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The goal of neuromorphic engineering is threefold: 1) Try to gain insight into neuronal behavior through

electronically realized models (viz. chips) 2) Try to make advancements in the �eld of complex parallel electronic

micro-circuitry design and 3) try to arrive at an industrially applicable product which could be relevant for

high-tech domains like robotics or computer vision. In this article I will present a set of solutions addressing

the problem of real-time depth analysis from stereoscopic images which have taken us in this �eld of problems

- to my believe - a little closer to the �rst and third goal de�ned above. In a stereoscopic system both eyes or

cameras have a slightly di�erent view. As a consequence small variations between the projected images exist

(\disparities") which are spatially evaluated in order to retrieve depth information [7, 25]. I will show that

two related algorithmic versions can be designed which recover disparity. Both approaches are based on the

comparison of �lter outputs from �ltering the left and the right image. The di�erence of the phase components

between left and right �lter responses encodes the disparity. The �rst approach, which will be described, very

strongly relates to the behavior of visual cortical simple and complex cells. The second approach uses the

apparently paradoxical similarity between the analysis of visual disparities and the determination of the azimuth

of a sound source [27]. Animals determine the direction of the sound from the temporal delay between the left and

right ear signals [12]. Similarly, in the second approach [22] I transpose the spatially de�ned problem of disparity

analysis into the temporal domain and utilize two resonators implemented in the form of causal (electronic) �lters

to determine the disparity as local temporal phase di�erences between the left and right �lter responses. This

approach permits video real-time analysis of stereo image sequences (see movies at http://www.neurop.ruhr-uni-

bochum.de/Real-Time-Stereo) and a FPGA-based PC-board has been developed which performs stereo-analysis

at full PAL resolution in video real-time. The software version is already used in industrial applications.

1 Introduction

When talking about neuromorphic engeneering usu-

ally those approaches are discussed where cell- or

membrane characteristics are modeled with sub-

threshold transistor technology. In this article I will

follow a di�erent strategy and describe how elec-

tronic �lter circuits can be used to mimic neuronal

behavior while at the same time these circuits are ex-

tremely well suited to implement them in VLSI hard-

ware. The target application is: stereoscopic depth

analysis.

In general there are several strategies of how to

retrieve depth information from a sequence of im-

ages, like depth from motion (
ow-�eld analysis),

depth from shading and depth from stereopsis, on

which I concentrate in this article. In a stereoscopic

approach usually two cameras are mounted with a

horizontal distance between them. As a consequence

objects displaced in depth from the �xation point are

projected onto image regions which are horizontally

shifted with respect to the image center. This shift is

called disparity and it can be used to determine the

depth of the object. Due to the geometry of the op-

tic system it is thereby suÆcient to restrict disparity

analysis to the projection of corresponding linear seg-

ments (lines) in the left and right eye (epipolar line

constraint). It is therefore not necessary to extend

the problem to two dimensions, which raises compu-

tational complexity. This can, however, improve the

results.

In the most straightforward approaches that ad-

dress the problem of depth from stereo, the dis-

parity is computed by searching the maximum of

the cross-correlation between image windows along

the epipolar lines of the left and right image [10].

This algorithmic solution, however, bears little real-

ism in comparison to the behavior of visual cortical

neurons. Thus, a di�erent group of algorithms for

disparity analysis has been designed more recently

based on spatially localized band-pass �lters. This

method computes the convolution between Gabor

kernels (Eq. 1) and the left and right image parts.

It is by now largely accepted that the shape of the



receptive �elds of visual cortical simple cells resem-

bles such Gabor �lters. Thus, in this approach cell

responses are linearly approximated by the �lter con-

volutions.
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2�2 ei(kx��) (1)

Each convolution result consists of an amplitude

and a phase value. The disparity is computed from

the di�erence of the two phase values obtained from

the left and right images divided by the �lter tuning

frequency k. The amplitude of the �lter response can
be used to estimate the reliability of the obtained re-

sult: the bigger, the more reliable is the phase di�er-

ence. If the amplitude is zero, obviously, the phase is

ill-de�ned. Since this idea was introduced by Sanger

in 1988 [25] a large body of literature has been de-

voted to these approaches [2, 6, 7, 8, 23, 24], which

are commonly called phase-based stereo algorithms.

These studies are concerned with the theory of cor-

tical disparity processing and, as a consequence, fail

to accommodate industrial requirements concerning

processing speed and accuracy[2].

