often (C ¸ 1). Panels G, I, and K represent the accumulated depth
maps for the same frames showing only those data points con�rmed at least
once (C ¸ 1). The outlines of the different objects are clearly visible and in
good focus. The different gray shading indicates the distance of the objects
from the starting point in absolute coordinates. After 100 frames (compare
A), the closest objects, still at a safe distance, can be discerned, which would
allow for steering maneuvers if desired. After the complete run, even �ner
details become visible, like the “M” of the M&M man. Intriguingly, a small
part of the back of the elephant is left out. Probably this edge fell exactly be-
tween two adjacent radii of the retina and therefore remained invisible. Due
to the slightly changing focal length as the consequence of the autofocus,
an increasing radial spread of the data points is observed in the con�rma-
tion maps (F, H, J). The changing focal length, together with the hyperbolic
projection geometry, leads to an enhanced radial displacement of the data
points the closer the vehicle gets to a certain object. The actual depth maps
(G, I, K) nicely demonstrate the ef�cacy of the con�rmation mechanism,
which is part of the algorithm. All (with the exception of very few) of these
wrongly detected data points are eliminated because they are observed only
once and never con�rmed. This also applies to other erroneous data points
(e.g., those induced by wandering re�ections).

The top- and side-view maps give an estimate of the accuracy of the
depth values. The different objects are clearly discernible, and even subparts
like the two handles of the pliers can be seen. Only the axle support and
the scissors close to the wall are confused in the top-view map. The side
view, however, shows that these elements are also clearly separated. We
determined the center-of-gravity Z-coordinates from histograms similar to
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those shown in Figure 5 (not shown here) for the four major objects in
the scene as: pliers, 0.341 m; elephant, 0.558 m; M&M man, 0.892 m; and
scissors, 1.191 m. None of these values deviates more then 10 mm from
the true position. For the closest object (the pliers), the average relative
error is maximal but still less than 2.6%. Top- and side-view maps also
demonstrate that the depth-extend (thickness) of the individual objects is
correctly retrieved.

These results show that the algorithm is applicable under real-world con-
ditions, and the accuracy of the results should almost always suf�ce. The
noise reduction due to the con�rmation mechanisms is one major compo-
nent that ensures this accuracy and robustness. The scene (A–E) and the
motion parameters were arranged such that every parameter could be up-
scaled by a factor of 10 in order to represent the situation encountered (e.g.,
by big robot in an of�ce or industrial environment). Due to the simplic-
ity of the algorithm, data analysis could still be performed in real time at
the given frame rate of 7.5 Hz using a rather slow SUN SPARC 10 work-
station. Furthermore, it should be noted that no image preprocessing was
performed. We would expect that the quality of the results could be further
improved, for example, by applying edge-enhancement algorithms prior to
depth analysis. With a more powerful computer, we would also estimate
that the frame rate could be at least tree times higher. Given that the �rst 10
to 100 reliable depth estimates occur within 50 frames, the traveled distance
at the higher frame rate would be only 37 mm. Thus, “robot blindness”
would be restricted to a very short distance after a turn, even when using
a regular serially operating processor. Any parallel implementation would
be even faster.

Figure 9 shows how the direct analysis of the �ow �eld (Lucas & Kanade,
1981; Barron et al., 1994b) performs on the same real-world example. The
top-view map is shown as in Figure 7. Parameters of the algorithm were ad-
justed such that about the same density of depth estimates was
achieved.

Only vague outlines of the objects are discernible (circled) but without
prior knowledge of the scene (e.g., through an image segmentation algo-
rithm; Opara & Wörgötter, 1998), no matching between the objects and their
depth coordinates is possible. In addition, the accuracy of the depth esti-
mates is very low. The reason for the poor performance is the noise and
the small systematic distortion due to the zooming in the images. Direct
�ow-�eld analysis is not very robust against these effects as compared to
our method, which includes the con�rmation mechanism.

