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Abstract. One advantage of the asynchronous and distributed char-
acter of embodied evolution is that it can be executed on real robots
without external supervision. Further, evolutionary progress can be mea-
sured in real time instead of in generation based evaluation cycles. By
combining embodied evolution with lifetime learning, we investigated a
largely neglected aspect with respect to the common assumption that
learning can guide evolution, the influence of maturation time during
which an individual can develop its behavioral skills. Even though we
found only minor differences between the evolution with and without
learning, our results, derived from competitive evolution in predator-
prey systems, demonstrate that the right timing of maturation is crucial
for the progress of evolutionary success. Our findings imply that the time
of maturation has to be considered more seriously as an important factor
to build up empirical evidence for the hypothesis that learning facilitates
evolution.

1 Introduction

Evolutionary Robotics (ER) has become a well established method for investi-
gating the development of adaptive behavior in situated and embodied agents
(e.g., [1, 2]). However, demonstrating truly open-ended evolution of complex be-
havior is still a great challenge [3]. A regularly raised argument for that is the
strong simplification of ER experiments with respect to natural evolution and
the complexity of biological organisms (for a discussion see, for instance, [4]).
Although this criticism has to be taken seriously, it seems rather unpractical to
begin with.

Instead of trying to increase the complexity of individual agents at any cost,
we propose a more pragmatic approach. The aim of this paper is to present a
methodology which unifies several aspects of ER research, which previously have
been considered rather separately: the interplay between ontogenetic (learning)
and phylogenetic (evolutionary) development [5], the evolution of morphology
and control [6], the use of distributed and asynchronous evolutionary algorithms
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Fig. 1. a: Principle mechanisms of the embodied evolutionary algorithm (see text for
details). b: Physical simulation of a predator-prey scenario (two populations can be
distinguished by the color on top of the robots).

[7], the role of competitive co-evolution [8], and the reduction of fitness function
constraints to achieve open-ended evolutionary processes [4]. We argue, unifying
those aspects gives promising ground for the development of more biologically
plausible ER experiments, which may allow a successful incremental increase of
behavioral complexity.

Besides the description of such a unified methodology, we present first ex-
periments involving competing populations of predators and preys. Our results
challenge the previously hold assumption that learning facilitates evolution [9,
5, 10]. This assumption is mainly based on experiments where, as we believe, an
important aspect of lifetime adaptation has been largely neglected–the time of
maturation during which an individual can develop its behavioral skills. Whether
or not learning facilitates evolution crucially depends on this factor, as we can
show within our experimental framework. If the timing is wrong, learning can
even be counterproductive and individuals are better off with evolutionary de-
velopment only. However, with the right timing, learning can slightly improve
evolutionary success. We argue further, to build empirical evidence for the hy-
pothesis that learning can guide evolution in the context of ER, we have to
abandon classical generation based evolution and should instead consider an
asynchronous and distributed approach as pursued in this paper.

2 Methods

In the following we consider a predator-prey scenario involving two competing
populations. In remembrance of the pioneering work of Werner and Dyer [11]
we call prey individuals sheep and predators wolves. Sheep can gather energy
by moving around without getting caught by wolves (an analogy to grazing),
whereas wolves gain energy by catching sheep. Here, only the sheep population



evolves whereas wolves can only perform lifetime adaptation. However, the ap-
plied evolutionary algorithm (EA) can be easily used to investigate co-evolution
of both populations which was omitted here to provide a better analysis of the
fitness development by eliminating the Red Queen effect [12], that is, an evolu-
tionary arms race as investigated in [13].

Embodied evolution. The EA we implemented here is a slightly modified ver-
sion of the probabilistic gene transfer algorithm (PGTA) introduced by Watson
et al. [7]. It is an asynchronous and distributed embodied EA, which can be ex-
ecuted directly on real robots without the need of external supervision. Robots
of a population evolve by exchanging gene strings of their genome dependent on
their current performance. Each robot executes the following algorithm:

DEFINE embodied_evolve

initialize_genes[]

energy = initial_energy

REPEAT FOREVER

IF (maturation_exceeded?){

IF (excited?)

send(genes[random(num_genes)])

IF (receptive? and received?){

genes[indexof(received)] = valof(received)

mutate(genes[])

begin_maturation()

energy = maturation_energy}}

do_task_specific_behavior

energy = limit(energy + reward - penalty)

