
Stabilising Hebbian learning with a third factor

in a food retrieval task

Adedoyin Maria Thompson1, Bernd Porr1, and Florentin Wörgötter2

1 Department of Electronics & Electrical Engineering, University of Glasgow,
Glasgow, G12 8LT, Scotland, United Kingdom {mariat,b.porr}@elec.gla.ac.uk

2 Bernstein Center of Computational Neuroscience, University Göttingen, Germany,
worgott@chaos.gwdg.de

Abstract. When neurons fire together they wire together. This is Don-
ald Hebb’s famous postulate. However, Hebbian learning is inherently
unstable because synaptic weights will self amplify themselves: the more
a synapse is able to drive a postsynaptic cell the more the synaptic weight
will grow. We present a new biologically realistic way how to stabilise
synaptic weights by introducing a third factor which switches on or off
learning so that self amplification is minimised. The third factor can be
identified by the activity of dopaminergic neurons in VTA which fire
when a reward has been encountered. This leads to a new interpretation
of the dopamine signal which goes beyond the classical prediction error
hypothesis. The model is tested by a real world task where a robot has
to find “food disks” in an environment.

1 Introduction

Hebbian learning [1] is the most prominent paradigm in correlation based learn-
ing: If pre- and postsynaptic activity coincides the weight of the synapse is
strengthened. However, Hebbian learning is inherently unstable because of its
autocorrelation term: Briefly, a changing weight will alter the output which will
lead to further weight change, and so on. In this study we present a novel learn-
ing rule which is an extension of our differential Hebbian learning [2] rule ISO-
learning [3] which minimises the destabilising autocorrelation term by switching
learning on when the autocorrelation term is minimal. This switching is per-
formed by a third factor which acts like a neuromodulator [4]. Therefore we call
this learning rule ISO3 learning. We will demonstrate the applicability of the
rule with a robot that learns to retrieve food disks.

2 Three factor learning

We are going to demonstrate in the open loop case how to minimise the destabil-
ising autocorrelation term of Hebbian learning. Fig. 1A shows the basic compo-
nents of the neural circuit. The learner consists of three inputs x0, x1 and r which
are filtered by low pass filters: u0 = x0 ∗ h0, u1 = x1 ∗ h1 and ur = Θ((r ∗ hr)

′)
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Fig. 1. A) General form of the neural circuit in a generic environment. The inputs
x0, x1, r are filtered by standard resonators (h0, h1, hr which have frequency f and
quality Q as parameters). u0 and u1 are summed at v with weights ρ0 and ρ1. The
number of filters in the x1 pathway can be extended to a filterbank with different
resonators hk and corresponding weights ρk which is indicated by the dotted lines.
From the output of the filter hr the derivative d/dt is taken and then rectified (> 0).
The symbol ⊗ is a correlator and

∑
is a summation node. B) Signals u0, u1 and their

derivatives which illustrate how learning works (see text for explanation). C) Com-
paring ISO and ISO3 learning rules. System parameters: fh0,h1,hr = 0.1 and damping
parameter Q = 0.51 was used to filter inputs x0, x1 and relevance signal r. Learning
rate was µ = 0.005 for ISO learning rule and µ = 0.07 for ISO3 rule. Time difference
between x1 and x0 was T = 10 (x1 always precedes x0).

where Θ is a threshold for > 0 as depicted in Fig. 1. The circuit can easily be
extended to a bank of filters with different resonators hj , j > 0 and individual
weights ρj , j > 0 to generate complex shaped responses [5]. The learning rule
for the weight change d

dt
ρj is given as:

ρ′j = µurujv
′, j > 0 (1)

which is essentially ISO learning where we have added a third factor ur.
To get a better understanding how the third factor ur influences learning we

split Eq. 1 into a superposition of a cross-correlation ccj and an auto-correlation
acj , multiplied by the third-factor ur:

ρ′j =









ρ0uju
′

0
︸ ︷︷ ︸

ccj

+uj

N∑

k=1

u′

kρk

︸ ︷︷ ︸

acj









ur (2)

= (ccj + acj)ur (3)

The cross-correlation ccj drives learning by relating different inputs with each
other so that, for example, in the case of simple conditioning the correlation
of the conditioned stimulus (CS) and the unconditioned stimulus (US). The
autocorrelation term acj is the unwanted contribution to learning because it
only self-amplifies the weights.
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To demonstrate how the third factor stabilises learning we generate artifi-
cially input signals x0, x1, r to our open loop circuit which are delta pulses that
trigger damped filter responses (see Fig. 1B). It can be clearly seen that the
autocorrelation ac and cross correlation terms cc happen at different moments

in time. Consequently we can switch on learning when the autocorrelation is
minimal and the cross correlation is maximal. This can be achieved by switching
on the third factor ur at the same time as the signal x0 is triggered.