3 Discussion

3.1 Advantages and Limitations. The goal of this study was to design
a fast parallel-implementable module that performs depth analysis in real
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Figure 9: Results for the same real scene as in Figure 7, obtained by direct �ow-
�eld analysis.

time. We were able to show that:

1. All calculations remain local, and data transfer exists only between
neighbors (with the exception of the �nal read-out). Thus, the algo-
rithm can be implemented easily in parallel.

2. The computational complexity in our algorithm is reduced to two
scaling operations.

3. The con�rmation mechanism reduced noise and other error sources
tremendously.

4. The error under different testing conditions remained below ¼ 2%
for reasonable parameter settings and remained mostly much smaller
(see the appendix).

The simplicity of our equations results from the neuronal architecture in
combination with the restriction to radial �ow. Other algorithms are also
substantially reduced in their complexity when considering only such re-
stricted �ow �elds (seebelow), but the simplicity of needingonly scalar mul-
tiplications can be obtained only when considering such a radial, parallel
neuronal architecture (compare the“time-to-crash” detector;Ancona & Pog-
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gio, 1993). The virtue of a (possible) parallel implementation together with
the simplicity of the approach is still not suf�cient to render our approach
useful, because local operations are exceedingly sensitive to noise. The ad-
ditionally introduced novel con�rmation mechanism solves this noise prob-
lem. This mechanism is also able to eliminate even signi�cant systematic
errors, like those introduced by optical distortions (e.g., due to using an
autofocus zoom lens; see Figure 7). This argument, together with the out-
come of the error analysis, gives a positive answer to the question of whether
the algorithm would tolerate error sources in general like mismeasured step
counts of the robot motion due to, say, a rugged terrain. The scaling prop-
erties of the curves shown in Figure 11 indicate a quite high tolerance of
such error sources.5 All this shows that the algorithm is indeed function-
ing very well under the constraint of a radial �ow �eld. Thus, the crucial
question that needs to be answered is if it would be applicable for different
motion trajectories that also contain turns. The answer to this question lies
in a combined speed and accuracy estimate.

The analysis of the systematic errors and of the aliasing behavior (see the
appendix) showed that even in a serial implementation on a regular com-
puter, systematic errors and aliasing problems are almost always negligible.
Due to the simplicity of the algorithm, we can assume that a slightly faster
machine will allow for frame rates of above 30 Hz. This now answers the
critical question above: Even if the trajectories remain restricted to motion
along only the camera axis, such high frame rates in a serial or parallel im-
plementation allow for the analysis of short motion segments that within a
short time window will produce a rather distinct map of the environment.
The robot is allowed to turn rather abruptly, which would lead to only a
brief reset of the algorithm, and the distance traveled before the novel map
emerges after the reset remains very small. Thus, even without a parallel
implementation, it should be possible to generate a suf�ciently accurate
complete depth map by piecing together linear motion segments provided
that the robot changes its direction less often than once every 2 seconds or
so,6 rendering more than 60 consecutive frames.

The comparison of the performance of our restricted algorithmic ver-
sion with standard �ow-�eld analysis (Lucas & Kanade, 1981; Barron et al.,
1994b) provides additional support to the sensibility of tailoring an algo-
rithm to the restricted situation of radial �ow �elds.

Still, the question arises as to whether there is a way to generalize our
algorithm to a less restricted situation. This is discussed in the last section.

5 Indeed we observed a quite visible jerkiness of the camera motion when recording
the visual scene due to slippage and a somewhat nonradial rotation of the motor axis.
This error was also nicely eliminated by the con�rmation mechanism, and the residual
error remained so low that we found the �nal results to be rather accurate.

