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Abstract. Combining mechanistic and evolutionary perspectives to un-
derstand the emergence of communication is still a major challenge in
evolutionary biology. Regarding this challenge, we discuss experiments
which unify the ideas of evolutionary robotics with the dynamical sys-
tems approach to adaptive behavior. Here, we investigate how already
evolved communicative behavior changes during further evolution when
a population is confronted with competition about limited environmental
resources. A thorough analysis at the neural level reveals changes of the
mechanisms that underlie behavior, which eventually lead to the emer-
gence of signal coordination, intraspecific cooperative, and interspecific
aggressive signaling. Further, we demonstrate the development of coun-
teractive niche construction based on a modification of communication
strategies which generates an evolutionary feedback resulting in an ac-
tive reduction of selection pressure. Our findings strongly support the
complementary nature of robotic experiments to study the evolution of
communication.

1 Introduction

There is still an ongoing debate about whether or not robotic models are useful
to study particular aspects of animal behavior or its evolution [1]. The strong
simplification of robots with respect to the opaque complexity of biological or-
ganisms is probably the most often raised argument against the usefulness of
this approach. However, we argue that for studying the evolution and mecha-
nisms of basic communication forms, a robot does not necessarily have to be as
complex as a social insect [2], not even as complex as a bacterium [3]. In con-
trast, the strength of the robotic approach is that it deals with rather simple, yet
complete, systems [4] facing similar real world problems as animals do, such as
sensory noise or dynamically changing environments. These systems allow us to
study communication not only from an evolutionary, but also from a mechanistic
perspective.
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Fig. 1. The physical Do:Little robots (a) and their simulated models in the
environment used for single population (b) and competitive (c) evolution.

Even though there exists a growing body of research related to communi-
cation and cooperation in artificial systems [5, 6], there is still a lack in the
literature of investigations concerning the link between observable behavior and
the dynamical mechanisms that underlie individual behavior. Revealing this link
is inevitable to gain new insights about the underlying mechanisms of evolved
complete brain-body-environment system [7].

This paper briefly discusses the evolutionary development and neural mecha-
nisms of cooperative foraging involving food calls as an efficient communication
strategy. Then, we focus on how such established communication mechanisms
change under interspecies competition for limited environmental resources.

From a mechanistic perspective our results demonstrate that sensory noise
can be an integrative aspect for cooperative communication strategies. Further,
we can show that rather sophisticated communicative abilities do not necessarily
require complex neural structures. Instead, we can show how signal coordina-
tion, cooperative intraspecific communication, and, most intriguingly, aggressive
interspecific signaling can emerge from the versatile dynamics of very small-scale
neural networks embedded in sensorimotor feedback loops. From an evolution-
ary perspective, modifications of communication strategies are observed which
generate an evolutionary feedback resulting in an active reduction of selection
pressure caused by the behavioral change of an evolving population.

2 Methods

Following the dynamical systems approach to adaptive behavior [7], our robots
are controlled by parameterized discrete-time recurrent neural networks (RNNs).
A network with n units is defined as:

ai(t + 1) = θi +

n∑

j=1

wij f(aj(t)) , i = 1, . . . , n , (1)



Table 1. Noise ratio and mapping from physical sensor values to sensory neuron
activation (sound sensor inputs are mapped to the angle α, β of a received sound
signal SA,B to the heading direction of the robot; all other sensor values are
linearly mapped into the given min/max).

sensors neuron index mapping [min, max] simulated noise

infrared Iil,ir,ib -1 : no obstacle 0.05 (=̂ 10%)
left, right, back 1 : close obstacle
floor intensity Ifb −1 : gray 0.05 (=̂ 10%)
(black food) 1 : black

floor intensity Ifw −1 : gray 0.05 (=̂ 10%)
(white food) 1 : white
sound signals
SA,B (left) Ial,bl 0.5(1 + sin(α, β)) 0.3 (=̂ 30%)

SA,B (right) Iar,br 0.5(1 − sin(α, β)) 0.3 (=̂ 30%)

where ai ∈ R denotes the activity of neuron i, wij the synaptic strength of
the connection from neuron j to neuron i, and θi its fixed bias term [8]. The
output o(i) = f(ai) of a unit i is given by a sigmoidal transfer function, here
by f := tanh (i.e., o(i) ∈ (−1, 1)). Details about the complex dynamics of small
neural modules of this type can be found in [8].