Correlation techniques and phase based stereo al-

gorithms are acausal in the sense that data acquisi-

tion of at least parts of the image needs to be com-

pleted before the computation of the disparity can

start. It is believed that these techniques could play

a major role in the process of disparity analysis in

the mammalian brain because visual cortical cells

have receptive �elds with a Gabor �lter pro�le[4, 11].

The vast number of cortical cells allows for an ef-

�cient parallel processing and thereby animals and

humans can react to a changing depth structure in

their environment in "real-time". When dealing with

an arti�cial computer vision system, one has to re-

alize that phase-bases disparity analysis is indeed a

computationally rather slow process, because many

convolutions have to be calculated.

In this study I describe two di�erent approaches:

In the �rst part I will brie
y introduce a very com-

pact formalism for the conventional spatial phase-

based stereo algorithm. In the second part I describe

a novel, causal, real-time phase-based algorithm to

determine the disparities in two stereo images[22].

The central idea behind this approach is to transpose

the spatially-de�ned problem of disparity estimation

into the temporal domain and compute the disparity

simultaneously with the incoming data 
ow.

2 The acausal, spatial �ltering, neuronal

approach

Simple cell responses in the visual cortex can be de-

scribed by Gabor �lters [4, 11]. A Gabor function

(Eq. 1) is a sine-wave multiplied and, thus, damped

by a Gaussian envelope [9]. Thus, these cells rep-

resent localized spatial band-pass �lters which are

tuned to the resonance frequency k of the sine-wave

and located at x0 in the visual �eld where the Gaus-

sian envelope has its center. In Eq. 1 � is related to

the width of the receptive �eld. The phase parame-

ter � represents the fact that most cells in the visual

cortex have a receptive �eld which is mixed from a

pure cosine- and a pure sine-type. I will set x0 and

� to zero because they do not a�ect our results ex-

cept by adding unnecessary mathematical complex-

ity. Thus, in Eq. 1 the real component represents a

cosine- and the imaginary component a sine-shaped

receptive �eld. These are the archetypes of recep-

tive �elds that exist in monocularly driven simple

cells. The linear part of the response of such a cell is

given by the convolution of the receptive �eld with

the stimulus f(x):

Ml;r(x) = G(x) � fl;r(x) (2)

=

Z +1

�1

G(x � x0)fl;r(x
0)dx0

It can be shown that these monocular simple cell

responses can be combined to construct complex

cells responses by means of designing quadrature

pairs [13, 19, 20, 21] utilizing a push-pull arrange-

ment [5, 18, 20, 26, 28] between corresponding sim-

ple cells. Details of this algorithms cannot be pub-

licly laid open because of an IPR protection agree-

ment with our industrial partner (I-to-I, Hamburg,

http://www.I-to-I.de).

The theory outlined in the �rst approach to-

wards stereo disparity analysis suggests that neu-

ronal operations in simple and complex cells - many

of which have already been observed experimentally

[3, 14, 15, 16, 17, 23] - can in a very direct way lead

to disparity estimates of the objects in a visual scene.

Thus, it seems that the computation of visual dispar-

ities, which is a central component for the perception

of depth, is already to a large degree solved by the

cells in the primary visual cortex. It should be noted

that this approach is very well suited for a parallel

system like the cortical neural network. There, par-

allel spatial �ltering operations will permit real-time

stereo vision in animals and humans. Conventional

computer vision system, however, do not operate in

parallel. Here, spatial convolutions are very time-

consuming operations and real-time performance is

prevented this way.
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Figure 1. Block diagram of the computational process and

results of a disparity estimation from the two input step

functions xr and xl.

3 The causal, temporal �ltering, computer

vision approach

In order to deal with the restrictions of a conven-

tional computer vision system we realize that cam-

era signals are temporal signals [22] [patent pend-

ing]. Thus, one can now take the luminance signal

of the image scan-lines from the left and the right

image and pipe it through a left and a right tempo-

ral band-pass �lter (a resonator). This �lter function

looks like the right half of a sine-wave Gabor �lter.

This way two signals are generated which are quasi-

oscillatory at the resonance frequency. As before it is

the (local) phase di�erence between these two oscil-

lations which is directly equivalent to the disparity.

