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Abstract If we stored every bit of input, the storage
capacity of our nervous system would be reached after only
about 10 days. The nervous system relies on at least two
mechanisms that counteract this capacity limit: compression
and forgetting. But the latter mechanism needs to know how
long an entity should be stored: some memories are relevant
only for the next few minutes, some are important even after
the passage of several years. Psychology and physiology have
found and described many different memory mechanisms,
and these mechanisms indeed use different time scales. In
this prospect we review these mechanisms with respect to
their time scale and propose relations between mechanisms
in learning and memory and their underlying physiological
basis.
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1 Introduction

The most prominent method for survival that living beings
have is to sense certain features of their environment and
(re)act accordingly. The simplest behavior relies on direct
sensorimotor coupling (reaction); more advanced behavior
entails making simple sensing predictions (proaction) or even
base the method on sophisticated and memorized environ-
mental knowledge (planning) built by multisensory experi-
ence.

For the most basic mechanism—reaction—memory is not
necessary because a direct connection from sensors to motors
suffices (cf. Braitenberg 1984). The second—proaction—
involves reaction to stimuli that are expected. Thus, for such
a behavior the underlying mechanisms require the collection
of stimuli from the past on which predictions for the future
are based. The third—planning—relies on remembered stim-
uli, combines predictions into a plan, and must memorize the
state of the plan while executing it.

The last two behaviors discussed above rely mainly on
two concepts:

(1) The first concept consists of an extraction mechanism
that condenses information from past experiences and
performs refinement processing of the condensed infor-
mation so that behaviorally useful predictions of the
future can be made. This concept is often referred to as
“learning,” and we find mainly three mechanisms for it:
(a) correlation learning is based on evaluating statisti-
cally significant relations between events in the envi-
ronment, (b) reinforcement learning or reward-based
learning is based on unspecific good–bad signals, and
(c) supervised learning relies on specific error signals.

(2) The second concept consists of a bridging mechanism
that retains the condensed past and present information
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for future use. This concept is often referred to as
“memory,” and three subcategories of memory have
been identified. Working memory processes informa-
tion and usually requires attention, and short-term and
long-term memory performs long-term storage of infor-
mation where the difference between the two concepts
lies in duration and capacity.

In higher animals the substrate responsible for learning
and memory consists of specialized cells, mainly neurons
and their connections, known as synapses [but see also, for
instance, Perea et al. (2009) for astrocytes and Stocker and
Durham (2009) for protozoa]. How do we know that neu-
rons and their connections are really related to learning and
memory? In 2000, Martin et al. in a review suggested four
different criteria supporting the hypothesis that plasticity is
the basic mechanism for learning and memory: detectabil-
ity, mimicry, anterograde, and retrograde alteration (Martin
et al., 2000; Martin and Morris, 2002).

Detectability means that there are changes at the synaptic
level after an animal has learned or memorized something
(e.g., Rioult-Pedotti et al., 1998; Whitlock et al., 2006).

If we took the changes in one animal and implemented
them in another, then we would invoke the mechanism of
mimicry. So far, mimicry cannot be experimentally induced.

By the mechanism of an anterograde alteration synaptic
plasticity is prevented, which should then also prevent the
animal from memorizing or learning something. This is the
most prominent method to prove the relation between plas-
ticity and learning (Morris, 1989; Martin et al., 2000).

Retrograde alteration implies varying the synaptic stren-
gth in such a way that a learned memory item can be “repro-
grammed” to become another memory (Pastalkova et al.
2006).

Information in the environment is available usually only
for a limited duration. Additionally, information that is
important now might not be of relevance anymore some-
time later—other information, on the other hand, might have
to be considered lifelong. If we want to find correlations or
even causalities—and knowledge of causalities is often live
saving—in the environment, unknown time intervals must be
bridged. Some correlations are immediate, like the disgust-
ing taste of rotten berries, some are hours apart, like diar-
rhea after eating such berries, and some correlations are even
years apart, like the effects of lethal parasites in the berries,
hence the mechanisms for memorizing this have to operate
on different time scales.

In the first part of this article we list and briefly review
behavioral concepts as well as some physiological mecha-
nisms (cf. Sects. 2–4) and discuss their relations (cf. Sect. 5).
In the second part we discuss the advantages of different time
scales versus complete storage of all information also with
respect to capacity issues and processing time (cf. Sect. 6).