Fig. 1C shows the behaviour of ISO3 learning as compared to ISO-learning
for a relatively high learning rate. To test the effect of the autocorrelation we
switched off the signal x0 after step 4000 which effectively removes the cross
correlation. As shown in [3], at least for low learning rates in ISO-learning, the
weights should stabilise after x0 has been switched off. Instead, clearly one sees
that ISO-learning contains an instability, which leads to an upward bend. This
is different for ISO3 learning which does not contain this instability because
learning is switched off when self amplifying autocorrelation terms would desta-
bilise learning. ISO3 learning is also stable when there is a bank of filters in the
x1 pathway and/or when the filter functions are not orthogonal to each other
because the autocorrelation is zero at the moment the third factor ur is triggered.

In summary ISO3 learning uses the fact that auto- and cross correlation
happen at different moments in time. Consequently we can stabilise differential
Hebbian learning by switching learning on at the moment when the autocorre-
lation term is minimal.

3 Closed loop

The behavioural experiments of this section have two purposes: They will give the
signals x0, x1 and r a behavioural meaning as well as demonstrate the superiority
of ISO3 compared to ISO learning. We will present a task where a robot has to
learn to retrieve “food disks” [6, 7]. This task will first be used for benchmarking
and will then be demonstrated in a real robot. The robot has to find food disks
from the distance. Initially the robot has only a pre-wired reflex which enables it
to react to food disks at close range only. During learning this reflex reaction is
correlated with distant stimuli which enable the robot to target food disks from
the distance. In the simulation, we use sound and vision for distant and proximal
stimuli which respectively replace the artificial input signals x1, x0 originally used
in our open loop circuit. In the real robot experiment these two signals x1, x0

will be generated from two different scanlines from a video camera attached to
the robot.

3.1 Benchmark

Fig. 2A,B presents the task and circuit diagram where the simulated robot had
to learn to retrieve “food disks”. The reflex x0 is established by two light detec-
tors (LD) which draws the robot into the centre of the “food disks” (Fig. 2A1).
Learning uses the sound detectors (SD, Fig. 2A2) which feed into x1 to generate



4 Adedoyin Maria Thompson et al.

Fig. 2. The robot simulation. A) The robot has two pairs of sensors: It has two light
sensors which detect the food disk only in their direct proximity. In addition it has
two sound detectors which are able to “hear” the food source from a distance. B) The
output v is the steering angle of the robot. The two light detectors (LD) establish the
reflex reaction (x0). The sound detectors (SD) establish the predictive loop (x1). The
weights ρ1 . . . ρN are variable and are changed either by ISO or ISO3 learning. The
signal r is generated by a third light sensor and is triggered as soon as the robot enters
the food blob. The robot has also a simple retraction mechanism when it collides with
a wall (“retraction”) which is not used for learning. The output v is the steering angle
of the robot. Filters are set to f0 = 0.01 for the reflex, fj = 0.1/j, j = 1 . . . 5 for the
filter bank where Q = 0.51. Reflex gain was ρ0 = 0.005. C) and D) plot the number
of contacts for both learning rules needed for successful learning against the learning
rate. In addition the number of failures against the learning rate are plotted.

an anticipatory reaction towards the “food disk”. The reflex reaction is estab-
lished by the difference of two light dependent resistors which cause a steering
reaction towards the white disk (Fig. 2B). Hence x0 is equal to zero if both LDs
are not stimulated or when they are stimulated at the same time which hap-
pens during a straight encounter with a disk. The latter situation occurs after
successful learning. The reflex has a constant weight ρ0 which always guaran-
tees stable behaviour. The predictive signal x1 is generated by using two signals
coming from the sound detectors (SD). The signal is simply assumed to give the
Euclidean distance from the sound source. The difference of the signals from the
left and the right microphone is a measure of the azimuth of the sound source
to the robot. Successful learning leads to a turning reaction which balances both
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sound signals and results ideally in a straight trajectory towards the target disk
ending in a head-on contact.