As agents we utilized a physically realistic, simulated model of the Do:Little

robot (see Fig. 1a) which we already employed successfully in previous studies
[9, 10]. All used sensors as well as their mapping to neural activity and their
noise ratios are given in Tab. 1 (deduced from experiments with the physical
hardware).

On the actuator side four output neurons control the angular velocity of
the two wheels which is given by: ωleft,right = c((O1, O3) − (O2, O4)), where c

is a speed factor (here, c = 2.0). Further, robots can elicit two distinct sound
signals SA,B (for details about the acoustic communication system see [9, 10]).
Sound emission is controlled by the output neurons OA,B ; whenever the output
of these neurons switches sign from positive to negative, the according sound
signal is triggered and lasts for one time step (one time step corresponds to 0.1 s

of real-time).
For evolution we applied the ENS3 algorithm [11], which evolves not only

the parameters of an RNN, but also its structure, that is, the number of hidden
neurons and the connectivity (for details and applications see [12, 13]).

We conducted two different sets of experiments, which will be described in
more details below. In general, we evolved a population of homogeneous robots
(i.e., all individuals are equivalent with respect to morphology and control) on
a cooperative foraging task (for details see [10]). Therefore, for evaluation an
RNN was distributed in a group of robots placed in an environment as shown
in Fig. 1b,c. Each robot possesses an internal virtual battery. It looses energy
with time and through driving around. However, it can recharge its energy by



stopping on a food source marked as a black or white spot on the ground (see
Fig. 1b,c). Whenever a robot fully recharged its energy, it was replaced randomly
in the environment with half of its energy. The fitness function simply rewarded
how often, on average, individuals of a population were able to recharge their
batteries per minute in a given evaluation time (for parameter details of the
energy discharge/charge see [10]). Using a joint fitness for evaluating a particu-
lar solution by the average performance of a whole group indeed facilitates the
emergence of cooperative behavior [14]. However, robots were neither evaluated
on how they solve the several subtasks, such as avoiding obstacles and other
individuals and approaching food sources, nor, and that is particularly impor-
tant, how to cooperate and communicate with other agents. Thus, even though
the evolutionary development of cooperation and communication is rather likely
to occur within our experimental framework, we may yet discover unexpected
signaling strategies and underlying mechanisms.

3 Results

In a first set of experiments we evolved a population of twenty homogeneous
robots in the environment shown in Fig. 1b. There was no competition with
another population and only one food source was available (the black spot in
Fig. 1b). Thus, the sensor input Ifw was not utilized. Further, robots could only
sense and emit SA sound signals by Ial,ar and OA, respectively (i.e., Ibl,br and
OB were also omitted).

Fig. 2a shows one resulting network (called AS) of the single population
evolution. In this paper we want to focus only on the signaling mechanisms (the
relevant neural elements are highlighted in Fig. 2a). However, the evolved RNN
entails also a behavioral response to these signals which will be specified, but not
discussed at the neural level (nevertheless, the RNN shown in Fig. 2a realizes
the complete behavioral repertoire of the robots).

As described in the methods section, a robot emits a sound signal only when
the output of the according motor neuron switches its sign from negative to
positive. Fig. 2b illustrates the influence of the floor sensor input neuron Ifb on
OA. By means of an odd loop with strong positive and negative weights, OA is
connected with the hidden neuron H1 (see [8] for deeper discussions about the
dynamics of two neuron networks). This loop operates as a switchable oscillator
depending on the value of Ifb. Ifb is approximately −1 as long as the robot
explores the environment. The bifurcation diagram in Fig. 2b shows that oscil-
lations of OA, caused by a period-4 attractor, are switched on by an increased
activation of Ifb. To emit a sound signal at least two points of the periodic
orbit have to be in the negative and in the positive domain. This only holds
for Ifb > 0.3. Since detected food patches always provoke sensor signals of Ifb

within [0.8, 1.0], the output of OA oscillates as shown in Fig. 2d. Thus, there is
a direct link between food source discovery and food call emission.

