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Abstract

In this article we will compare traditional reinforcement learning tech-
niques with a novel correlation based algorithm. We will discuss severa
problems which occur in reward-based reinforcement learning and outline
aternative solutions. An example of arobot control task shown at the end
will support our claims.

1 Introduction

Control tasks for animals or machines (“systems”) require sensible actions that
follow from the current state of the system. As a consequence the state of the
system may change and a new action will be elicited, and so on. This procedure
describes a sequence of states and actions which follow each other in time. Such
control mechanisms can either be hardwired into the system, but many times it is
more appropriate to design a learning algorithm that tries to infer the next action
from the previous sequence of states. Especially in animal (or robot-) control the
complexity of the world may prevent hardwiring and learning is required instead
to assure enough flexibility.

Currently there is only one group of algorithms widely used to this end: reward-
based reinforcement learning (Sutton and Barto, 1998). The central paradigm for
all of these algorithms is that a system learns the most sensible actions by per-
forming that particular action from which it receives maximal reward.

Substantial efforts have been undertaken during the last 15 years to develop
a highly successful theory of reinforcement learning (Sutton, 1988; Dayan, 1992;
Dayan and Seynowski, 1994; Kaelbling et al., 1996; Sutton and Barto, 1998).
However, in spite of this, convincing proofs of the usefulness of reinforcement
learning in technical applications are still rare. In general one finds that these
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algorithms are not very successful in space- and time-continuous control tasks, to
which all animal and robot control tasks and many industrial ones belong. This
article will discuss possible reasons for this problem and we will try to provide an
alternative solution, where many of these problems do not occur.
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Figure 1: Actor-Critic architecture. A) Conventional feedback loop controller, B)
Actor-Critic control system, where a Critic influences action selection by means
of a reinforcement signal. C) Correlation based Actor-Critic architecture, where
the control signal is derived from the correlations between two temporally related
input signals.

2 Actor-Criticmodels

Reinforcement learning control-applications are usually embedded in so called
Actor-Critic architectures and as such these models are strongly related to con-
trol theory (Witten, 1977; Barto et al., 1983; Sutton, 1984). Fig. 1 A shows a
conventional feedback control system. A controller provides control signals to
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a controlled system which is influenced by disturbances. Feedback allows the
controller to adjusts it signals. In addition, a set-point is defined. In the equilib-
rium (without disturbance), the feedback signal X, will take the negative value of
the set-point, which represents the “desired state” of the complete system. In the
simplest case (set-point=0), this is zero, too. The set-point can essentially be as-
sociated with the control goal of the system, reaching it by means of the feedback
could be interpreted in the way that the system has attained homeostasis. Part B
of this figure shows how to extend this system into an actor-critic architecture.
The critic produces evaluative, reinforcement feedback for the actor by observing
the consequences of its actions. Most of the time temporal difference learning
(TD-learning, Sutton 1988) is used to create the reinforcement signal.

TD-learning essentially calculates the error 6 between a the predicted value of
a state s and the actually observed (currently existing value), holding it against the
future return R. One defines:

RT = Z T(t), (1)
o(t) = Rr—Vy(t), ()
Vi(t) <« Vi(t) +4() (3)

where Ry is called return and represents the total future reward when performing
an action sequence that starts at state s. V; is the momentarily existing value of
state s. The prediction error § gives the mismatch of the currently assumed value
V, as compared to the expected return. The error is zero if these two quantities
match. In this case the correct value V' has already been associated to its state
s. Thus, the update rule corrects the momentarily existing value by means of
adding the error: If we expect more return, V should rise, otherwise it should fall.
Recursive methods like the TD(0) algorithm exist to calculate this in an efficient
way (Sutton and Barto, 1998).

The Critic takes the form of a TD-error which gives an indication if things have
gone better or worse than expected with the preceding action. Thus, this TD-error
can be used to evaluate the preceding action: If the error is positive the tendency
to select this action should be strengthened or else, lessened. Thus, actor and
critic are adaptive through reinforcement learning. This relates these techniques
to advanced model-based feed-forward control and feed-forward compensation
techniques. Many different ways exist to actually implement this (see Sutton and
Barto (1998) for an example) and actor-critic architectures have become espe-
cially influential when discussion animal control. Several authors have suggested
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that actor-critic architecture might describe decision making sub-systems in ani-
mals. Accordingly, several models have been designed which try to capture the
functionality of the basal ganglia in terms of Actor-Critic architectures (Houk
et al., 1995; Suri and Schultz, 1998; Berns and Sejnowski, 1998; Brown et al.,
1999; Contreras-Vidal and Schultz, 1999; Suri et al., 2001). To discuss these
models here would, however, exceed the scope of this article (see Joel et al. 2002;
Worgotter and Porr 2004)

3 Arereanforcement Actor-Critic architectures re-
alistic in view of animal control

In this section we will ask which requirements must be met in order to successfully
implement an Actor-Critic architecture for animal control.