We quantify successful and unsuccessful learning for increasing learning rates
µ. The learning rates have been chosen in a way that in both cases the contacts
for successful learning are the same to make the failures comparable. Learning
was considered successful when we received a sequence of five contacts with the
disk at a sub-threshold value of |x0| < 1.1. We recorded the actual number of
contacts until this criterion was reached. The simulations demonstrate clearly
that ISO3 learning is much more stable than the Hebbian ISO learning. ISO3
learning can therefore operate at more than ten times higher learning rates than
ISO learning.

Fig. 3. The real robot’s perspective showing two instances where the ”food disks”,
represented by the white spheres lie in all scanlines at which the x1, x0 and the relevance
input signals are established to produce the input signals for the learning circuit. The
x1 and x0 signals are respectively triggered when the “food disk” appears in the upper
scanline, where objects are further away from the robot’s camera view and the lower
scanline at bottom of the video image, where objects are closer to the robot’s camera
view. The relevance signal is obtained from the same scanline as the x0 signal. When the
“food disk” appears in either scanlines for the respective x1, x0 and relevance signal,
a positive negative or zero value is generated depending on what side of the robots
view the “food disks” lie. Parameters: frame rate was 25 frames/sec. The video image
f(x = [0 . . . 95], y = [0 . . . 64]) was evaluated at y = 53 for the reflex x0 and at y = 24 for
the predictive signal x1. Reflex and predictive signal were calculated as a thresholded
(> 240) weighted sum: x0,1 =

∑
95

x=0
(x− 96/2)2Θ(f(x, y)). The reflex pathway was set

to: f0 = 0.01, Q = 0.51 with a reflex gain of ρ0 = 30.The relevance filter was set to
fr = 0.01, Q = 0.51. The predictive filters were set to f1, k = 0.1/k, k . . . 10, Q = 1.
The learning rate was µ = 0.0000035.

3.2 Real robot

In this section we will demonstrate that ISO3-learning is also able to master
the task with the “food-disk” in a physically embodied agent [8]. It will also
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be shown that ISO learning fails here completely because of its destabilising
autocorrelation terms which drive the weights either very quickly to infinity or,
alternatively, one has to run the robot for hours to see anticipatory behaviour
which is impractical.

As before, the task of the robot is to target a white disk or “food disks”
from a distance. As in the simulation the robot has a reflex reaction which pulls
the robot into the white disk just at the moment the robot drives over the disk
(Fig. 3). This reflex reaction is achieved by analysing the bottom scanline of
a camera with a fisheye lens mounted on the robot. The predictive pathway is
created in a similar way: A scanline which views the arena at a greater distance
from the robot (hence “in its future”) is fed into a bank of of ten filters. This
enables the robot to learn to drive towards the “food disk” (Fig. 3).

Fig. 4. Experiment with a real robot. A: start of the run at 00:12 mins, B: after 16:13
mins (92 contacts) weight change at a time step of approximately 24000, and C:after
24:10 mins (132 contacts) and the weight change at an approximate time step of 37000.
The arrows at A and B show the trace of the robot while driving into “food disks”
(white spheres). The weight development (ρj , j = 1 . . . 10) is shown in D.

The reflex behaviour of the robot before learning is shown in Fig. 4A, where
the robot drives in a straight line and only makes a sharp bend when it encounters
the “food disk” in very close proximity. i.e. when the “food disks” appears in
the scanline that represents objects closest to the robot. Learning needs longer
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in these real robot runs than in the simulation. After about 5 minutes, the
robot starts exhibiting a learned behaviour. Successful learning can be shown
in Fig. 4 B and C where the robot’s turning reaction sets in from a distance of
about 40cm. The robot has learned anticipatory behaviour.

The real robot is subject to complications which do not exist in the simula-
tion. The inertia of the robot, imperfections of the motors and noise from the
camera render learning more difficult than in the simulation. These elements
contribute to the fluctuations in the weight change in Fig. 4 D. The weights
however remain stable. The two slightly large “jumps” (marked by circles) in
the weight change between time steps 18000 . . . 20000 and 40000 . . . 45000 have
been caused by typical problems which arise in real robots which have been
mainly reflections on the floor and also the erroneous detection of the hand of
the operator which caused weight changes. However, learning does not diverge
and further learning makes the weights decrease again which points to the fact
that the reflex reaction kicks in and corrects the slightly too strong steering
reactions.