ENDREPEAT

ENDDEFINE

At the beginning of evolution, the genome of a robot is initialized randomly
and a starting energy is set (this can be either the actual battery current or a
virtual energy value). In every time step, depending on the current energy, it
is probabilistically determined if a robot sends a sequential part of its genome
(excited). The gene string can be received by all individuals within a predefined
broadcast range (see Fig. 1a). A robot accepts received gene strings with prob-
ability (1-energy) and overwrites part of its genome with the new string. The
new genome is mutated with a predefined mutation rate. With gene acceptation
the maturation period begins and the energy level is reset. Maturation period is
a developmental phase where individuals can neither broadcast nor receive gene
strings. Note, this period does not determine the lifetime of an individual, it just
assures a minimum time of development. The actual lifetime depends on the
performance of an individual, the better it is the longer the individual lives. At
the end of each time step the energy is updated. If the robot broadcasts a gene
string, energy is decreased with a penalty (in analogy to reproduction costs).
If the robot successfully accomplishes its task, it gains an energy reward. The
energy of a robot is limited by a minimum and maximum value.
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Fig. 2. Neural networks controlling sheep (a) and wolves (b). Square brackets enclose
the range of neuronal output (Wl and Wr are within [−1, 1]).

The major difference to the PGTA proposed in [7] is the maturation period
which ensures that new genomes are able to prove their performance potential
before they may get overwritten by another received gene string. Further, muta-
tion is applied to the whole receiver’s genome instead of to the transferred gene
string only. This allows more variation in new genotypes.

Learning. During lifetime wolves and sheep are able to adapt their behavior–
either catching sheep or escaping from wolves. As adaptation mechanism we
applied isotropic-sequence-order learning using input correlations only (ICO)
described in [14]. This approach is based on temporal correlations between sensor
signals as they appear in nature, too. For instance, a child learns to react to heat
perception caused by a hotplate which precedes the pain when touching it. In
our example, seeing a wolf precedes getting caught. Sheep react to wolf attacks
by trying to move away. This is an inbuilt reflex. During lifetime, they are able
to learn to prevent these reflexes by using predictive sensory signals–e.g. sensing
of approaching wolves. ICO learning realizes correlations between a reflexive
and a preventive behavior. Preventive synaptic weights in the neural control are
learned by the following learning rule:

d

dt
pi = µui

dur

dt
, i ∈ [0, N ], (1)

where a weight change of a synapse pi in time step t depends on the learning
rate µ, the input signal ui transmitted by the learned synapse, and the difference
in a reflex input signal ur (for details see [14]).

Fig. 2 presents the neural network (NN) control including ICO learning of
sheep and wolves. Both NNs include a robust obstacle avoidance functionality
realized by infrared (IRl, IRr) sensor signals influencing the speed of the left



and right wheel (Wl, Wr). The IR signals detect obstacles on the left and right
frontal side of the robot. An obstacle detected on the robot’s left side causes
a right turn and vice versa. The cyclic interconnections of the wheel neurons
cause a hysteresis effect to enable handling of acute angles (for details see [15]).
Additionally, sheep have a predefined wolf aversive reflex, implemented by reflex
sensor signals (WoRfxl, WoRfxr), that works similar to obstacle avoidance.
Reflex sensors are only triggered if a sheep collides with a wolf. To prevent these
collisions sheep have also predictive signals (WoPrdl, WoPrdr) which recognize
wolves within a larger range. At the beginning, the synaptic connections to
the wheel neurons have zero weight, but can be learned by using ICO. Wolves
instead have an inbuilt pursuit reflex. The reflex signal ShpRfx transmits zero
if the sheep is in front of the wolf, but negative or positive values, if the sheep
is on the left or right side, respectively. The wolf turns towards the sheep until
the sheep is in front of it. But, ShpRfx transmits only signals if the sheep is
within a small collision range. Wolves have also a prediction sensor ShpPrd that
functions in the same way as ShpRfx, but senses sheep within a larger range.
ShpPrd synaptic connections can be learned with ICO.

Competitive evolution. For the implementation of embodied evolution we
have selected evolvable parameters of sheep from different domains: neural con-
trol, embodiment, and lifetime adaptation. We evolved maximum wheel motor
speed, position of the wolf detection sensors (similar to the sensor position evolu-
tion described in [16]), and the ICO learning rate µ. Each parameter is restricted
by a value range and represented by a 10 bit string in the binary genome (see
[17] for details).

