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Abstract

In this work we present a convolutional neural network-based (CNN)
model that predicts future movements of ball given a series of images
depicting the ball and its environment. For training and evaluation, we use
artificially generated images sequences. Two scenarios are incorporated:
Predicting in a simple table tennis environment and a more challenging
squash environment. Classical 2D convolution layers are compared with
3D convolution layers that extract the motion information of the ball from
contiguous frames. Moreover, we investigate whether networks with stereo
visual input perform better than those with monocular vision only. Our
experiments suggest that CNNs can indeed predict physical behaviour
with small error rates on unseen data but the performance drops for very
complex underlying movements.

1 Introduction
Predicting the movement of objects in images is a key capability in human
perception and crucial for many tasks in everyday life. Hamrick et al.[4] pro-
vided evidence that human intuition for how dynamical systems evolve can be
explained by the hypothesis that we use internal models of physics. It seems
natural to ask whether a computer system is also able to build such an internal
model for itself. This question is not only interesting from a theoretical point
of view but also important for many applications in real life environments.

In this work, we consider two scenarios in a three-dimensional environment
which we call table tennis and squash. The former refers to a flat surface with a
bouncing ball while the latter involves a closed, cuboid-like room where multiple
interactions with the wall are possible. The input is a fixed number of sequential
images showing the movement of the ball. We develop a model that learns
the trajectory of a ball from a fixed point in time, i.e. a sequence of (x, y, z)
coordinates indicating the position of the ball in the future time steps. Since
this is trivial in the empty space, in both of our scenarios, we put an emphasis on
situations, where the ball changes its movement direction due to collisions with
the surrounding walls. Naturally, this problem could also be solved analytically
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Figure 1: The movement of a ball is predicted by a convolutional neural network
. It is shown the first six input frames and it predicts the trajectory of the future
movement.

when all parameters are known (ball position, scene geometry, etc.). However,
the task we consider here does explicitly require to estimate these parameters
from the image. In order to do so, we apply convolutional neural networks,
which have proven to be capable of understanding complex images.

2 Related Work
Neural networks have already been used to model physical phenomena in dif-
ferent setups. The approaches produce either images or numerical results to
describe the movement. Michalski et al.[9] consider a rather abstract model
that uses gated autoencoders which are turned into a recurrent neural network.
The network takes a sequence of images I1, I2, . . . , It as input and learns trans-
formations to create image It+1 from the time series. The authors apply this
model successfully to create movements like those of a ball bouncing on the
floor. Lerer et al.[8] analyse the capability of convolutional neural networks to
predict whether block towers will collapse. Different Convolutional neural net-
works are trained with rendered images and succeed in both, predicting whether
the tower will collapse and creating an image of the final outcome. Walker et
al.[13] predict the trajectory of each pixel from a static image for the next second
with variational autoencoders using convolutional neural networks for the en-
coding and decoding part and achieve good results for images from challenging
environments.

It is well known that simple movements of bodies are determined by equa-
tions of motion from Newtonian mechanics. Therefore, Wu et al.[14], Kyriazis
et al.[11] and Bath et al.[2] propose models to estimate the parameters of these
equations from images and videos to compute the dynamics. Mottaghi et al.[10]
use a special convolutional neural network that takes a single image as input
and predicts the dynamics of an object with two separate streams. One stream
predicts in which newtonian scenario the scene is taking place and the other one
generates features from the image while using an extra channel in the image in-
dicating the object location. By merging these two information, the network
can predict the trajectory of the moving object. However, tThese approaches
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have two major drawbacks. Firstly, most humans cannot solve newtonian equa-
tions but can still predict the dynamics of a falling object, so these methods are
not very natural. Secondly, they require pictures with an additional channel to
indicate the position of the moving object.

Fragkiadaki et al.[3] investigate a setup in a 2D billiard environment. At
some time t a convolutional neural network similar to the network in [7] receives
the picture of the current situation, the last three preceding frames and the
forces applied on the ball. The network predicts the movement, i.e. the velocity
vector (∆x,∆y) for each time step up to 20 following instants. The authors
show that a model which was trained in a certain environment also performs
well in unknown environments (different shape of the table, different length of
the table walls). However, it still requieres a force information as an additional
input to predict the movement which is an unhandy information to give.