6 A turn every 2 seconds still seems rather unrealistic. Almost all navigating robots in
industrial environments turn much less frequently.
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Complications can occur as the consequence of object motion that is not
immediately detected by our algorithm. Slowly moving objects with a rather
homogeneous structure will nevertheless be “seen,” but their recognized
shape is smaller than in reality. It is clear that this algorithm was not designed
for such situations, which are also hard to resolve for most other algorithms.
The algorithm will also fail if the terrain is too rugged. We have already
noted that a certain robustness against jitter exists, but due to the limited
detection range of the individual neurons, data points will be missed if the
camera jitter becomes too strong.

3.2 Comparing the Algorithms. Theproblem of recovering the 3D struc-
ture of a scene from the optical �ow has often been discussed in the literature
(Longuet-Higgins & Prazdny, 1980; Prazdny, 1980; Heeger & Jepson, 1990;
Little & Verri, 1989; Nelson & Aloimonos, 1989). Still, most of the litera-
ture deals with the general problem of estimating the self-motion, and the
structure of the scene can be estimated from the optical �ow. In the spe-
cial case of pure forward motion with known constant speed that we take
in account, the differences between the approaches reported in the litera-
ture disappear, and the depth recovery equations become extremely simple.
Starting from the perspective projection equation expressed in polar coor-
dinates r D fR /Z, the depth of the point is given by the simple relation
Z D ¡(r PZ) / (vr ), where r is the radial coordinate of the projection, vr is the
radial component of the optical �ow, and PZ is the forward speed. Although
these algorithms also become very simple, a reduction to single scalar mul-
tiplications can be achieved only by our parallel architecture.

In addition, there is a severe problem: Using this equation to recover
the structure of the scene relies heavily on the precision of the measured
optical �ow. Small errors in the �ow vectors are ampli�ed by the factor
PZ /vr , in particular around the center of the image, where the �ow vectors
are verysmall (seeFigure9). This problem isunavoidableunless smoothness
assumptions about the scene are made, for example, allowing neighboring
measurements to mergeora sequence of estimations is integrated using data
fusion techniques, like the Kalman �lter (see Matthies, Kanade, & Szeliski,
1989). Such algorithmic extensions are far more complex than our simple
con�rmation mechanism, which solves the noise problem in a satisfactory
way. There may also be other ways to account explicitly for the restricted
situation of only radial �ow, for example, by modifying the “classical” �ow-
�eld equations in order to make them numerically more stable around the
focus of expansion, but we did not investigate this further.

3.3 Con�dence Measurement by Long-Range Couplings. The last sec-
tion also shows that regardless of which �ow-�eld algorithm is used, it is
of utmost importance to include a con�dence measure in order to judge the
accuracy of the depth estimates (Barron et al., 1994a). In our approach, con�-
dence in the data points is gained by means of the con�rmation mechanism.
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The propagation of information along the radii by this predictive mecha-
nism is equivalent to a long-range information exchange in a parallel net-
work. In our case, this can be interpreted as if the detector range (receptive
�eld) of each neuron was enlarged. Thus, currently only the con�rmation
mechanism ensures the necessary noise reduction, and the improvement of
the algorithm is truly dramatic (see Figures 4 and 7).

3.4 Generalizing the Algorithm. A more generalized version of the
algorithm could be obtained by allowing for a more extended neuronal
coupling, which exceeds the nearest-neighbor interactions currently im-
plemented in the algorithm. Single misses at any neuron would become
insigni�cant in this way (see note 2). An additional extension, which is
also interesting from a biological viewpoint, would be to introduce more
complexity in the receptive �elds of the detectors. Here a natural choice
is to use center-surround receptive �elds with a signi�cant spatial overlap
along and across the radii. In this case, a more elaborate version of the al-
gorithm would be required, having to account for the now-existing lateral
inhibition.