Further important structural elements are the synaptic connections from the
sound sensor inputs Ial,ar to the hidden neuron H1. Fig. 2c shows how the
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Fig. 2. a: RNN of AS individuals resulting from single population evolution. b,c:
Bifurcation diagrams for OA by varying the floor sensor input Ifb and the sound
signal input Ial + Iar (if not indicated otherwise, all not varied input neurons
are set to their minimum (cf. Tab. 1); this holds for all bifurcation diagrams
in this paper). d: Output of OA when the robot stays on a food patch (i.e.,
Ifb > 0.8); × marks SA sound signal elicitation. e: Performance of AS (average
and standard deviation of 25 simulation runs with randomized initial conditions;
each simulation run lasted 18,000 time steps; no sync: synapses between H1 and
Ial,ar were set to zero; no signal: speaker on the robot was deactivated).

summed activation of these neurons leads to a switch from the periodic attrac-
tor to a fixed point. Consequently, the oscillation of OA is reset whenever a
signaling robot receives sound signals of nearby robots. This gives rise to signal
coordination by a synchronization mechanism among robots gathered on the
same food patch. That such synchronization among pulse coupled oscillators in
a group of acoustically communicating robots is scalable and robust even with
very short local interaction ranges is demonstrated in [9].

What does the food calling and its coordination mean for the performance of
the group? AS individuals react to food calls of other individuals by a positive
tropism towards these signals if they are in sensor range (in accordance with
the real robots, the radius of sound signal perception was limited to 1.5m [9]).
This behavior allows the group to forage efficiently for the food source which
otherwise could only be sensed if a robot enters it by chance. The influence of
cooperative food calls becomes clear if we compare the high performance of AS

with normal signaling to the low performance when the speaker is deactivated
(cf. Fig. 2e). Deactivating only the synchronization mechanisms leads to a per-
formance loss of about 20% (Fig. 2e). The reason for better performance with
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Fig. 3. a: RNN of BN individuals resulting from evolution under competition.
b,c: Bifurcation diagrams for OA and OB by varying the floor sensor input Ifb.
d: Period-2 oscillations of OA cease as soon as the robot enters a black food
patch (indicated by increasing Ifb).

signal synchronization is that if too many individuals simultaneously emit fre-
quent and uncoordinated food calls, individual sound signals interfere with each
other too much and, therefore, can hardly be located correctly [10].

In a second set of experiments we took the AS RNN and applied it to two
populations, our two artificial ‘species’. For the following experiments we placed
both species with ten individuals each into the environment shown in Fig. 1c.
We equipped one species (the new species) with new sensors and effectors and
let it evolve. Individual members of the new species could now sense a new
type of food (white patches) and utilize an additional sound signal (SB). Note,
initially these were just new sensor and motor neurons unconnected to the initial
structure (even though the AS RNN was provided as initialization, its topology
and parameters were free to change during evolution). To investigate how the
new species might now change their behavior because of the high competition
for the black food source, we did not evolve the other species. This is indeed
far from biological reality where entities in an ecosystem of course co-evolve.
However, it was done here to eliminate the Red Queen effect where the fitness
landscape of a species permanently changes because of co-evolving competitors
[15].

A representative evolutionary solution (BN ) is shown in Fig. 3a. The signaling
behavior of BN individuals when they discover a black food patch is illustrated in
Fig. 3b-d. While a robot is exploring the environment, it continuously emits SA

signals which ceases with increased Ifb (see Fig 3c). Considering the structure of
the RNN, we see that OA is a switchable oscillator. Because of its negative self-
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Fig. 4. Signaling behavior on white food patches. a: Bifurcation diagram for
the two motor neurons OA,B while varying Ifw. b: Emission of SA sound signals
(controlled by OA) ceases as soon as the robot detects a white food patch whereas
SB sound signals (controlled by OB) are triggered (see text for details). c: With
increased infrared sensor activation (Iil,ir), oscillations of OB are inhibited and,
therefore, SB signaling stops.

connection, it exhibits either period-2 oscillations or a constant output depending
on its input. Interestingly, there is no direct connection from Ifb to OA (see
Fig. 3a). Signal suppression is caused by the activity of O3, the motor neuron
which controls, together with O4, the right wheel. When the robot discovers a
black food patch, it stops its exploration behavior and stays on the food source.
To do so, O3 changes its output from 1.0 to −1.0. Thus, the change in SA

signaling depends only indirectly on the activity of the food sensor. It rather
depends on the behavioral context of staying on black food patches.

Interestingly, SB signals are not utilized when BN individuals discover black
food patches (cf. Fig. 3b). The only change in communication concerns the emis-
sion of SA signals which does not affect the behavior of the receiving BN indi-
viduals since the according sensory neurons Ial,ar lost their connections to the
network (cf. Fig. 3a).