Thus, subsequently our system measures this phase

di�erence by two more simple electronic operations

as shown in Fig. 1 and explained below. In order to

be allowed to do this I assume a fronto-parallel cam-

era arrangement which leads to horizontal epipolar

lines.

Let xl(t); xr(t) be the two corresponding pixel

lines of a stereo image pair in which a single con-

trast step exists at di�erent disparities (viz. di�erent

times tl and tr).

The two step functions xl(t) $ Xl(s) and xr(t) $
Xr(s) are de�ned in the Laplace domain by (Fig.1):

Xl(s) :=
1

s
e�tls; and Xr(s) :=

1

s
e�trs; (3)

and the transfer function of the resonator is given as:

H(s) =
s

(s� s
1
)(s� s�

1
)

(4)

where s
1

is a �lter pole and speci�es the �lter char-

acteristic de�ned by f0 and the �lter qualityQ, which
determines the damping; the \�" denotes the com-

plex conjugate.

Re(s
1
) = �2�f0=2Q (5)

Im(s
1
) =

p
(2�f0)2 � (Re(s

1
))2 (6)

Convolution of signal and �lter yields for the right

image:

Yr(s) = Xr(s)H(s) =
s

(s� s
1
)(s� s�

1
)

1

s
e�trs (7)

A similar convolution is performed for the left image.

I de�ne a := (s
1
� s�

1
)�1, then the inverse Laplace

transformation of Yr(s) yields:

yr(t) =

�
aes1(t�tr) + a�es

�

1

(t�tr) if t � tr
0 if t < tr

(8)

The temporal resonator signal y(t) re
ects a damped
sine-wave with frequency f0 (Fig. 1, yl; yr). The

number of full cycles until the signal fades is roughly

equivalent to the value of Q. Note that any DC com-

ponent present in the input signal is removed by the

resonator. This is an advantage of the new method

because the DC usually poses a severe problem in all

spatial �lter approaches [2, 7, 25].

Finally, disparity is determined from the phase

di�erence between the resonator signals from both

images. Phase comparison is achieved by multipli-

cation of the two signals in the time domain and

subsequent low-pass �ltering (Fig. 1, �; LP ).
Multiplication yields (Fig. 1, �):

�(t) = yl(t)yr(t) =

�
g2f0(t) + �(t) if t � tr
0 if t < tr

(9)

with:

g2f0(t) = a2es1(2t�tl�tr) + a�
2
es
�

1

(2t�tl�tr)| {z }
double frequency term

(10)

and

�(t) = 2jaj2 cos [(tr � tl)Im(s1)]| {z }
K

eRe(s1)(2t�tr�tl)

(11)



Figure 2. The PC-compatible board for real-time stereo

analysis.

The term g2f0(t) re
ects an oscillation with 2f0. In
an implementation it will be eliminated by low-pass

�ltering with low cut-o� (Fig. 1 LP ). The second

part represents the phase �(t) between the two sig-

nals and contains an exponential relaxation term and

a constant term K, which encodes the true disparity.

K =
Q2

2�2f20 (4Q
2 � 1)

cos [(tr � tl)Im(s1)] (12)

The disparity which is the spatial equivalent of tr�tl
can be computed by inverting Eq. 12 and is obtained

immediately at the second contrast step (i.e., for

t = tr), after which the signal relaxes to zero. This

relaxation behavior which originates from the char-

acteristic of the resonator assures temporal (viz. spa-

tial) locality. Otherwise only the average phase (viz.

disparity) of each image line could be computed. In

order to make this algorithm applicable the output

signal needs to be normalized to be independent of

overall luminance variations.

4 The board

The block diagram in Fig. 1 shows that this sys-

tem can be easily implemented in hardware. We

used an XILINX FPGA processor to design an pro-

totype PC-compatible board for real-time stereo

image analysis (Fig. 2). This was done in co-

operation with the \Mikroelektronik Anwenderzen-

trum (MAZ) Hamburg-Harburg". In such a sys-

tem the disparity is determined continuously from

the incoming data and thereby real-time perfor-

mance is achieved. The board currently oper-

ates at 25 Hz and full PAL resolution. Thereby

it is a factor of more than 100 faster than any

stereo-system based on a conventional Pentium-PC.

Real-time MPEG encoded movies which demon-

strate the performance of the board can be viewed

on our internet page (http://www.neurop.ruhr-uni-

bochum.de/Real-Time-Stereo).