Fig. 5. The weight development of the real robot experiment implementing ISO learn-
ing. Parameters: The reflex pathway was set to: f0 = 0.01, Q = 0.51 with a reflex gain
of ρ0 = 30. The predictive filters were set to fk, k = 0.1/k, k = 1 . . . 10, Q = 1 and the
learning rate was µ = 0.0000035.

In order to fully appreciate the overall effects of the third factor, we have
ran a real robot experiment implementing ISO learning without the third-factor
by setting ur = 1 all the time in Eq. 1. The learning rate has been reduced so
that the weight development under ISO learning is comparable with ISO3 (see
Fig. 4D). The weight change generated from this experiment is shown in Fig. 5.
It can clearly be seen that ISO learning becomes unstable very quickly. Only
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after 2500 frames the weights diverge which leads to random behaviour of the
robot so that the experiment was aborted.

In summary it can be concluded that ISO3 learning is much more stable than
ISO learning: While ISO3 learning learns fast and remains stable, ISO learning
diverges very quickly. This shows that the elimination of the autocorrelation
term in ISO3 creates fast and reliable learning.

4 Discussion

In this work we have shown that a third factor is able to stabilise differential
Hebbian learning by switching it on when its autocorrelation term is minimal.

Our ISO3-learning rule seems to have similarities with reinforcement learning
(RL) which also employs a modulatory signal to select actions [9, 10]. However,
there are important differences. RL is usually implemented as an actor/critic
architecture where the critic generates a delta error which tells the actor what

to do. In other words the delta error is a teaching signal which actively reinforces
or penalises actions. However, in ISO3 the signal ur does not evaluate actions.
ISO3 just switches learning on or off but does not force the system towards a
certain behaviour. This is an important difference between our ISO3 and RL:
The latter uses a global error signal to drive learning which tells the actor what

to learn whereas our ISO3 tells the actor when to learn and leaves the “what”
aspect to the actor itself. Learning of the actor in ISO3 is related to spike timing
dependent plasticity [11, 12].

Dopamine as a crucial factor for long term potentiation (LTP) has been
suggested, for example, in [13, 4] and been reviewed in [14, 15]. Evidence suggests
that LTP not only needs coinciding pre- and postsynaptic activity [11, 16] but
also dopamine transients as a third factor. Without dopamine no long term
potentiation seems to be possible [4].

Fig. 6. Simplified diagram of the limbic system. NAcc=Nucleus Accumbens core,
HC=Hippocampus, PFC=prefrontal cortex, VP=ventral pallidum, VTA=ventral teg-
mental area, LH=lateral hypothalamus.
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The third factor of ISO3 can be related to the dopaminergic neurons in the
VTA (see Fig. 6) which respond strongly to primary rewards [17]. The VTA in
turn is driven by the lateral hypothalamus (LH) which is the primary nucleus
which becomes active while eating food. The circuit of LH and VTA could have
the task to switch on learning in a number of brain areas like the prefrontal
cortex, the hippocampus and the nucleus accumbens which could act as a global
signal for learning. In terms of behaviour the nucleus accumbens plays here a cen-
tral role because it transforms information from the cortex and the hippocampus
into motor commands. In our model the learner in Fig 1 can be directly asso-
ciated with the NAcc: Initially the NAcc is pre-wired with certain behaviours
which are then modified and superseded by learned inputs from the cortex and
hippocampus. Thus, learning takes place on top of pre-wired behaviours. Con-
sequently, models like the one developed by Prescott et al. [18] which work with
pre-wired behaviour could be upgraded to accommodate learning so that an-
ticipatory behaviour is generated. For the actual learning this means that the
dopamine signal does not choose the actions in the striatum but that it rather
tells it to learn at a certain moment in time. The striatal neurons would learn
locally by themselves with the help of spike timing dependent plasticity and not
by a dopaminergic error signal [19]

It is known that dopaminergic activity decreases at the primary reward and
builds up at the location of the conditioned stimulus [17]. This behaviour can be
re-interpreted if we accept that dopamine is telling the target structure when to
learn rather than what to learn: it helps to stabilise behaviour associated with
the primary reward because learning is switched off when the signal ur is no
longer happening at the moment the primary reward is experienced. Switching
on learning at the first conditioned stimulus preserves the behaviour which is
associated with the primary reward.
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