If a BN individual detects a white food source, it again ceases SA signaling.
OA exhibits always period-2 oscillations independent of Ifw (Fig. 4a, top). How-
ever, with increased Ifw these oscillations are shifted into the positive domain,
that is, OA is always larger than zero and, therefore, no SA signals are triggered
on white food patches (0.8 < Ifw < 1.0). In contrast to the behavior on black
food patches, this behavior is not only controlled by the change of O3. Period-2
oscillations of OA are still present with large Ifw because of the synaptic con-
nection from OB (cf. Fig. 3a) which starts oscillating with increased Ifw (cf.
Fig. 4a, bottom). If Ifw > −0.25, OB enters a domain of period-2 oscillations.
Considering the structure of the RNN (Fig. 3a), we have here again a switchable
oscillator. Oscillations occur due to the negative self-connection of OB and can



be switched on or off depending on Ifw because of the strong positive connection
from Ifw to OB . However, for Ifw > 0.8 these oscillations only occur within the
positive domain, which by itself would not lead to SB signal emission when a
robot discovers a white food source (0.8 < Ifw < 1.0). In this case, due to the
noise of the floor sensor, Ifw randomly gets lower than 0.8 which then leads to
period-2 oscillations of OB which cross zero from below resulting in according
signal emissions. The gray color intensity of food sources is determined randomly
at the beginning of each experiment and, therefore, provokes sensor values be-
tween 0.8 and 1.0 (not considering noise). Fig. 4b shows the signaling behavior
on white food sources with different intensities. For high intensities, SB signals
are released less often than for lower intensities. For high Ifw, higher fluctuations
(as caused by the sensory noise) are needed to push the oscillations of OB into
a domain where it takes positive and negative values and, therefore, to trigger
SB signals. Because of the dependence on noise, SB signals are released rather
randomly which entails less interference compared to more frequent emissions as
observed for AS with deactivated synchronization mechanism.

A further interesting mechanism of SB signaling on white food patches is that
individuals which are close to each other do also coordinate their signaling. In
contrast to AS , this is not realized via a synchronization mechanism as described
above. Here, signal coordination is in fact independent of the signal itself. As we
can see in Fig. 4c, when either the infrared sensor on the left or right side of a
robot (represented by Iil and Iir) becomes activated while a robot stays on a
white food source (e.g., Ifw ≈ 0.8), oscillations of OB are shifted again into the
positive domain until they cease completely for high Iil or Iir values. Infrared
sensors influence OB through the positive connections from Iil and Iir to OB (cf.
Fig. 3a). We discovered such a subtle signal coordination mechanism already in
a previous study [10]. However, here it is a completely new development because
BN originates from AS which coordinated its signaling by synchronization. Note
that this is an indirect mechanisms. The more robots are attracted by the food
calls of others, the more crowded the food patch becomes and the closer is
the distance between the robots on it. If a robot is so close that it activates the
infrared sensors of another signaling robot, the OB oscillations cease as indicated
in Fig. 4c.

Considering the consequences of these communication strategies for the per-
formance of the AS and BN species, we observe a drastic performance loss for AS

individuals (Fig. 5a). The SA signaling of BN outside the food sources distracts
AS individuals from the food and interferes and, therefore, disturbs their coop-
erative signaling. Thus, the BN population increased its initial fitness not only
by exploiting a new niche (the white food source). Much more intriguingly, by
permanently emitting SA signals, BN eliminated AS individuals from the origi-
nal niche (the black food source). Therefore, SA signaling can be interpreted as
aggressive interspecific communication. By evolving aggressive behavior the new
species actively removed one initial selection pressure, the interspecific compe-
tition about the same niche. That is, the new species generated a feedback in
their evolution, a phenomena known as counteractive niche construction [16].
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Fig. 5. a: Performance of the AS and BN population, with ten individuals each,
competing for food in the environment shown in Fig. 1c (same measurement
as for Fig. 2e). b: Suppressing the elicitation of specific sound signals in BN

individuals reveals the influence of their cooperative intraspecific SB and their
aggressive interspecific SA signaling.

Interestingly, if we suppress the SA signaling in BN individuals (Fig. 5b), the
performance of AS is even slightly higher compared to the initial condition
(Fig. 5a). On the one hand, BN does not disturb the communication of AS and,
on the other, BN forages not only for black, but also for white food sources
which, therefore, lowers the competition about the original niche. Suppressing
SB signaling in BN leads to a rather low performance for both species (Fig. 5b)
because the communication system of AS is still disturbed by the SA signaling
of BN which, on the other hand, depends on the SB signal to cooperate. If both
signals of BN individuals are suppressed (Fig. 5b), we observe low performance
for BN and high performance for AS because BN individuals cannot cooperate
anymore and they do not disturb the communication of AS .