Distinction from related work As in [3], we use convolutional neural net-
works for processing videos that show the movement of an object to predict
the further motion. However, our environment is three dimensional which adds
“depth” to the images and makes the task harder, moreover, we process videos
instead of static images Another difference to [3] and [10] is that we use only the
images as input without giving any other information about forces, momentum
or position of the object. Moreover, the network in [3] looks only one time step
into the future since it receives always the latest picture. Our model, in con-
trast, also predicts positions that are more than one time step away from the
input frames. The output of our networks are, in contrast to images being pre-
dicted in [8], coordinates in R3 of the ball’s future trajectory, which is a useful
information for any system moving and acting in real world environments. To
the best of our knowledge, there exists no approach only working on video in-
put data generated from artificial three dimensional scenes predicting numerical
information instead of images.

3 Scenarios and Data Acquisition
The video frames for training the convolutional neural network have been cre-
ated using the open source 3D computer graphics program blender 1. We use
blender’s physics engine to create rendered frames showing a realistic movement
of a ball in different situations. We save the positions of the ball at every frame
and train a convolutional neural network to predict the following coordinates
after seeing the movement up to some timestep t. The first scenario is a table
tennis scenario where a ball bounces on a table from different starting positions
and in different directions. The second scenario is a squash environment where
a ball is moving inside a box with multiple possible collisions from different
starting positions.

1https://www.blender.org
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3.1 Table tennis setup
The table and the ball for the table tennis setup have been created in real life
proportions, i.e. the table has size 2.75m × 1.5m (length × width) and the ball
has a diameter of 4cm. To increase computational performance and reduce the
number of parameters, the frames were created using black-white images with a
resolution of 128× 128 pixels. The coordinate system is chosen such that the x
axis runs along the longer side of the table and the y axis runs along the shorter
side of the table. Consequently, the z axis indicates the height of an object
“above” the table. The origin of the coordinate system is the middle point of
the table and for computational stability, all axes are scaled by a factor of 10. To
create random movements, the starting position of the ball is sampled according
to a uniform distribution in the interval [−5, 5] on the y axis and [1.7, 4.5] on the
z axis. The movement starts in the middle of the table, i.e. x = 0. Afterwards,
we sample a random collision point on the table with x ∈ [0, 13], y ∈ [−7.5, 7.5]
and z = 0. The ball flies from the starting point towards the collision point on
the table, therefore the velocity and direction of the movement is defined and
the physics engine can simulate the trajectory. The corresponding movement
is recorded from two viewpoints, one at each corner of the table, to create a
human-like viewpoint and give the network the chance to perceive depth in the
frames.

3.2 Squash setup
The squash setup extend the table tennis setup to a bounded box to create
complex movements with multiple collisions. It takes place in a box with 1m
height and width and 0.7m length. The x and y axis run along the width
and length of the box and the z axis along its height. Again, the origin is
located in the middle of the box. Inside this box, a ball with a diameter of 4
cm is randomly positioned and “shot” into some direction in order to bounce
against some walls of the box. The line of sight of the cameras runs along the
y axis of the box. As before, the scene is recorded by two cameras, thus one
side of the box is open such that the cameras can look into it. The starting
positions were created by sampling x, y and z coordinates uniformly from the
intervals [−3.5,−1] ∪ [1, 3.5], [−4.5, 1] and [−3.5, 3.5] respectively. To create
the movement of the ball, we positioned a force field in blender randomly in
front of the ball such that it is shot into the box. The coordinates of the force
field are determined by adding random numbers ∆x, ∆y and ∆z to the middle
point of the sphere, where these numbers have been sampled uniformly from
the intervals [−0.5, 0.5], [−0.3,−0.2] and [−1, 1] respectively. Note that the y
coordinate is shifted by a negative number in order to make the ball fly into
the box and not towards the cameras. Finally, to make the setup harder and
test the ability of the network to generalize, we shifted all 5 sides of the box
randomly by a number sampled uniformly from the interval [−1, 1] in order to
create boxes of different size for every movement. The same way, we shifted
the light, which is responsible for the shadow of the ball in the pictures, below
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the top side of the box by random numbers from the interval [−1, 1] in x and
y direction. To take these difficult changes into account, the resolution of the
videos is doubled to 256× 256 pixels.