In the end, the reader should have a detailed impression of
time scales of memory, learning, and plasticity and of the
links that exist between these mechanisms. Finally, build-
ing upon this discussion, we raise open research questions
(cf. Sect. 7).

2 Time scales of memory

2.1 Working memory

Working memory, a term coined by Miller et al. (1960), is a
theoretical concept believed to underlie human thought pro-
cesses. According to Miller et al., it is a mechanism that
allows us to remember the current state of a plan that we are
executing, for example, while doing mental arithmetic we
need to remember intermediate results or while fleeing from
a threat we must not suddenly forget why we are running. An
important feature of working memory is that it has an indi-
vidually limited capacity between four and seven storable
items (Baddeley and Hitch 1974; Daneman and Carpenter
1980; Miller 1956; Cowan 2001); in addition, it has been
shown that there is a high correlation between this work-
ing memory capacity and human intelligence (Kyllonen and
Christal 1990). Note that this capacity might be increased
by a process called chunking, whereby atomic information
is combined into larger compounds, with the chunks being
stored somewhere else. By “loading” links or references to
the chunks into working memory instead of the information
encoded by them, an increase in capacity can be obtained
(Ericsson and Kintsch 1995). A further feature is that infor-
mation in working memory is quickly lost if not constantly
rehearsed (Brown 1958; Baddeley and Hitch 1974) or if it
is not the focus of attention (Cowan 1995, 2005). Thus, the
time scale of working memory is from milliseconds to min-
utes. Lesion and brain imaging studies mostly relate working
memory to the prefrontal cortex (Owen 1997; Fuster 1973;
Cohen et al. 1997).

2.2 Short- and long-term memory

Short-term memory Whereas the time scale of working mem-
ory is from milliseconds to minutes, short-term memory
stores items on a time scale of minutes to days. However,
right after a new memory is formed, it is still suscepti-
ble to perturbations and must be consolidated [e.g. during
sleep (Walker et al. 2003)] to become stabilized for the next
few days (synaptic consolidation; Dudai 2004). The corre-
sponding brain location that is mostly associated with short-
term memory is the hippocampus (Kumaran 2008), where
changes in morphology due to synaptic plasticity are found
in short-term memory tasks (Shimizu 2000). Another brain
area, the amygdala, has, through the emotions, a strong
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influence on the memorization process (McGaugh 2000).
On the other hand, some theories propose that this link
between short-term memory and specific brain areas depends
on the memory context (Nadel and Moscovitch 1997; Henke
2010).

Long-term memory The memory type with the longest
time scale is long-term memory, which operates on a scale of
days to years—perhaps even for an entire lifetime. Changes
during long-term-memory experiments are found in a distrib-
uted cortical network (Frankland et al. 2001, 2004), however,
mainly in the prefrontal cortex (Frankland and Bontempi
2005). Those changes happen through synaptic and structural
plasticity (Frankland and Bontempi 2005; Xu et al. 2009;
Yang et al. 2009; Ziv and Ahissar 2009). Although the time
scale of long-term memory could be up to “infinity,” it is still
under debate how items can be stored for such a long time
(Frankland and Bontempi 2005).

Interaction between short- and long-term memory The
interaction between short- and long-term memory remains
unclear (McGaugh 2000). Does a memory item have to be
stored in short-term memory before it is transferred to long-
term memory (Marr et al. 1970; McClelland et al. 1995;
Squire and Alvarez 1995)? Or does the learning paradigm
influence the type of memory an item is stored in (Izquierdo
et al. 1998; Henke 2010), which would mean that short-
term memory and long-term memory act independently of
each other (i.e., in parallel)? Another possibility is that short-
term memory supports the consolidation of long-term mem-
ory (Dudai 2002). Such a transformation of memory items
from short-term to long-term memory is speculated to happen
between the hippocampus and the neocortex [system consol-
idation; (Dudai 2004)] and probably during sleep (Diekel-
mann and Born 2010). However, it is difficult to investigate
consolidation in memory recall because for memory deficits
it cannot be distinguished between a loss in consolidation or
a loss in retrieval (Dudai 2004).

The models explained above attribute short-term memo-
ries to the hippocampus and long-term memories to the cor-
tex. In the multiple trace theory, Nadel and Moscovitch (1997)
hypothesize that the hippocampus is responsible for recent
episodic memories and the cortex for semantic memories.