Before learning can start we must make sure that: 1) The environment must
provide feedback to the system and 2) the system must be able to explore the
environment while it should at the same time maximize its return during learning.

3.1 Evaluativeversusnon-evaluativefeedback - Thecredit struc-
turing problem

The credit structuring problem especially “haunts” many practical applications.
TD-methods (and their relatives) always rely on rewards r(t). This, however, re-
quires a process that “places” the rewards appropriately (credit structuring prob-
lem). To this end we need an external observer who has some prior knowledge
about the structure of the problem and about the goal of the prediction (or control-)
problem.

Only in very simple cases credit-structuring can be done directly. Most of the
time real-world MPD-like problems are too complex to allow for hand-placing
rewards. In addition, many times goals are at first only generally known. For
example, the goal “learn to win in chess”, hence placing a reward at the end of a
successful game, will lead to unacceptably long times to convergence (if at all) of
learning.

Credit-structuring is a major challenge especially in time- and space-continuous
control tasks, to which all animal behavioral tasks belong, where there are an in-
finite number of state-action pairs, to which rewards or punishments would have
to be associated beforehand by defining a mapping function from the state-action



space to the reward/punishment space defining the so-called “reinforcement func-
tion” (Santos and Touzet, 1999a,b), which requires appropriate structural credit
assignment also during learning (Mahadevan and Connell, 1992).

Such procedures for credit structuring can be called external evaluative feed-
back: An external structure explicitly provides the rewards.

A better strategy may be to assume that the agent/algorithm performs credit
structuring on its own. This can be achieved, for example, by associating only
very general aversive or attractive properties (like good or bad taste of food, pain
or pleasure, etc.) to states and let the agent “experience” them via some sensor
inputs. We would call such a procedure internal evaluative feedback: The agent
itself provides the value of the rewards. There is, however, a hitch. We still
need an external structure which explicitly defines the reference frame for what
should be rewarding (or punishing). But this is easy, isn’t it? For example: Food
is rewarding, pain not. However, the rewarding properties of food will for an
animal very much depend on its internal and non-observable state of satiety. It
may depend on its tiredness, on its mating-drive if the opposite sex is present, on
its fear in how to approach the food, etc., etc. Even pain is relative and situation
dependent. All these variables are in a normal situation inaccessible to an external
observer and it may be just as dangerous to impose ones own external reference
frame(s) onto the agent as it is to directly define its rewards. Thus, also internal
evaluative feedback poses a problem when trying to design autonomous agents in
a complex world with complex, opaque and possibly conflicting internal goals.
This problem had initially been pointed out by Klopf (1988) in the context of
classical conditioning and it is know earlier as the “frame-problem of Al” from
the work of Dennett (1984).

The only possible solution out of this is to try to design a system which oper-
ates strictly with non-evaluative feedback where any external structure (here, the
environment) will only provide value-free signals.

Why is this an important problem? Santos and Touzet (1999b) explain that
wrong credit structuring (i.e., defining the wrong reinforcement function) can eas-
ily prevent or delay convergence or - even worse - can lead to a convergence to an
undesired behavior. Thus, this problem needs to be addressed before any learning
can take place. The examples above, however, have clearly shown that this is a
non-trivial task.



3.2 How tochoosetheright starting policy?

Control system built by means of traditional RL methods need a built-in starting
policy without which they would not do anything. Here we observe that in real
world applications a wrong starting policy may (literally) be lethal for the agent.
Evolution on the other hand as made sure that animals start at least with a reper-
toire of built in behaviors that assures survival. If this problem can be solved for
the artificial agent we still find that many RL-algorithms converge with different
speed under different starting policies.