4 Trajectory Prediction Model
In this section we explain our CNN-based trajectory prediction model and de-
scribe various configurations in detail. In all cases a sequence of images is taken
into consideration to predict future positions of the depicted ball in euclidean
space.

4.1 Network architecture
2D vs. 3D convolution Firstly, we compare 2D convolutions with 3D con-
volutions. 2D convolution transforms an input of depth d into a two dimensional
output, i.e. a feature map. 3D convolution filters have an additional temporal
component and thus work in the spatio-temporal domain. By this construction,
their output represents information from several contiguous frames and can thus
capture motion information as shown in [6][5][12].

Input Representation Secondly, we compare different representations of the
input to the network. Since we have six frames from each side of the table as
input for the networks, we can either concatenate them and process them all at
once or make use of the two different perspectives by feeding them separately
into a network and merging them at some point. We will call the first model
concatenated input model and the second one two-stream model in the following.
Figure 2 shows the difference between the two models. While we can use 2D
convolutions and 3D convolutions in the two-stream model, it is problematic
to use 3D convolutions with the concatenated input because a 3D convolution
filter is processing contiguous frames with the same weights at each position.

12
128

128 62

62
32

64 128
30

30

14

14

7

7

1024 x 1024

30
256

6

128

128
62

62
32

64 12830

30

14

14

7

7

1024x1024

30

256

+
right

6

128

128
62

62
32

64 12830

30

14

14

7

7

256

left

(a) (b)

Figure 2: The different CNN models. (a): The concatenated input model pro-
cesses all frames from each side at once. (b): The two-stream model processes
the frames from the left and right side separately.
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However, this would treat the transition between the (concatenated) perspec-
tives in the same way as temporal transitions between two subsequent frames
which is undesired. Hence 3D convolutions are only applied in the two-stream
model.

Mono vs. Stereo Finally, we investigate the difference between mono- and
stereo vision by using input of only one side in the concatenated input model.
As shown in Figure 2 (a) the concatenated input network uses four convolution
layers where each convolution is followed by batch normalization with ε = 0.001,
max pooling with a (2, 2) filter and RELU (rectified linear unit) where the size
of the convolution filters is (2, 2).

Network Head At the top of the network there are two fully connected layers
where the first layer applies the RELU nonlinearity function and the second one
a simple linear function, i.e. f(x) = m · x for some m ∈ R, since we have to
be able to predict negative coordinates. Between the two fully connected layers
there is a dropout layer which randomly deactivates 50% of the units in the last
layer during the learning process to prevent the network from overfitting. In
the case of 3D convolutions, we use a network with two convolution layers with
10 and 20 feature maps respectively due to memory restrictions. The first layer
uses a filter of size (2, 2, 1) (width×height×time), i.e. the convolution is only
performed in space and not in time so that the time axis is not collapsing too
fast. The following filter uses a filter of size (2, 2, 2), so that it convolves two
contiguous frames in the time domain. As before, we apply batch normalization
after convolution, as well as a 3D max-pooling with filter size (2, 2, 1) for the
first layer and (2, 2, 2) for the second layer and RELU nonlinearity function. In
each case, the streams are fused by using the sum of the feature maps of both
streams.