3 Time scales of memory that are relevant for learning
processes

Novices in the field often confuse learning and memory. This
is possibly due to the fact that many processes of learning
require access to “something stored,” hence, to some form
of memory. This process—the learning—will then normally
lead to the formation of new memories (which may or may
not have anything to do with those items that had to be stored
and retrieved during the learning process).

One of the most prominent learning paradigms is
correlation-based learning in which two stimuli/events are
correlated over time and this correlation is then remem-
bered. Classical conditioning (Pavlov 1927) is the traditional
example of this. The time difference between both events
(e.g., conditioned and unconditioned stimuli) should be
within seconds to evoke significant behavioral changes. With
higher-order conditioning it is possible to lengthen the time
duration up to minutes. However, to correlate both stim-
uli with each other the organism must memorize the first
one. The short behaviorally relevant time scale suggests
that this is stored in the working memory. In exceptional
cases the first event can be emotionally biased and thus
stored in the short- or even long-term memory (McGaugh
2000).

A more complex learning paradigm is reward-based learn-
ing [reinforcement learning, (Sutton and Barto 1998)]. In this
approach an organism has several choices of behavior, and
each choice can lead to a different outcome [reward/punish-
ment; cf. (Sutton and Barto 1981)], which can also be proba-
bilistic. To figure out if one choice is better than another,
the organism must remember the outcomes and compare
both. Thus, reward-based learning needs at least informa-
tion coming from working memory (last choice). Of course,
the result—which choice is better—can then be stored in the
short- or long-term memory.

All of the learning paradigms discussed above are unsu-
pervised. However, humans and several animals use for their
offspring supervised learning methods [cf. Duda et al. (2000);
Bishop (2007)]. This can be done, for instance, by imi-
tation learning or by presenting an error (teacher) signal.
Often there are no hard temporal constraints on when the
error signal should occur, and it could even be presented
much later. Thus, the organism must have memorized what
it has done and what the error signal was. Thus, for the
process of supervised learning much information must be
retrieved from short- and long-term memory to update the
behavior.

4 Time scales of physiology

In what follows, we present physiological models relevant for
memory and learning. Many of these physiological mecha-
nisms have been extensively investigated mathematically and
computationally. To give the reader an overview of this broad
field, we provide in Table 1 the most prominent mathematical
descriptions of these physiological models.

4.1 Activity

The shortest time scale with a “memorizing” character in
physiology can be found right after a spike arrives at the
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Table 1 Mathematical overview of different physiological mechanisms where the temporal duration increases from 1 to 8

Physiological mechanism Mathematical description Remarks

(1) Persistent activity (Rall 1967) mi = t
μ

e1−t/μ · �(t)

(2) Intrinsic plasticity (Triesch 2007) vi = 1
1+exp(−(ai mi +bi ))

ai : slope parameter;

�ai = μ

(
1
ai

+ mi −
(

2 + 1
vT

)
mi vi + mi v2

i
vT

)
bi : offset parameter

�bi = μ

(
1 −

(
2 + 1

vT
vi

)
+ v2

i
vT

)

(3) Attractor network (Hopfield 1982) �wi j = μξi ξ j ⇒ wi j = w j i ξ : pattern; ξi = {−1, 1};
vi = �(

∑
j wi j v j ) network phenomenon

(4) Short-term plasticity (Mongillo et al. 2008) ṗi j = μ
(
1 − pi j

) − ri j pi j δ(t − tsp) pi j : depression; ri j : facil-
ṙi j = λ

(
R − ri j

) + R(1 − ri j ) δ(t − tsp)wi j = pi j ri j itation; R: baseline level

(5) Long-term plasticity (a) ẇi j = μvi v j (Hebb) (b) ẇi j = μ F(vi , v j , wi j ) F : arbitrary polynomial

(6) Spike-timing-dep. plast. (Song et al. 2000) ẇi j =
{

μ e−�t/τ+ for �t ≥ 0

−λ e�t/τ− for �t < 0
τ±: decay times;
�t : spike-time difference

(7) Synaptic scaling (Tetzlaff et al. 2011) ẇi j = μ (vT − vi ) wn
i j n: positive integer

(8) Structural plasticity (Butz et al. 2008) �Ai = μ (vi − vT ) Ai Ai : # presyn. elements;
�Di = −μ (vi − vT ) Di Di : # postsyn. elements