This leads us to the possibility of more generalized architectures. The
central problem behind any generalization is the attempt to reach certain
invariances, such as against scaling or rotation, which are common in �ow
�elds. Indeed, there is a biologically motivated way to achieve a higher de-
gree of invariance: Retinal coordinates are projected onto the visual cortex
employing (roughly) a complex logarithmic transform (Schwartz, 1977). By
means of this, rotational and scaling invariance is obtained because rota-
tions or scaling operations translate into horizontal (medio-lateral) or verti-
cal (anterior-posterior) shifts on the cortical grid, respectively. A combina-
tion of both leads to an oblique shift (Schwartz, 1980). In the context of our
algorithm, one could now think of a rectangular grid with horizontal, verti-
cal, and (several angles of) oblique connections replacing the design of our
retina here. Then, given the results of the current study, it seems likely that a
relatively simple set of local equations could be found that operate on such
a grid after the input images have been transformed by the complex loga-
rithm. The advantages of a complex logarithmic mapping in the context of
classical (nonparallel) �ow-�eld analysis have been demonstrated already
(Tistarelli & Sandini, 1993). However, a parallel version does not exist yet.
The ultimate version of a parallel algorithm for �ow-�eld analysis would
probably make use of such a wire mesh connection pattern and employ
spatiotemporal receptive �elds (e.g., spatiotemporal Gabor �lters) in order
to implement one of the well-consolidated phase-based or energy-based
�ow-�eld algorithms (Heeger, 1988; Fleet & Jepson, 1990). For this reason
we think that the current study is the �rst step toward a class of parallel
algorithms that could become of greater relevance in image analysis as soon
as more sophisticated ways for producing parallel VLSI chips exist.
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3.5 A Possible Hardware Implementation. The central advantage that
makes our algorithm so simple is that all computations at a given neuron
remain restricted to scaling operations. This feature is not dependent on the
actual distribution of neurons on the retina. Such scaling operations could
in principle be performed even in analog hardware by ampli�ers adjusted
to the right gain. Memory transfer operations are also rather limited because
transfer occurs only in one direction (radially) between pairs of neurons. In a
parallel system, two related problems remain: (1) how to set the individual
gain values for each neuron and (2) how to retrieve the depth map from
the output of the different neurons. Douglas and Mahowald (1995; see also
Mahowald & Douglas, 1991) have suggested a hardware for a multiplexing
system that allows loading (and retrieving) values into (from) individual
neurons in a parallel network. Such a system, or a similar one, could be
used for this purpose. Loading would have to be performed only once, and
for the retrieval it would have to operate at manageable frequencies of below
50 kHz even for very large networks at high frame rates (e.g., 100 Hz).

The layoutof the retina shouldallow for a relatively easy hardware imple-
mentation (Pardo, 1994) as compared to other more elaborate parallel �ow
�eld algorithms (Bülthoff, Little, & Poggio, 1989). This could be achieved by
a regular grid layout of the photoreceptive sites and an additional address
decoder like the so-called Phytagoras processor (GEC Plessey, Semiconduc-
tors, PDSP16330/A/B), which converts 16-bit Cartesian coordinates into
polar coordinates such that a radial arrangement and also the subsequent
computations can be electronically simulated. A related approach, simulat-
ing the compound eye of �ies, has already been undertaken by Franceschini
and colleagues (Franceschini, Pichon & Blanes, 1992; Franceschini, 1996).

Appendix: Error Analysis

A.1 Systematic Errors. In the following section, we analyze two types
of systematic errors that are inherent in the design of the algorithm. We
distinguish between the depth error and the aliasing problem.

A.1.1 Depth Errors from Mismeasurements and Neuron Placement Inaccura-
cies. By depth error, we mean any error of the computed Z-component as
compared to the true Z-component of an object. Figure 10 shows the actual
situation most commonly encountered when an edge (vertical line) excites
two neurons subsequently. Due to the radial �ow, the edge travels along
the ray indicated by the dashed line. The �nite resolution of the pixel grid
(usually integer resolution), however, restricts the placement of the neurons
to the pixel centers, as drawn in the �gure. Therefore, the left neuron will
be excited too early by the edge and the right neuron too late.7 The actual

7 In other words, this means that as opposed to the optimal situation, both neurons
are not excited by exactly the same location on the edge.
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Figure 10: Geometry underlying the error estimation.

measurement error that results from this effect is given by Dr2 . The radial
distance between the neurons used to compute the depth estimate is Dr.
Thus, the actually traveled distance on the ray is underestimated by Dr2

and the true depth estimate would be obtained with Drtrue D Dr C Dr2 . This
error depends on the sum of the distances between the ray and the neurons
(d) and on the angle between ray and edge (a). It is immediately clear that
the Dr2 is zero for a D 90 degrees, whereas it becomes in�nitely large for
a D 0 degrees.