Loss function We train the networks to predict the entire trajectory of a ball
after some point in time t, i.e. a sequence (x̂t+1, ŷt+1, ẑt+1), (x̂t+2, ŷt+2, ẑt+2),
. . . , (x̂t+n, ŷt+n, ẑt+n) of coordinates, indicating the position of the ball in the
future. For this work, we predict 8 future positions in the table tennis setup
and 10 future positions of the ball in the squash setup for an input of 6 frames
from each camera. This means, the output of the network is 30 dimensional in
the squash setup and 24 dimensional in the table tennis scenario. Since it is
very hard to have a good prediction for every point in time, we weighted our
loss function as follows. The loss for a prediction sequence is defined by

LΘ =

10∑
i=1

wi−1

(
(xt+i − x̂t+i)

2 + (yt+i − ŷt+i)
2 + (zt+i − ẑt+i)

2
)
, (1)

where (xt+i, yt+i, zt+i) are the true positions of the ball, Θ is the set of all
parameters of the network and the weights wk are defined by

wk = exp(−k1/4). (2)
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Thus, the first weight is decaying exponentially but not too fast in order to
give the last positions still enough weight in the loss function. If not mentioned
differently, we present an average error radius in plots to describe the error.
This is the average euclidean distance between the predicted position and the
ground truth. The network was trained using the rmsprop algorithm [1], i.e.

wt+1,i = wt,i −
λ√

Ht,i + ε
· gt,i (3)

where Ht,i = γ||gt−1,i||2 + (1− γ)||gt,i||2 is a running average over the gradients
gt,i = ∂C

∂wi
of the cost function C with respect to the parameter wi at timestep

t. For training, we used the parameters λ = 1, ε = 10−6 and γ = 0.9. The
computations have been performed on a Geforce GTX TITAN X with batch
size of 100 for 2D convolutions and 75 for 3D convolutions.

5 Results
In order to asses the performance of our model, we split the set of 50, 000 move-
ments for both scenarios as follows: In the table tennis scenario, we removed
movements from the training set which have their collision point with the table
in a random area on the table, where the position of the area is chosen randomly
but its size is fixed to contain about 5% of the movements for testing. This way,
the test set contains only movements where the ball is moving to a direction
the network has not seen before. Similarly, we removed 5% of the movements
in the squash setup by choosing movements where the force field, which gives
the ball its initial direction, was in a certain box relative to the starting point
of the ball.

5.1 Table tennis scenario
Figure 3 (a) shows the average error radius of the networks (in cm) when pre-
dicting the 8 positions of the ball after the last input frame. We compare against
the AlexNet architecture which was proposed by Krizhevsky et al. [7] for image
classification without using pre-trained weights and replaced the softmax layer
in the end with a fully connected layer with the right number of units to pro-
duce the trajectory coordinates. In comparison to the AlexNet, our networks
use less layers, less feature maps and smaller convolution filters for processing
the videos.

We can observe that all network architectures perform well for the first
frames and produce error radii around 4cm which is the diameter of the ball
and therefore a very good result. In the long term, we can see that the two-
stream model with 3D convolutions is clearly the worst one, followed by the
AlexNet and the network which has only monocular vision. The two networks
with stereo vision show the best performance in the long term and especially the
model with concatenated input frames performs well over all frame numbers.
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Figure 3: Error radius of the different models for the following frames in the
tabel tennis setting (a) and the squash setting (b). Black: 2-Stream-3D-
Convolution, Blue: Concatenated Input, Cyan: AlexNet, Green: One sided
Input, Red: Two-Stream-2D-Convolution.

5.2 Squash scenario
The squash scenario contains more complex movements with multiple collisions
and the environment in each trial varies with respect to the size of the box and
the position of the light. The quantitative results shown in Figure 3 confirm that
the task is harder for all the networks but at the same time we have a greater
difference in the performance of the different models. In general, even the best
models produce error radii of about 8 cm for the first frame and more than 20
cm for the last frame which is about 2.5 times greater than in the table tennis
scenario. AlexNet and the two-stream-model with 3D convolutions are clearly
outperformed by the other models and predict positions with a great error even
for early frame numbers. Although the network with monocular vision only
performs better than the former two, it is worse than the two networks with
stereo image input which is the expected behavior but the difference between
them is not too big. The best models are again the two-stream-model with 2D
convolutions and the concatenated input model but compared to Figure 3 (a)
the two models show an almost identical performance in this task indicating that
it makes no difference whether the input is processed concatenated or separated
in two streams. Table 1 shows the influence of the different dimensions on the
error. We consider the average L2 error in the blender coordinate system, which
is the sum of the average squared error in the x, y and z dimension. We can
see that the depth dimension y has clearly the highest error in all models and
is roughly 20% higher for the network with monocular vision compared to the
stereo vision ones.
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Network ∆L2 ∆L2(x) ∆L2(y) ∆L2(z)