The variables used throughout are as follows: wi j , weight from neuron j to i ; vi , activity of neuron i ; mi , membrane potential; vT , target activity;
μ, λ, time scales; tsp , time of spike; �(t), Heaviside function (�(t) = 1 for t > 0 and �(t) = 0 otherwise); δ(t), Dirac δ function; ẋ = dx/dt ,
time derivative of x ; �x , discrete change in x

synapse because then a postsynaptic potential (PSP) arises
from each spike. The time scale of PSPs is on the order of
tens of milliseconds. Thus, this is the simplest mechanism
with which a certain time gap can be bridged. Although
PSPs work on this very short time scale, the idea of using
a slowly decaying signal for storage can be easily transferred
to longer time scales of seconds to minutes. These so-called
eligibility traces (Hull 1943; Rall 1967) are used in many
approaches [e.g., Sutton (1988); Sutton and Barto (1998);
Suri and Schultz (1999); Porr and Wörgötter (2003)] to bridge
time gaps in learning algorithms, but the physiological basis
of longer traces is unclear. A simple mathematical description
for short traces is the alpha function (cf. Table 1—1), among
others. Here, the time scale parameter μ directly relates to the
temporal duration of the filter (e.g., μ = 0.01 corresponds
to 100 ms).

Single neurons themselves use temporal activity changes
to encode memory. Intrinsic plasticity (Triesch 2007; Moz-
zachiodi and Byrne 2009; Gründemann and Häusser 2010)
describes a mechanism that changes, based on the neuron’s
activity history, a neuron’s input–output activity relation,
thereby leading to distinct neuronal responses for different
“memorized” activities. In Table 1—2 we state the origi-
nal description by Triesch (2007). The physiological basis
of the update rules for slope a and offset b is, however,
unclear.

Many neurons combined in a network with recurrent con-
nections exhibit so-called attractor dynamics (Hopfield 1982;
Barbieri and Brunel 2008) attributed mainly to the hippocam-
pus (Rolls and Kesner 2006; Lansner 2009; Cutsuridis and
Wennekers 2009). This means that different activity patterns
(e.g., incomplete input patterns) lead to the same (complete)
activity pattern or cell assembly that can be interpreted as
a memory item. Thus, to recall a memory item, it must be
stored already in the synaptic weight matrix (see below). The
corresponding update rule presented in Table 1—3 is Hebb-
like (see below), and many approaches exist to overcome
the original very simplistic assumptions [e.g., binary units,
asymmetric weights; cf. Hertz et al. (1991)].

Another possible concept that relies merely on activities to
represent memory and learning is reservoir computing (Van-
doorne et al. 2008; Büsing et al. 2010) of which liquid state
machines (Maass et al. 2002) and echo state networks (Jaeger
and Haas 2004) are the most prominent. The abstract idea of
this concept is that a complex network of calculating iden-
tities (e.g., neurons) is so diverse that each task is solved
somewhere within the network (Maass et al. 2002; Buono-
mano and Maass 2009; Maass 2010). However, one problem
with this approach is the capacity, which depends sublinearly
on the number of neurons (Ganguli et al. 2008); another prob-
lem is the read-out of the task-specific information from the
network (Maass et al. 2007; Legenstein et al. 2008).
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4.2 Short-term plasticity

An experimentally well-established physiological theory is
short-term plasticity (Markram et al. 1998), which has a time
scale of milliseconds to seconds. In Tsodyks et al. (1998)
the authors describe the short-term behavior of synapses
with two coupled differential equations: the first describes
the availability of vesicles and the second the probability
of releasing the vesicles into the synaptic cleft. The arrival
of spikes at the synapse leads to a calcium influx into the
presynaptic terminal and, thus, to an increase in the release
probability (synaptic facilitation). On the other hand, through
activation of the synapse the number of available vesicles
is reduced (synaptic depression). Two differential equations
(cf. Table 1—4) that describe the connectivity changes from
their baseline values (here R) can be used to model short-term
plasticity (Mongillo et al. 2008).

The dynamics of short-term plasticity (also called dynamic
synapses) in model neuronal networks are well reviewed
(Barak and Tsodyks 2007; Marinazzo et al. 2007; Mejias
and Torres 2009) and, in contrast to many other mechanisms,
mathematically straightforward to analyze (Tsodyks et al.
1998; Bressloff 1999; Mejias and Torres 2009).

Short-term plasticity is thus a good candidate for tempo-
rally restricted (i.e., not long-lasting) memory mechanisms.