Under the assumption that: sn¡1,z D sn,z D f , we get for the depth esti-
mate Z:

Z D
DZ

sn,r¡sn¡1,r
sn¡1,r

D DZ
sn¡1,r

sn,r ¡ sn¡1,r
. (A.1)

Let sn,r D sn¡1,r C Dr. Then,

Z D DZ
sn¡1,r

Dr
D DZ

rn¡1

Dr
. (A.2)

The second form of this equation relates to the labeling of the variables used
in Figure 12A and will become of relevance later. In addition to the error
introduced by the neuron placement (Dr2 ), we have to take into account
that the measured value of DZ is probably erroneous, for example, due to
inaccuracies following a wrong count of the stepper motor between two
subsequently excited neurons. Thus, we should assume that the actually
measured value is given by gDZ D DZ C DZ2 , where DZ is the true value
and DZ2 the measuring error.
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Thus, the erroneously estimated depth is given by

eZ D gDZ
rn¡1

Dr
D (DZ C DZ2 )

rn¡1

Dr
. (A.3)

On the other hand, the correct estimate would be:

Z D DZ
rn¡1

Dr C Dr2
. (A.4)

The absolute error is then:

Z2 D eZ ¡ Z D (DZ C DZ2 )
rn¡1

Dr
¡ DZ

rn¡1

Dr C Dr2
. (A.5)

The relative error is

2 D
Z2

Z
D

Dr2

Dr

³
1 C

DZ2

DZ

´
C

DZ2

DZ
. (A.6)

The last equation shows that the relative error critically depends on the
“relative placement error” Dr2

Dr , which could in principle reach in�nity. The
examples from above (see Figures 4, 6, and 7), however, show that this
is practically never the case. Nonetheless, in the course of this study, we
observed thatDr2 can have a tremendously destructive impact on the results
as soon as d (see Figure 10) is too large. In a hardware implementation, the
neuron grid can be made �ne enough in order to reduce d suf�ciently, such
that this problem is negligible. In our computer implementation, however,
we had to �nd a work-around. Therefore, we resorted to slightly modify the
exact geometrical spacing of the neurons on the retina given by equation 2.2
and shifted them a small amount away from the computed locations in order
to ensure that the displacement d of two adjacent neurons never exceeds the
prede�ned threshold of 2 Displacement (see Tables 1 and 2). If the limit given
by 2 Displacement could not be achieved by neuron shifting, the neuron was
eliminated from the retina. In this way, the initial calculation of the lookup
table for the neuron-dependent constants

¡!
Pn became more complicated, but

otherwise the accuracy of the results shown in Figures 4 and 6 would have
deteriorated.

Figure 11 shows how the parameters 2 Position and 2 Displacement affect the
average depth error and the average density of the depth map computed
for two objects in the scene shown in Figure 4. For this diagram, the mea-
surements of the triangle at 4.0 m and the vertical bar at 5.5 m in Figure 4
were evaluated for the run with and without noise. In general, the vertical
bar (dotted lines) is less susceptible to error than the triangle (solid lines)
because of the orientation of its edges. The orientation of an object edge
relative to the radii of the retina thereby determines the error susceptibil-
ity. If an edge is parallel (orthogonal) to a radius, the error will be high
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Figure 11: Depth error and density of the depth maps plotted for four different
settings of 2 Displacement D 0.05, 0.1, 0.2, 0.4 pixel (marked on the curves) against
2 Position, which has been varied between 0.1 and 16.0 cm. Results from the triangle
(solid lines) and the vertical bar (dotted lines) from Figure 4 are shown with and
without noise after the complete simulated robot run. To make them comparable,
error values are normalized with respect to the number of total depth estimates
obtained. With noise, the algorithm becomes unstable for 2 Position < 0.3; thus,
these values have been excluded.