Figure 3. Original images and disparity maps

obtained from the causal algorithm and taken from

an outdoor driving scene (http://www.neurop.ruhr-uni-

bochum.de/Real-Time-Stereo/motions/dra1 s.mpg)



Figure 4. Original images and disparity maps obtained

from the causal algorithm and taken from an indoor

scene of a moving person illuminated with a grating pat-

tern to increase texture (http://www.neurop.ruhr-uni-

bochum.de/Real-Time-Stereo/motions/hanjo s.mpg)

5 Results

Figures 3 and 4 show a few results obtained with the

causal algorithm applying it to an outdoor scene with

natural light or alternatively indoors using arti�cial

stripe-illumination. The outdoor scene was obtained

mounting the stereo-camera setup on a regular car

ski-rack and driving on a main motorway with about

100 km/h. Camera frame rate was 25 Hz. The im-

ages were recorded while a car was overtaking our

vehicle after which we accelerated in order to reduce

the distance. The accuracy of the algorithm is on

average 0.2 pixels disparity which with this setup

amounts to about 50cm at a distance of 50m. In

general, disparity and distance scale hyperbolically

such that the accuracy increases with decreasing dis-

tance.

The indoor scene mimics a situation often encoun-

tered in industrial environments: objects with little

texture (structure). All triangulations methods (to

which these two algorithms also belong), however, re-

quire texture boundaries which can be compared be-

tween the left and the right image. Without texture

depth cannot be measured. Commonly active illu-

mination is used in order to cope with this problem.

However, most conventional algorithms infer depth

directly from the perspective distortions which occur

as a consequence of the depth-structure of the illumi-

nated object. They are, therefore, extremely sensi-

tive to optically induced distortions in the illumina-

tion pattern itself. Both algorithms presented here

need texture only in order to \excite" the �lter cir-

cuits and they do not care about the special structure

of the illumination pattern (also white-noise would

have done the job). As a consequence, the depth

structure of the scene can be retrieved much more

reliably.

6 Conclusions

The �rst goal of this study was to demonstrate that

the stereoscopic depth analysis problem can be suc-

cessfully tackled within the well-known framework

of phase-based stereo algorithms reaching a degree

of performance that permits industrial application.

To this end I have shown that it is possible to design

two versions of phase-based stereo algorithms: One

which is compatible with neuronal operations in the

visual cortex [14, 15, 16, 17, 23] and another one

which operates causally and is therefore much faster

in a conventional computer vision environment. As

a �nal goal we were able to design an FPGA based

version of the algorithm which operates in video real

time. Even in a time of ever increasing conventional

computer power, video real-time image processing is



still a massive challenge.

The second goal was to devise an alternative strat-

egy in neuromorphic engeneering: The use of neu-

ral �lter algorithms and their embedding into VLSI

hardware structures. Filter algorithms have long

been discussed as a valid level of abstraction for the

description of neuronal behavior, like the receptive

�eld structure of cortical simple cells. Strictly speak-

ing, these �lters cover only the linear part of the cell

responses and certain \tricks" have to be applied as

laid out in the cited literature in order to create a

reasonable match between cell and �lter behavior.

For example, the most obvious and most easily taken

care of deviation from linearity is the half-wave rec-

ti�cation behavior of neuronal impulse rates. How-

ever, despite the fact that concept receptive �eld �l-

ters has been so successful when trying to describe

cell behavior, so far these �lters have not played any

great role in electronic circuit design. This is prob-

ably due to the fact that almost all visual problems

rest on the analysis of 2-dimensional image \patches"

and therefore require 2-dimensional receptive �eld

�lters. The 2-d convolutions involved are computa-

tionally expensive and prevent eÆcient on-chip im-

plementation. Stereoscopic depth analysis is intrin-

sically a 1-dimensional problem. Even if we give up

the parallel camera setup and allow for vergent view-

ing angles matching stereo points will still fall onto

lines. In this case the epipolar lines are not any-

more horizontal but instead tilted. Electronically the

problem of tilted epipolar lines can be easily solved

by an image recti�cation step, which can in principle

also be performed in hardware as a pixel index warp-

ing. Thus, the stereoscopic depth analysis problem

is ideally suited to apply a 1-dimensional neuronal

�lter algorithm which in itself is very well suited for

VLSI implementation. Therefore, in this case the

transition from neuronal behavior to hardware im-

plementation can be performed rather smoothly.
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