4.3 Long-term plasticity

When talking about plasticity and learning, most scientists
think of Hebbian plasticity. In 1949 Hebb postulated, among
other things, that (briefly) “neurons that fire together wire
together” (Carla Shatz 1992). This statement is interpreted
mainly in two different ways. First, a change in the wiring
is possible only if both of the connected neurons are active
and, thus, correlated (Oja 1982; Bienenstock et al. 1982). The
second interpretation is that a change should depend only on
information that is locally available, that is, the activity of
the two neurons and the weight itself (Gerstner and Kistler
2002; Tetzlaff et al. 2011). For instance, for weight normal-
ization (Rochester et al. 1956; von der Malsburg 1973) a
process that takes into account weights of neighboring neu-
rons is thus not possible for the latter. Both basic definitions
of long-term plasticity are given in their simplest form in
Table 1—5 a, b.

Independently of the interpretation of Hebbian plasticity
this mechanism results in divergent dynamics: if an input
drives the firing of a postsynaptic neuron, then plasticity
potentiates the synaptic weight and, in this way, causes a
stronger input drive, which in turn generates more potentia-
tion, and so on. Neural systems have several different mech-
anisms (Bi and Poo 1998; Turrigiano et al. 1998; Royer and
Paré 2003; Zhou et al. 2003), which are also used in theoret-
ical studies (Rochester et al. 1956; Bienenstock et al. 1982;

Riedel and Schild 1992; Van Rossum et al. 2000) to avoid
these runaway dynamics.

Hebb formulated his postulate in the middle of the last
century, and it has long remained unknown whether such a
mechanism really exists in the nerve cells of our brain. In
1973 Bliss and Lømo were the first to report a mechanism
called long-term potentiation (LTP), which shows an increase
in synaptic efficiency directly related to Hebbian plasticity.
After the discovery of LTP, Lynch et al. in 1977 also found
a reduction in synaptic efficiency, called long-term depres-
sion (LTD). Later in 1992 Dudek and Bear demonstrated
both LTP and LTD at the same synapse. The fact that these
synaptic changes due to LTP/LTD become permanent for
several hours depends on a mechanism called synaptic tag-
ging (Frey and Morris 1997; Clopath et al. 2008; Redondo
and Morris 2011). Here, highly active synapses are tagged
for long-lasting potentiation.

An influence of the temporal signal order on plasticity
was proposed by Gerstner et al. (1996) and experimentally
confirmed by Markram et al. (1997), Magee and Johnston
(1997), and Bi and Poo (1998) [although Levy and Stew-
ard (1983) had already discovered this phenomenon]. These
authors found that for the expression of LTP or LTD not only
the activity as such matters but also the timing. Whenever
there is a spike at a postsynaptic site after there was a spike
at the presynaptic site, the strength of the synapse increases
(LTP). However, if the timing is acausal, which means there
is a postsynaptic spike before a presynaptic spike, the effi-
ciency of the synapse decreases (LTD). To attain plasticity,
spikes must be tenths of milliseconds apart. This is known as
spike-timing-dependent plasticity (STDP). Synapses in dif-
ferent brain areas under different conditions exhibit experi-
mentally different weight change curves, which are then fit-
ted mostly as exponential kernels (Van Rossum et al. 2000;
Froemke et al. 2005). A possible mathematical description
is given in Table 1—6. The plasticity processes as such are
related to LTP and LTD as discussed previously. However, the
generality of STDP is heavily debated (Lisman and Sprus-
ton 2005, 2010; Shouval et al. 2010). Experiments show that
the temporal order is only important in a small regime of
presynaptic activation (Sjöström et al. 2001) and, further-
more, that synaptic modifications seem to be independent of
the spiking of the postsynaptic cell (Golding et al. 2002).
Thus, alternative models have been developed, for instance,
calcium-based plasticity (Lisman 1989; Shouval et al. 2002;
Yeung et al. 2004; Graupner and Brunel 2012).

A synaptic plasticity mechanism that seems to work on a
longer time scale than minutes to hours is synaptic scaling
(Turrigiano et al. 1998; Turrigiano and Nelson 2004; Rabi-
nowitch and Segev 2006; Tetzlaff et al. 2011). Here, the
synaptic efficiency of all inputs to a neuron increases/
decreases if the activity of this neuron is lower/higher than a
target activity (Davis 2006). These changes happen on a time
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scale of days. Mathematically this can be described as shown
in Table 1—7 with a weight dependence added for generality.
It can be shown mathematically that adding synaptic scaling
with quadratic weight dependence to generic plasticity rules
stabilizes weight development (Tetzlaff et al. 2011).