3.3 Theexploration - exploitation dilemma

The goal of the system is to maximize the return, so naively it should always chose
the one action which leads maximal immediate reward. This, however, prevents
exploration. Maybe a suboptimal action performed now will lead to a much higher
cumulative reward later? As a consequence all RL control-algorithm are faced
with the decision to what degree they should balance exploration and exploitation.
There are no easy solutions existing to this problem and a large body of literature is
devoted to it and the different convergence properties which arise (see for example
Bertsekas 1987; Kaelbling 1990; Thrun 1992; Wyatt 1996; Kaelbling et al. 1996;
Dearden et al. 1998; Gaskett et al. 1999; Meuleau and Bourgine 1999; Wiering
1999; Smart and Kaelbling 2000; Wyatt 2001; Kearns et al. 2002; Kearns and
Singh 2002).

3.4 Thecredit assignment problem

Finally, we are faced with the situation that rewards and punishments are “rare
in the world”. Or, more specifically, the controlled agent will normally perform
many moves through the state-action space where immediate punishments or re-
wards are (almost) zero and where more relevant events are rather distant in the
future. Nonetheless, to assure that it will learn a good (or even optimal) behav-
ioral strategy, credit would have to be assigned to every possible and not only to
every actually performed move. In the limit of a continuous state-action space,
however, all possible state-action combinations can never be explored, thus credit
assignment will always be sparse and - in the worst case - we might miss im-
portant state-action pairs. This problem is called the temporal credit-assignment
problem (Russell and Norvig, 1995; Sutton and Barto, 1998). Thus, credit assign-
ment relies on the actual moves of the agent and the sparse structure of rewards



requires generalization methods (function approximation). It has been observed
over and over again that a bad choice of the approximation can strongly delay or
even prevent convergence (see Santos and Touzet 1999a,b for a discussion, (Gor-
don, 1995; Baird, 1995; Tsitsiklis and van Roy, 1996; Bertsekas and Tsitsiklis,
1996) for observations on divergence).

3.5 Maximizing rewardsor minimizing distur bances?

Return maximization is the central paradigm of reinforcement learning and this
gives rise to the above discussed problems of credit structuring and credit assign-
ment. So far actor-critic architectures have also been implemented adhering to
this paradigm. Here we observe, however, that actor-critic architectures would
allow implementing a different learning goal as well. Negative feedback loops
(Fig. 1 A) have an important homeostatic property: Whenever a deviation from
the desired state (set-point) occurs the feedback loop will try to correct it. This
property could be used to define a minimization instead of a maximization prin-
ciple: The learning goal could be to try to minimize deviations from the desired
state given by the set-point, i.e., to minimize disturbances of the homeostasis of
the feedback loop. These two paradigms are in most cases not equivalent. Most
often one finds that maximal return is associated with a single point on the deci-
sion surface. Minimal disturbance, however, will cover a whole dense manifold of
points all of which represent solutions of the learning problem. As a consequence
convergence should be faster and the system will not get stuck in local extrema.

4 Correation based control is non-evaluative

Fig. 1 C suggest a schematic architecture which accommodates both ideas: 1)
non-evaluative feedback and 2) disturbance minimization. This architecture uti-
lizes the basic feedback loop controller from Fig. 1 A, but it assumes that the
environment will, in a temporal sequence learning situation, provide temporally
correlated signals about upcoming events like those mentioned in the introduction
(e.g., smell predicts taste, etc.). This architecture follows the learning goal: Learn
to keep the later signal (x,), whatever it is, minimal by employing the earlier sig-
nal (z,) to elicit an appropriate action. In conventional actor-critic architectures,
the critic provides an evaluation of the action (e.g. “good” or “bad”) and this eval-
uation influences future action selections. Evaluations however are, as discussed
above, always subjective. In correlation based control the situation is fundamen-



tally different: Here the system relies on the objective difference between “early”
and “late”, which arises (without internal or external interference) from the struc-
ture of the input signals. Evaluations do not take place at this point. Instead the
“re-"action of the feedback control loop in response to z, be it an attraction or
a repulsion reaction, will be shifted forward in time to occur earlier now in re-
sponse to z;. Thus, in this system, evaluations do not take place during learning
instead they are implicitly built into the (sign of the) reaction behavior of the inner
xo-loop: repulsion or attraction. As a consequence, Critic and Actor are not nec-
essarily separate entities anymore and can be merged into the same architectural
building block.