4 Discussion

Most closely related to the experiments presented here is the recent study of
Floreano et al. [14] who studied the evolution of communication in groups of
robots with a cooperative foraging task. By investigating different levels of se-
lection they found that cooperation and communication evolved more likely if
selection acts on the colony level. As convincing as their experiments are, they do
not provide a clear picture about the underlying neural mechanisms of evolved
communication strategies and how they change during the course of evolution.

Even though there exists a considerable number of further research studies
employing situated artificial agents to study communication and cooperation
(for overviews see [5, 6]), only a part considers situated and embodied agents,
as for instance robotic systems. Even less involves dynamical systems, as for
instance recurrent neural networks, for behavior control. To our knowledge, the



experiments presented here and in [10] are among the first which entail thor-
ough analysis of the dynamical mechanisms underlying evolved communicative
behavior. This clarifies the relation between intrinsic neurodynamics and observ-
able agent-environment interactions. This was done before only by a few studies
considering the behavior of single agents (e.g., [7, 13]). Thus, one contribution
of this paper is to add an actual example of thoroughly analyzing the dynami-
cal mechanisms underlying communicating agents which interact not only with
their environment, but also with other individuals of their own kind and com-
petitors. An example as it, to our knowledge, has not been reported so far for
social behavior of situated agents.

Here, we were able to clarify which behavioral aspects of socially interacting
agents can be accounted to internal neural mechanisms and to sensorimotor

interactions between an agent and entities of its environment, respectively; of
course both are heavily intertwined. As a particularly novel contribution we
demonstrated how sensory noise can be an integrative part of communication
mechanisms. Many former studies already insisted on the importance of includ-
ing noise in evolutionary robotics experiments (e.g. [17, 18]) and it is currently
an essential part of most related research. Commonly, noise is often included to
develop solutions which are robust to variabilities in sensorimotor systems or
to environmental uncertainties. However, Di Paolo and Harvey [19] pointed out
that all cognitive systems have to deal with noise and uncertainties which “may
also provide positive mechanisms for producing robust and adaptive behavior”.
This is certainly true and already well known for biological systems (e.g., signal
enhancing mechanisms based on stochastic resonance [20]). However, in artifi-
cial systems, noise is usually not integrated into the actual control system, but
rather something to which developed solutions have to show a certain robustness.
Besides the results presented here, we already demonstrated that the evolution
of noise driven communication is not as rare as one might expect. In fact, us-
ing noise as an essential element of behavior control can also entail an intrinsic
robustness to unanticipated environmental changes (see [10]).

A further intriguing finding of our experiments is the difference between
the signal coordination strategies of the two discussed networks, especially the
mechanism of BN . There, the signal which has to be coordinated is itself not
involved in the coordination process. This is in so far interesting, as individuals
have no direct ‘clue’ about other individuals or signals and they actually do not
‘know’ the difference between obstacles and conspecifics. This is different from
the coordination process of AS individuals, which shows how two very divergent
mechanisms can realize a similar observable behavior. A discovery which may
be missed if we would concentrate only on a description of the evolved behavior
in form of input-output signals.

There still remains the concern about how general the mechanisms discussed
here really are. We do not claim that the presented neural networks resemble
in any way actual nervous systems of animals. They have, however, similarities
with communication mechanisms of biological organisms. Supporting examples
are the synchronized flashing of fireflies based on pulse coupled oscillators [21, 22]



or bird songs whose emergence could be modeled in form of attractor landscapes
of dynamical systems (e.g., [23]). That is where we see the conjunction with
mechanisms of animal behavior, behavior whose mechanisms are based on the
intricate dynamics resulting from non-linear interactions of rather simple basic
elements. And that mechanisms which evolved for a particular robotic system
are also generally applicable to completely different systems is shown in [13].

Besides this mechanistic perspective, we investigated how communication
strategies and neural mechanisms change during evolution when a population
is confronted with competition for the same limited resources. The results pre-
sented here are, to our knowledge, the first in the literature which demonstrate
counteractive niche construction [16] based on an evolutionary change of com-
munication. This and our other main finding, the utilization of sensory noise,
emphasize the strong potential of robotic experiments to complement the study
of communication and cooperation not only from an evolutionary, but also from
a mechanistic perspective.
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