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Abstrac t .  While optical flow has been often proposed for guiding a 
moving robot, its computational complexity has mostly prevented its ac- 
tual use in real applications. We describe a restricted form of optical flow 
algorithm, which can be parallelized on chain-like neuronal structures, 
combining simplicity and speed. In addition, this algorithm makes use 
of predicted motion trajectories in order to remove noise from the input 
images. 

1 I n t r o d u c t i o n  

Optical Flow has been proposed as a possible cue to guide robot navigation[l,  
2, 3]. Unfortunately general optical flow algorithms are unsuitable for hardware 
implementation or real-time processing as a consequence of their complexity. In 
this paper we describe a specialized obstacle detector algorithm that  is easily 
implementable in digital hardware and performs at frame-rate speed. 

We simplify the problem introducing two constraints, which cover many 
generic situations: 
1. The robot is supposed to move forward, along the opticM axis of the camera- 
system. 
2. The scene is supposed to contain only static objects. 
Under these hypotheses the optical flow-field has a pure radial structure, with 
the center of expansion in the middle of the image. 

The distance of the objects contained in the scene is computable from the 
apparent  motion of their projection on the image plane and from the camera's 
characteristics (lens' focal length and CCD size). In our case, exploiting the 
radial structure of the optical flow, the problem is further simplified from the 
2D structure of a generic flow field to the 1D structure along a radius. 

2 S i m u l a t e d  R e t i n a  a n d  t h e  E x p l a n a t i o n  o f  t h e  T e c h n i q u e  

We devised an algorithm to implement the approach in the form of a network 
of idealized neurons. The network can be interpreted as an artificial retina, with 
each neuron directly connected to a photo-receptor as in Fig. 1. 

The computation takes place by neurons exchanging information with each 
other in the network. Each neuron in our algorithm needs to be connected only 
to its two directly adjacent neighbors on the same radius. We call the set of 
neurons on a radius a neuron  chain. 
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Fig. 1. artificial retina 
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Fig. 2. geometry of position estimation 

Let us assume an object position Pn-1 at time tn-1 projected onto neuron 
r,~-i on the retina�9 Then the projection of this object will be displaced on the 
retina to rn due to the robot motion of which covers a distance of -Z lz  between 
two camera frames such that  the real position of the object will be Pn at time 
t,~. The equations of a pin-hole camera can be solved in our case to compute the 
position of an object in world coordinates: (Fig. 2) from the system of geometric 
equations 

(I) 

where k and 1 are scalar factors for the vectors s-~. As solution we obtain the 
object position (X, Y, Z): 
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All terms of Eq.2, excepted Az,  which is measured between two camera frames, 
are constants at each given neuron with: 

s~'~ " c~ arctan ~s~_~ / (3) 

�9 s~ ,~  _ | \ s ~ , ~  ] su,~ ( ( ~--2~-.~ ) 1) Sn,r �9 sinarctan 

STt,Z 

Due to the constant terms, the depth of an object can be determined at the cost 
of a single multiplication�9 Solving Eq. 2 is the first step of the algorithm. In order 
to deal with possible errors introduced by noise or false detections we introduce 
a second computational step: using the computed position and knowing the 
actual position of the robot, we can predict where the object will be detected 
the next time�9 After having computed the object position (X, ]I, Z) at neuron 
n, we compute the robot position Z~Zpred, where the neuron n + 1 is expected 
to be activated by this object using Eq. 4. If this excitation does not occur, the 
old object position was incorrect. If it occurs the old position is confirmed and 
the object becomes "reliable". 

\ Sn,r 8nWl,r ] 

Each neuron of our artificial retina is composed of three subcomponents: a 
photoreceptor, a processing unit and a data  storage�9 The processing unit receives 
information from the photoreeeptor and from the adjacent inner neuron, it sends 
information to the adjacent outer neuron and can write and read data from the 
storage and perform simple arithmetic operations as specified by the equations. 

3 D e f i n i n g  t h e  A l g o r i t h m  f o r  a N e u r o n  C h a i n  

Let us suppose that  our artificial retina is implemented in a camera, moving for- 
ward along its optical axis, in a world containing only one black spot somewhere 
in the direction of gaze. The computational at process along the neuron chain 
on which the black spot is projected, can be defined by Fig. 3 

1. At position P0 the neuron 1 detects an object. It communicates the event to 
neuron 2. (Fig. 3,1eft) 

2. At position P1 the neuron 2 detects the same object (Fig. 3 middle). Since 
its memory is not empty it can compute a tentative position (X, ]I, Z) for the 
detected object from the position difference AZ = 8 and the known position 
of the photo-receptors (Eq 2). With this information neuron 2 predicts the 
distance expected to be covered by the camera motion before the object 
will be detected by the next neuron (AZpred = 6), and communicates the 
predicted value and the actual position information to neuron 3. 

3. When neuron 3 actually detects the object (Az = 5), the prediction can be 
checked: if the precision is satisfactory (e.g., Az  = ,~Zpred :J= 1) the computed 
position of the object is updated and marked as reliable, and all informations 
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Fig. 3. ideal excitation cycle 

are communicated to the next neuron with a reliability value of 1. Otherwise 
the detected object is considered a new object, and the computation resumes 
as in 1. 

4 R e s u l t s  

Figs. 4-7 show the results obtained from a noisy scene containing three objects 
at different depths (Fig. 4). Fig. 5 represents the very noisy retina image. Fig. 6 
shows the depth information without making use of the predictions while in 
Fig. 7 only reliable pixels (conf >_ 3) are shown and the rough outline of the 
three objects appears. Depth is coded by gray-scale. 

Fig. 4. first Fig. 5. retina Fig. 6. depth Fig. 7. depth 
retina image image with map without map with pre- 
without noise noise, step 50 prediction, diction, step 

step 50 50 
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5 Discuss ion 
The algorithm proposed here can be parallelized with simple computational units 
on an artificial retina because only a single multiplication is necessary to retrieve 
the depth information. While this has been suggested before[l] the novel aspect 
of this study is the use of prediction values to improve the depth maps. Even 
with such a prediction the arithmetic remains rather simple. The price to pay 
for this simplicity is the restriction to radial flow-fields. Thus, when changing 
the direction of motion the algorithm has to be reset. To cover these situations 
the algorithm should be used in a modular system, where other computationally 
more expensive depth algorithms[4] are applied to refine the first shot depth 
maps obtained with our very fast processing scheme. We a currently implement- 
ing the algorithm on the robot RHINO of the university of Bonn in cooperation 
with the computer science department (J. Buhmann and V. Gerdes) and prelim- 
inary results indicate that the algorithm will indeed be applicable in real word 
situations. 
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