(low). Without noise (see Figure 11A) the error increases in small steps with
increasing 2 Displacement but remains almost the same for different 2 Position
values. As soon as noise is introduced (B) the situation reverts, and 2 Position
is the more sensitive parameter. For large values of 2 Position, the curves sat-
urate at the maximal number of obtainable depth estimates in the case of
no noise (C). Such a saturation is not observed if noise is present; instead,
more and more wrong pixels are included in the depth map if 2 Position is
increased (D). In summary, these diagrams show that if very little noise is
expected from the robot’s camera system, large values of 2 Position should be
used, while 2 Displacement is uncritical. On the other hand, if the noise level
is high, one should increase the value for 2 Displacement in order to get more
depth estimates but keep the value of 2 Position low in order to reduce the
error.

In our simulations, we found that a reasonable range that limits the num-
ber of totally misplaced points is given by 0.1 < 2 Displacement < 0.3 and
0.5 < 2 Position < 2.0 for interframe distances of 1 cm. Both parameters scale
with the step size.
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Figure 12: (A) Geometrical de�nitions used for the calculation of the systematic
errors and the aliasing. (B, C) Systematic errors. Equation A.10 is plotted using
(B) the interneuronal distance and (C) the retina location as parameter. Scale
bars indicate the values of the �xed parameters.

It should be emphasized that the error introduced by the neuronal place-
ment is a typical grid-aliasing problem and becomes irrelevant by means of
the described anti-aliasing procedure or as soon as the grid is �ne enough
(e.g., in a hardware implementation). For this reason, we will restrict all
further analysis to the unavoidable “relative measuring error” DZ2 /DZ in-
troduced by false measurements.

Setting Dr2 D 0, the equation for the relative error (see equation A.6) is
reduced to:

2 D
DZ2

DZ
. (A.7)

We assume a geometry as shown in Figure 12A, which is essentially
identical to the one used for deriving the basic equations, with the exception
of relabeling a few variables for convenience.

At the stepper motor counter, the minimal nonzero measuring error is
one; that is, to get the minimal relative error, we set DZ2 D 1. For any error
bigger than one, Figures 12B and 12C would have to be scaled.8 Then the

8 All following diagrams are metrically scaled. To get this, we have de�ned a motion
constant of 1 mm/Step of the stepper motor, which will not be explicitly mentioned in the
following equations.
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relative error is simply:

2 min D
1

DZ
. (A.8)

This is intuitively clear. Since we assume a constant (minimal) measuring
error of 1, this mismeasurement will contribute a lot to the relative error if
the total measured interval DZ is small. The question arises, How will the
parameters of the retina design will affect the relative error? Using equa-
tion A.2, we get:

2 min D
rn¡1 (rn¡1 C Dr)

Dr ¢ f ¢ R
, (A.9)

where R is the radial component of the cylinder coordinates of the object
in Figure 12A. We set R D 1 m, which means we estimate the error for all
objects at that particular lateral distance and get:

2 min D
r2
n¡1 C rn¡1 Dr

Dr ¢ f
D

1
f

³
r2
n¡1

Dr
C rn¡1

!
(A.10)

Figures 12B and 12C show the behavior of equation A.10 for a retina with
radius r D 0.025 m and a focal length of f D 0.025 m. For the sake of
completeness, the curves in Figures 12B and 12C extend into meaningless
regions (e.g., interneuronal distance of 0.015 m at a total radius of only
0.025 m, etc.). These cases were included to show the shape of the total
curves better.