Concatenated Input 24.66 7.16 10.93 6.57
Two Stream 2D Convolution 25.12 6.49 10.92 7.71
One Sided Input 31.08 8.21 13.02 9.85

Table 1: Influence of the dimensions on the average L2 error.

5.3 Qualitative Results
Figure 4 (a)-(d) show some predictions of the concatenated input model in the
table tennis scenario where we can see that the network can predict different
movements at different locations on the table. In general, the network performs
best when the ball is flying towards the camera and when there is sufficient
distance between two positions of the ball in the trajectory as seen in Figure 4
(a) and (b). Movements that are far away from the camera and have short tra-
jectories like in Figure 4 (c) and (d) are more difficult for the network. Though
it is interesting to see that the network is still predicting a trajectory that is
meaningful for the movement which shows that it has really learned to predict
trajectories during the learning process. Moreover, this result is comparable to
the human performance in this task, i.e. the movements in pictures (c) and (d)
would be hard to predict also for humans due to their distance to the point of
view, especially when taking into account that the input images are only of size
128× 128 pixels.
Figure 4 (e)-(j) show qualitative results created by the two-stream-network with
2D convolutions in the squash environment. Pictures (e)-(g) show good predic-
tions of the network for straight movements. In comparison to the table tennis
scenario, the movements are predicted before or after initial collisions with the
walls took place and in boxes of different sizes. In picture (h) we can see a move-
ment where the network has to predict two collisions and produces a rather big
error. Figure 4 (e) - (j) show qualitative results created by the two-stream-
network with 2D convolutions. pictures (e) - (g) show good predictions of the
network for straight movements. In comparison to the table tennis scenario,
the movements are predicted before or after initial collisions with the walls took
place and in boxes of different sizes. In picture (h) we can see a movement
where the network has to predict two collisions and produces a rather big error.
Interestingly, we can clearly observe a knee in the predicted movement of the
network indicating that it might has noticed that will be two changes in the
direction of the ball. Pictures (i) and (j) show movements with the highest oc-
curring error rates in the test set and show two important observations. Firstly,
the network has really learned to predict movements since the predicted move-
ments are reasonable trajectories of a flying ball. Secondly, the errors made
by the network could also be made by humans. In Picture (i) one has to look
very hard to see that the ball is bouncing against the back wall of the box and
therefore changes its movement instead of just bouncing on the ground. Vice
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Figure 4: Qualitative results of the concatenated input model for the table tennis
setup. Blue balls correspond to the input frames, white balls are predicted by
the network and the red lines indicates the ground truth trajectory.

versa, in Picture (j) it is hard to say whether the ball will bounce against the
back wall or not and the network assumed that it would and predicted a change
in the movement direction.
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6 Conclusion
We studied the ability of convolutional neural networks to build physical models
to predict the movement of a ball in different scenarios for video input data that
contains no further labels or information and with low resolution. Therefore, we
compared network architectures with different kinds of convolution operation,
monocular- and stereo visual input and different ways of processing stereo visual
input. We found that these networks can predict many movements in changing
environment and on unseen data with small error rates. Networks with stereo
visual input perform better than those with monocular vision and can, just like
human beings, gain advantage from the additional viewpoint for estimating the
depth in images. 3D convolutions, however, are not able to gain advantage by
processing contiguous frames of the movement at once and show clearly worse
performance than networks with 2D convolutions only. All networks have prob-
lems when encountering difficult motions with multiple changes in directions
and when the beginning of the movement is hard to see. However, often these
falsely predicted movements still appear reasonable to a human.
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