Instead of defining high level targets, the fitness function simply corresponds
to the energy level of a robot, that is, it describes a rather general survival
criteria, as it is considered to be essential for open-ended and creative evolution
[3, 4]. Each sheep gains energy whenever there is no wolf within their collision
range, whereas a wolf gains energy while a sheep is within its collision range (i.e.,
the energy of a sheep is transfered to the wolf). Additional energy loss is realized
dependent on the broadcast behavior. Anytime an individual broadcasts a gene
string, energy is reduced (in analogy to reproduction costs).

For the ease of analysis we implemented the robots and the environment with
the physical simulation library ODE (see Fig. 1b) based on the specifications of
the KheperaTM robot1. For the following experiments each population of sheep
and wolves consists of three individuals where sheep can evolve and wolves can
adapt their behavior by learning only.

1 The limited space of this paper prohibits detailing all parameters, but a precise
description of the simulation can be found in [17].
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Fig. 3. a: Data points indicate fitness development for two distinct maturation times
(see text for calculation method). Data is approximated by an exponential function
(see text for details). b: Growth rate and initial fitness depending on maturation time
(error bars indicate the mean error of the approximated exponential function).

3 Results

3.1 Maturation time

First of all we wanted to investigate the influence of the time an individual has
to develop until it becomes exposed to the selection pressure (i.e. its maturation
period). For each of several distinct maturation times (MTs) we conducted 25
evolutionary runs with randomly varied initial conditions (i.e., randomly initial-
ized genomes and random starting positions). Each run lasted 2.5 million time
steps (time step = 0.01 sec) which corresponds to approximately seven hours
of real time, if we would execute it on real robots. This is a reasonable time
scale for embodied evolution experiments (see also [7]). During these 25 runs
we recorded the energy levels of all robots in each time step. We then took the
mean of all robots and all runs. To smoothen sudden jumps in the data which
can occur if a sheep gets caught or receives a new genome, we averaged again
over a time window of 500 seconds.

Fig. 3a shows the resulting data for two different MTs. To get a clearer
picture of the fitness development during evolution, we approximated the data
by an exponential function of type f(x) = 1 − ae−bx, where (1 − a) indicates
the initial fitness (i.e., after the first 500 sec.) and b the growth rate over time
(an unconstrained nonlinear optimization method of the MatlabTM optimization
toolbox was used). In Fig. 3a we see that individuals with the shorter MT (i.e.,
40 sec.) do not only increase their fitness much faster than individuals with a
longer MT (i.e., 80 sec.), but they also reach nearly maximal fitness already after
18,000 seconds.

Fig. 3b illustrates the approximated growth rate and initial fitness for dif-
ferent MTs. The initial fitness is nearly constant. The growth rate, however,
differs significantly. We find a maximum at 40 seconds, and declining growth
rates for smaller and larger MTs. Explaining smaller growth rate at smaller MT
is rather straight forward. Individuals do not have time enough to adapt their
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Fig. 4. Comparing fitness development during the evolution of individuals with plastic
synapses and static synapses for different maturation times (MTs).

learning synapses before they are exposed to the selection pressure. The evo-
lutionary progress is rather slow because this holds for all evolving individuals
and even though the frequency of gene exchange is rather high, the fitness differ-
ence between sender and receiver is not a reliable indicator for a better or worse
performance. With short MT, some individuals may have encountered wolves a
few times, but other may have never encountered them and, therefore, have a
higher fitness. Thus, genes may be transmitted which are only successful because
they never had to prove their performance (note that sheep have to encounter
wolves to develop their escaping skill). This effect cancels out over time, but
the evolutionary progress is slowed down. In contrast, for long MTs the gene
exchange frequency is too slow. Even though individuals now have enough time
to develop, evolving parameters (e.g., learning rate or morphological properties)
which improve the performance spread only slowly throughout the population.

3.2 Learning and evolution

To figure out how learning influences the course of evolution we conducted the
same experiments as described before for neural networks with static synapses.
Basically, nothing changed except that the weights of the synapses, which were
learned during the lifetime of an individual (cf. Fig. 2a), were now encoded in
the genome as well. Note, this was applied for sheep only, the setup for the wolf
population remained the same, that is, wolves could learn, but were not evolved.