The central advantage of Actor-Critic architectures is that they can be set up in
a way which is operational from the very beginning if using the reflex loop control
configuration (stable starting policy, Millan (1996); Porr et al. (2003), Fig. 1 A).
On top of this, correlation based temporal sequence learning (Fig. 1 C) offers
the additional advantage that credit-structuring takes place without effort: Every
signal which enters the reflex loop will drive the learning and if there is no signal
the situation is stable (desirable) for the moment anyway. Rewards do not exist in
this scheme.

4.1 |sotropic Sequence Order learning (9

In this section we discuss a novel algorithm with which correlation based tem-
poral sequence learning can be implemented. This is achieved with a differen-
tial Hebbian learning rule (ISO-learning) operating on all synaptic weights (Porr
and Worgotter, 2002, 2003a,b). The main distinguishing features of isotropic se-
quence order learning (1SO-learning) are: 1) All input lines are treated equal un-
like in the older models of Sutton and Barto (1981) and Klopf (1986). 2) Inputs
are band-pass filtered 3) Learning is purely correlation based and synapses can
grow or shrink depending on the temporal sequence of their inputs. 4) Inputs can
take any form of being analogue or pulse-coded.

Fig. 2 A shows the structure of the algorithm for IV inputs. Inputs x, are
band-pass filtered (h) prior to summation. Thus, the output of the neuron is given

by:
N
V= Z WETk where T = hk * Tk (4)
k=0
The asterisk denotes the convolution between inputs and band-pass filters.
To get an idea what these filter do, lets consider pulse-inputs. In this case
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Figure 2: Isotropic sequence order learning. A) Structure of the algorithm for N inputs. For
notations see text. A central property of 1SO-learning is that all weights can change. B) Weight
change curve calculated analytically for two inputs with identical resonator characteristics (h).
The optimal temporal difference for learning is denoted as T,,:. C) Linear development of w;
for two active inputs (zo,z1). At time-step 40000 input xq is switched off and, as a consequence
of the orthogonality property of 1SO-learning, w; Stops to grow. D) Development of 10 weights
wi, i = 0...9 inarobot experiment (Porr and Wargotter, 2003a). All weights are driven by input
x1 but are connected to different resonators hi, which create a serial compound representation
(Sutton and Barto, 1990) of 21 (see Fig. 3 A). The robot’s task was obstacle avoidance. At around
t = 150 s, it has successfully mastered it, and the input xo, which corresponds to a touch sensor is
not anymore triggered. As a consequence we observe that the weights w? stop to change (compare
to C).

the filtered signals will consist of damped oscillations (Grossberg and Schmajuk,
1989; Grossberg, 1995; Grossberg and Merrill, 1996) which span across some
temporal interval until they fade. Thus, band-pass filtering essentially amounts to
applying a trace to all inputs, which “stretches” them in time to allow for tempo-
rally delayed correlations to take place.

Synaptic weights are changed according to a differential Hebbian learning

rule;
dwk

W = /J,.fk’l)l n << 1 (5)



where v is the derivative of the output. First we note that the system is linear and
weight-changes can be calculated analytically (Fig. 2 B).

It can be shown that inputs will not influence their own synapses and learning
is strictly heterosynaptic. As a consequence of this, a very nice feature emerges
for pairs of synapses: Weight-change will stop as soon as one input becomes silent
(Fig. 2 C). This leads to an automatic self-stabilizing property for the network in
control applications (Fig. 2 D).

4.2 Non-evaluative | SO-control: merging Critic & Actor

In this section we will describe how ISO-learning can be used to implement cor-
relation based control introduced in an abstract way in section 4. The central
assumption of ISO-control is that any control system should start with a stable
negative feedback loop (Fig. 1 C) for example a reflex-loop. Feedback controllers,
however, suffer from a major disadvantage: They will always only react after a
disturbance has taken place (inner loop in Fig. 3 A). Thus, the desired state (e.g.
xo = 0, see also Fig. 1 C) cannot be maintained all the time. Or in other words,
disturbances will not yet be minimal when employing feedback control. 1SO-
control can improve on this if a temporal correlation exist between the primary
disturbance and some other earlier occurring signal (denoted by the delay 7 be-
tween the inner and the outer loop in Fig. 3). The ISO-learning algorithm allows
for learning this correlation and, as a result, the primary reflex reaction will be
“shifted forward” in time, now occurring earlier; i.e. before the primary reflex
would have been triggered. Thus, if learning is successful the primary reflex will
be fully avoided and disturbances are now minimal (ideally zero). Note that in the
architecture shown in Fig. 3 A Critic and Actor are not anymore separate (compare
Fig. 1 B,C).