4.4 Structural plasticity

Beside synaptic plasticity, which adapts the synaptic strength
between neurons, structural plasticity decides which synapse
is created and which is deleted (Holtmaat and Svoboda 2009;
Caroni et al. 2012). Thus, by this mechanism the topology
changes and the dynamics of the neuronal network can be
modulated (Butz et al. 2009). The time scale of these changes
is from hours to several days. In Table 1—8 we exemplify
a model that describes the dynamics of the number (not the
strength) of pre- and postsynaptic elements. The more ele-
ments exist, the higher is the synaptic efficiency.

To form new and abolish old synapses, the input and out-
put compartments of a neuron, dendrites and axons, grow
or retract depending on its average calcium or voltage level
(Kater et al. 1989; Mattson and Kater 1989; Helias et al.
2008). Furthermore, synaptic plasticity influences these pro-
cesses, and an important factor for rewiring is the synaptic
efficiency (Levy and Desmond 1985; Adelsberger-Mangan
and Levy 1994; Holtmaat and Svoboda 2009).

5 Links between time scales of memory and physiology

In this section we present experimental and theoretical links
between memory concepts and their possibly underlying
physiological mechanisms (Fig. 1). As there are many con-
tributions for each aspect existing, this section could become
exceedingly long. To avoid this, only key findings are dis-
cussed.

(1) Working memory–activity (experimental) In an exper-
imental task, a specific set of neurons had ongoing
activity during a delay period (Durstewitz et al. 2000;
Funahashi et al. 1989) similar to eligibility traces. This
ongoing activity can be perturbed by an external stim-
ulus that also hinders the execution of the task (Fuster
1973).

(2) Working memory–activity (theoretical) Eligibility tra-
ces can be used as a very simple memory system (Suri
and Schultz 1999; Porr and Wörgötter 2003); however,
the physiological basis is not verified. Another model
for working memory is reservoir computing, which
uses the high complexity of recurrent neural networks
(Maass et al. 2002). If these neural networks are stim-
ulated by an input, then the complexity “stores” the

input in the neural network’s activity pattern for a cer-
tain duration. A similar approach are attractor networks
(Barbieri and Brunel 2008), which, however, require
a specific, biologically unconfirmed, signal to turn off
working memory activity and previously stored knowl-
edge.

(3) Working memory–short-term plasticity (theoretical)
Short-term plasticity is a physiological candidate for
working memory in neuronal networks (Barak and
Tsodyks 2007; Mongillo et al. 2008). First, several
neurons (a previously learned cell assembly) repre-
senting an item are preactivated by an external signal
(e.g., think of the last digit of a phone number). By this
activation, the synapses of these neurons have different
release probabilities and vesicle numbers compared to
the rest of the network. Afterward, within seconds, by
a short activation of the whole network (e.g., thinking
of digits) the item-representing neurons have signifi-
cantly higher response properties and the item is thus
recalled. However, there is only indirect experimental
evidence for this link (Barak et al. 2010).

(4) Working memory–short/long-term plasticity (theoret-
ical) An STDP rule for long- and short-term syn-
aptic changes is used to create polychronous neural
groups, i.e., groups of neurons that exhibit stereotyp-
ical time-locked spatiotemporal spike-timing patterns.
These polychronous neural groups are then interpreted
as working-memory items (Szatmáry and Izhikevich
2010). In attractor networks, the activation of previ-
ously learned activity patterns are also interpreted as
working-memory items (Barbieri and Brunel 2008;
Rolls 2010).