We chose two MTs, the one with the largest growth rate (40 sec.) and one with
a small growth rate, where we preferred 80 to 5 seconds (cf. Fig. 3a) because the
former provides more reliable fitness estimates than the latter (for the reason that
sheep encounter more wolves during their evaluation). Fig. 4 compares the fitness
development during the evolution with the two MTs to our previous results
from the evolution with synaptic plasticity (same measurements were applied
as described before). Considering only static synapses, we find no influence of
MT. Compared to the case of plastic synapses, for an MT of 80 seconds the
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Fig. 5. Comparing performance of sheep populations (S) evolved either with plastic
or static synapses in the environment with which they were evolved (a) and a novel
environment (b). Performance of wolf populations (W) is drawn as a reference. Shown
is the average and standard deviation of 25 randomly initialized runs.

fitness development for evolution without learning is even slightly better than
for evolution with learning. If, however, MT is shorter (i.e., 40 sec.), evolution
with learning performs slightly better than without learning.

3.3 Adaptability to novel environmental conditions

In the previous section we have seen that learning may slightly guide evolu-
tion, but the effect within our experimental framework is not really significant.
The good news is that both methods take the same computational time due to
the asynchronous and distributed evolution approach. Thus, we may conclude
that in those basic tasks it does not matter whether we evolve with or without
synaptic plasticity (presupposing the right timing of maturation). However, the
commonly assumed advantage of learning is that individuals may be able to
adapt to significantly novel environmental conditions with which they were not
confronted during their evolutionary development, as for instance shown in [10,
18].

To test whether or not this assumption holds for our approach as well, we
chose one representative evolutionary run from the evolution with and without
learning with an MT of 40 seconds (cf. Fig. 4). From these two runs we took
the neural networks of the sheep population at the end of evolution (i.e., af-
ter 25,000 sec.) and tested them first in the environment with which they were
evolved for 400 seconds (i.e., ten times the original MT) while disabling genome
transmissions. Fig. 5a illustrates the performance of a sheep population with ei-
ther plastic or static synapses. As could be expected from Fig. 4, both solutions
perform similar well. However, confronted with a significantly different environ-
ment, the population with plastic synapses performs significantly better (see
Fig. 5b). This can be accounted to the adaptation mechanism which individuals
with static synapses lack. And adaptation is required in this environment because
compared to the original environment (cf. Fig. 5a), it contains sharp corners and
narrow passages. Thus, sheep are much better off with reacting earlier to ap-



proaching wolves to avoid being captured in corners. Optimal reaction time was
not required in the original environment. There, the most important parameter
was the speed of sheep which was always maximized by evolution. Thus, even
with a moderate reaction time, sheep could escape approaching wolves for most
of the time. Confronted with the new environment learning individuals adjusted
their sensory sensitivity with respect to approaching wolves by a weight increase
of the according synapses (see Fig. 2a). Therefore, if environmental conditions
change, individuals with synaptic plasticity are able to react to those changes
and maintain their original performance, whereas non-learning individuals are
not able to cope with this change.

4 Conclusions

The very nature of embodied evolution forces us to abandon single individual
evolution. Even under basic environmental conditions as considered here, robotic
agents already have to deal with a dynamically changing environment. Even fur-
ther, right from the beginning they have to develop robust behaviors because it is
not guaranteed that other individuals of their own species, they may encounter,
act reasonable. Due to the asynchronous and distributed character of embodied
evolution, conspecifics can show quite different behaviors at the very same time.
For instance, some individuals may try to avoid their conspecifics while others
got some mutations which may lead them directly crash into their conspecifics.

The most intriguing aspect of a methodology as proposed here is the abil-
ity to incrementally increase behavioral complexity by increasing environmental
factors. Here, we considered only one evolving population, but we also tested
co-evolution of both populations and discovered an evolutionary arms race as
already described in [13] for predator-prey systems with one individual in each
population only. To do so, no change of fitness functions is required, robots
‘solely’ have to maintain their energy. For future research it would be interesting
to consider more than two interacting populations by building up small ecosys-
tems of intertwined species, each influencing the evolution of the other. Thus,
we argue that our unified framework is suitable to approach more biologically
plausible scenarios in ER striving towards open-ended and creative scenarios as
proposed in [4, 3].

Besides these general methodological facets, we investigated an aspect largely
neglected in previous studies concerning the interplay of evolution and learning
[9, 5, 10]. We demonstrated that whether or not learning may facilitate evolution
depends on the right timing of individual maturation. Further, we showed that
the choice of maturation time significantly influences the rate of progress during
evolution. Even though our experimental results can not offer a general answer
to the question how long learning individuals should be able to develop, they
clearly show that we have to consider this aspect sincerely to build up empirical
evidence for the commonly hold assumption that learning guides evolution. And
the use of asynchronous and distributed embodied evolution should be preferred
over the classical generation based evolution; not only because it can be executed



directly on real robots, but also because it allows a direct comparison of evolution
with and without learning measured on real time progress.
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