This principle has been employed in several real-robot experiments (Fig. 3
B,C) which can be viewed at http://www.cn.stir.ac.uk/predictor. We simulate
touch and range-finder signals. Before learning the simulated robot will perform
a built-in retraction reaction when touching an obstacle (primary reflex reaction).
All weights wy, are initially zero except the weights which belong to the touch
sensor inputs, which we set to one. Thus, the output is at this stage just the sig-
nal v = Ty, where Z, is the band-pass filtered touch senor input z, = hg * .
This signal is sent sign-inverted (negative feedback!), but otherwise unaltered, to
the motors?, which leads to a retraction reaction. The range-finders provide the

1This description is slightly simplified, because we employ steering and accelerating control,
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Figure 3: Applying 1SO-learning in a control task. A) This architecture is reminiscent of an
Actor-Critic architecture (see Fig. 1 C), but here the system does not use evaluative feedback
(“rewards”) from the environment. Instead it relies only on correlations between the inputs. Hence,
it is assumed that the “organism” receives temporally correlated inputs, where 1 arrives earlier
(e.g.; a signal from a range finder reflected from an obstacle) and x arrives later (e.g.; a signal from
a touch sensor triggered at the moment of touching the obstacle). Py, P, denote environmental
transfer functions, D a signal (“disturbance”), which arrives at the inputs: undelayed at z, and
with delay T at xo. Other symbols are as in Fig. 2, here we have also implemented a filter bank
of 10 filters with different frequencies all driven by the same input x1, this way creating also
something like a serial compound representation (Sutton and Barto, 1990). This, however, was
done purely to speed up learning and to create smoother output signals. Note that a filter bank
approach will still lead to weight stabilization (Fig. 2 D). After successful learning, the output
V' will fully compensate the disturbance D at the summation node of the inner loop leading to
xo = 0, which is equivalent to a functional elimination of the inner loop. The system has learned
the inverse controller of the inner loop (Porr et al., 2003). B,C) Trajectory of a real robot early (B)
and late (C) during learning in an area with three obstacles (boxes). Collisions are denoted by the
small circles (forward=solid, backward=dashed). Only forward collisions can be used for learning.
In such an environment the robot never needed more than 10 forward collisions to learn the task.
This way it is as fast as the best RL-algorithms which require sophisticated credit-structuring and
temporal assignment mechanisms. (Touzet 1999, also Touzet pers. communication).

necessary earlier signal because they respond before the touch sensor is triggered.

thus two sets of neurons. The correct cross-wiring is described in Porr and Worgotter (2003a).
Here of importance is that 1SO-control essentially works without any signal post-processing or
conditioning.
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ISO-learning learns this correlation. After learning the output is v = > wyZk,
where k& > 1, because the touch sensors (z) are not anymore triggered. This
signal will now in same way as before, but earlier, lead to a retraction reaction and
the primary reflex will be avoided.

Interestingly, the principle of disturbance minimization by reflex avoidance
can be employed in the same way to learn a food-retrieval task (see Porr and
Worgotter 2003b). Here a behavior emerges which looks like reward-retrieval
(or return-maximization) but which really follows the disturbance-minimization
principle.

5 Conclusion

The goal of this article was to point out that realistic autonomous animal con-
trol cannot easily be achieved with reward-based learning mechanisms. At first,
rewards must not be externally defined, because in this case the controlled sys-
tem will operate according to the intentions of its designer and it will not follow
its own ones, thus, failing to be autonomous. Not even externally defined ref-
erence frames (evaluative feedback) are allowed, because in this case the same
problem occurs only at a higher level of abstraction. After all, how can the de-
signer make sure that he/she has taken care of everything which is relevant for the
system (frame-problem, Dennett (1984)). This cannot be achieved as long as the
designer is unable to “see the world with the system’s eyes”, which, however, is
never the case even between two humans. Thus, ultimately only reward-free learn-
ing mechanisms (e.g. correlation based learning), which rely on non-evaluative
feedback from the environment will assure autonomous development. Only in
a second stage, the system may find a way to make its own rewards explicit,
possibly through semantic associations between correlated signals. For exam-
ple, the system could develop a mechanism by which it associated the objective
feature “Early” with the semantic evaluation “Good” (and “Late” with “Bad”).
Autonomous agents, however, will have to do this on their own and only after-
wards reward-based learning becomes feasible again.
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