The �gure and the corresponding equation show that the relative error
is strongly affected by the retina position rn¡1, and Z-coordinates computed
by neurons in the far periphery of the retina are highly sensitive to measur-
ing errors (see Figure 12B). These curves have been obtained for a minimal
measuring error of one step, and the curves need to be multiplicatively up-
scaled if the error would be larger. From the curves, it can be seen that even
for the worst case, the (minimal) relative error is very low. Thus, the system
survives signi�cant error upscaling, which also explains the rather high ac-
curacy of the results obtained from the simulations. In addition, the relative
error is inversely proportional to the focal length f (held constant in the
�gure) and to the distance between two neurons Dr. The sensitivity to this
parameter (see Figure 12C), however, is much smaller than that to the retinal
position (B). At �rst glance, this inverse relation is quite intriguing, because
it means that if the distance between the two adjacent neurons is lowered,
then the error increases. In other words, if the neuronal density is increased
by raising N, then Dr gets smaller but the error at a given retinal location9

9 For this error estimation we had to �x the retinal location at rn¡1. Thus, it is not
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also increases. The reason for this counterintuitive observation lies in the
fact that for decreasing Dr, the measured interval DZ also decreases, and
this increases the relative error. Average neuronal distances of 1 or 2 mm,
however, still lead to rather small errors such that total neuron numbers
between 50 and 100, as used in the simulations, are very well applicable.

A.1.2 Aliasing Problem. As an additional effect, which is of practical
relevance, one needs to consider the time between two camera frames. If
this time is too long, excitations will skip one or more neurons as soon
as these are too densely packed. This problem is of central relevance for a
system that implements the algorithm with conventional hardware (i.e., as a
serial program on a computer), because the computational effort will limit
the number of frames per second signi�cantly. The following discussion
is speci�cally dedicated to such a computer implementation. Thus, this
section is rather irrelevant for a parallel processing system with high frame
rate where no such aliasing occurs over a huge parameter range.

We will compute the shape of the maximal region in the environment that
the robot will “see” without aliasing. We will consider the limit case where
two subsequent excitations of an edge will fall exactly onto two subsequent
neurons, rn¡1 and rn.

Considering the same geometry as before (see Figure 12A), we have:

Z1
R D f

rn¡1
and Z2

R D f
rn

. (A.11)

From this and equation 2.4, we get:

Z2 D
rn¡1

rn
Z1 D

n ¡ 1
n C 1

Z1. (A.12)

Let v be the velocity and m the camera frame rate. Then:

Z1 D Z2 C
v
m

(A.13)

and

Z2 D
n ¡ 1
n C 1

³
Z2 C

v
m

´
. (A.14)

Solving this for the neuron number, we get:

n D
2m

v
Z2 C 1. (A.15)

possible to introduce equation 2.4 here, because in this equation the neuronal positions
shift with changing N or r .
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If this equation holds for an object distance Z2, then n is the number of
the outermost neuron rn for which no aliasing occurs at a given frame rate
and velocity. The neuron number n and the neuron location rn are directly
related by equation 2.4. Due to the simple geometry, it is also possible to
project the neuron location back into the environment along the ray that
connects neuron rn with the nodal point.

From equation 2.4, we get:

n1,2 D ¡1
2

§

r
1
4

C
rn

h
. (A.16)

This equation enters in equation A.15. In addition, we substitute rn using
equation A.11 and after some arithmetic get:

R D
h
f

³
4m 2Z3

2

v2
C

6m Z2
2

v
C 2Z2

!
. (A.17)

Given an object with depth Z2, equation A.17 describes the radial distance
R from the optical axis, which is maximally allowed such that no aliasing
occurs. In other words, as soon as this object has a radial distance larger
than R, its detection is subject to aliasing.

The actual depth of the object is the most crucial parameter and enters
with a power of three. Objects very nearby are therefore almost always de-
tected with aliasing. From the controllable parameters, frame rate, velocity,
and total neuron number (contained in h) are most sensitive; focal length
and retina radius (also contained in h) contribute less strongly.

Figure 13A shows the regions for which aliasing occurs at different ve-
locities. To obtain these curves, we have assumed a total number of N D 50
neurons, a frame rateofm D 5 images per second, a retina radius ofr D 0.025
m, and a focal length of f D 0.025 m. The solid lines re�ect a reasonable
working range lying inside the “bowl” enclosed by the two solid lines. For
this curve, a radial displacement of maximally |R | ¼ 0.8 m is allowed for
objects that are 1 m away (Z2 D 1 m) from the robot (crossing points with
horizontal line).

In the following (see Figures 13B and 13C), we keep r D 0.025 m and
f D 0.025 m. If we assume that a detection range of R D §0.5 m is desired
for objects at a distance of Z2 D 1 m, then we can solve equation A.17 for the
velocity and plot v as a function of the total neuron number (see Figure 13B).

The plotted equation reads:

v D
6m

N2 C N ¡ 4
C

2m

N2 C N ¡ 4

p
2N2 C 2N C 1 . (A.18)

Thus, the diagram shows for different frame rates the maximally allowed
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Figure 13: Aliasing behavior. For A–C we set f D r D 0.025 m. (A) The regions
in which no aliasing occurs (in between the curves) for different robot velocities
and with N D 50, m D 5. (B) The maximally allowed velocity for which no
aliasing occurs at (R, Z) D (§ 1

2 , 1) [m] for different total neuron numbers using
the frame rate as parameter. (C) A contour plot showing the allowed radial range
R at Z D 1 m for different neuron numbers and different traveled distances per
frame.

velocity at a given neuron number for which no aliasing occurs for an ob-
ject with coordinates R D §0.5 m, Z D 1 m. If such a system would be
designed serially with conventional hardware (a program on a worksta-
tion) the computational effort will limit the frame rate, and it is reasonable
to assume frame rates of about 10 Hz. In this case, velocities between 0.5 m /s
and 1.5 m /s will be obtained for neuron numbers between 25 and 60. If the
system would be designed by parallel processing hardware, much higher
frame rates could be achieved. The top curve shows that robot velocity is
not a limiting factor even for frame rates of 100 Hz for any neuron num-
ber below 200. Such a frame rate should be easily obtainable in a parallel
processing system.

Finally we note that v /m is identical to the distance L the robot travels
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between two images. Again we set Z2 D 1 m and rewrite equation A.17 as:

R D
2

N2 C N

³
2
L2

C
3
L

C 1
´

. (A.19)

This allows us to generate a contour plot (see Figure 13C) that shows the
iso-radii that limit the range where no aliasing occurs for objects 1 m away
as a function of both, N and L. The contour lines between R D 0.46 m and
R D 1.75 m re�ect a reasonable working range, and the total number of
neurons N per radius can be chosen according to the desired speed and
frame rate of the system.

It should be remembered that the analysis of the aliasing behavior is
based on the limit case assumption—the assumption that an edge will—in
the limit case— excite exactly two subsequent neurons in two subsequent
frames. If the neurons have highly nonoverlapping excitable regions (“re-
ceptive �elds”), then the projection of a thin edge could also fall between two
neurons, exciting neither of them (dubbed an in-between miss). This could
lead to a deterioration of the performance even for parameter settings that
would be tolerated under the limit case aliasing condition. However, it can
be expected that the problem of in-between misses is of minor relevance in
any realistic situation, because edges usually are not in�nitely thin. If the
color on this edge surface is relatively similar over small distances, then
neuron rn will detect a different part of the edge as compared to neuron
rn¡1, but at least it will not experience an in-between miss. This will lead
to a small error in the depth estimate similar to the one introduced by the
neuron placement problem discussed above. This error in the Z-component,
however, is negligible (see Figures 4 and 6).
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