(5) Long-/short-term memory–long-term plasticity
(experimental) For this link there exist much evidence
[e.g., (Agranoff et al. 1966; Morris 1989; Rioult-
Pedotti et al. 1998)], of which some, however, are con-
tradictory (Martin et al. 2000). For instance, Mayford
et al. (1996) showed in a learning task that the block-
age of LTP in the hippocampus leads to a worse task
performance compared to control. However, in a quite
similar experimental setup the blockage of LTP leads
to no significant differences (Zamanillo 1999). Regard-
ing the neural correlate of memory, potential memory
items were found, for example, in songbirds during
song and recapitulation as stereotypical sequences of
spike burst (Hahnloser et al. 2002) or during a spa-
tial task, as spatiotemporal patterns (Harris et al. 2003)
in the hippocampus. Additionally, typical connectivity
structures, so-called motifs, were measured in the cor-
tex (Song et al. 2005; Perin et al. 2011). However, it is
not clear whether spatiotemporal patterns or motifs are
memory items [or cell assemblies, see (6)] and whether
they are subject to long-term plasticity as suggested by
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Fig. 1 Overview of time scales
of learning and memory on the
one hand and of physiological
mechanisms on the other hand
and their links. The number next
to a link indicates the
corresponding section in the
main text and colors indicate
whether the link is theoretical
(blue) or experimental (red).
The black arrows depict the
main memory dependence of
learning. Color figure online time
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Hebb. Nevertheless, recent experimental work shows
that the activation of specific groups of neurons elicits
memory-related behavior (Garner et al. 2012; Liu et al.
2012; Morris and Takeuchi 2012).

(6) Long-/short-term memory–long-term plasticity (the-
oretical): As early as 1949 Hebb first speculated
(Hebb 1949) that long-term plasticity should lead
to memory. Hebb called these memory entities cell
assemblies; highly connected cells should then repre-
sent a memory that could be elicited by stimulating
only a part of the network. Attractor neural networks
[e.g., Hopfield networks; (Hopfield 1982)] comprise
the most prominent model for building cell assem-
blies with long-term plasticity. However, in these net-
works, after a memory item is activated, the activity
of the corresponding neurons persists and the syn-
aptic efficiencies that represent a memory item are
in a “solid state,” which is biologically unrealistic
(Dudai 2004). In polychronization (Izhikevich 2006)
spatiotemporal patterns can be interpreted as cell
assemblies; however, selective storage has not yet
been shown. As proposed by (Päpper et al. 2011),
long-term plasticity, together with synaptic tagging,
could form cell assemblies that pass through syn-
aptic consolidation from a fragile to a more stable
state.

(7) Long-term memory–structural plasticity (experimen-
tal) When rats experience enriched environments, their
dendrites start to build significantly more spines than in
a control environment (Xu et al. 2009; Yang et al. 2009).
As spines are a direct indication of structural plastic-
ity, these experiments support a link between learning
and structural plasticity and—because the effect is not
visible if rats had experienced the same enriched envi-
ronment previously—between long-term memory and
structural plasticity.

6 Why time scales?

The nervous system has by construction two very basic lim-
itations: capacity and speed. If it stored all inputs, a very
high memory capacity would be required that grew linearly
with time. This would then lead to increased access time for
memory retrieval [see, e.g., for Hopfield networks (Frolov
and Husek 2000)]. The strategy of the nervous system to
overcome these limitations apparently is to use different time
scales in the memorization process. Hence, the nervous sys-
tem is implicitly performing an algorithm by means of its
finite storage time (i.e., by forgetting meaningless items) to
more efficiently store and access data. But why does it use
more than one finite time scale?

To answer this question, one should first consider why
and how the nervous system forgets. Huge data sets exist on
human forgetting [for a review see, for example, (Rubin and
Wenzel 1996)] that show, as expected from everyday life, that
we forget with higher probability as time passes. The exact
shape of this forgetting curve is still under debate [exponen-
tial or power law; (Wixted and Ebbesen 1991; Anderson and
Tweney 1997)]. However, forgetting may occur by several
mechanisms, for instance, by noise and ongoing plasticity at
the synaptic level (Fusi et al. 2005). Another possibility is
the permanent overwriting or interference with old memo-
ries, which in turn reduces the capacity requirements of the
network [see, e.g., (Mézard et al. 1986; Sikström 2002) for
Hopfield models] but also deletes important memories. Pro-
cesses on different time scales help to avoid such undesired
interplays [e.g., the interaction between the hippocampus and
the neocortex during synaptic consolidation; (Marr 1970;
McClelland et al. 1995)]. Thus, different time scales could
avoid the deletion of important information.

Furthermore, if different time scales interact, then one
observes in robot experiments that more complex behav-
iors can be obtained. There exist many such examples of
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interacting time scales in robotics of which we will mention
briefly the following ones. In Floreano and Mondada (1996))
as well as in Ishiguro et al. (2003) evolutionary algorithms
(longer time scale) are combined with plasticity mechanisms
(shorter time scale) to cope with changing environments. In
Steingrube et al. (2010) the adaptation of a chaotic controller
(shorter time scale) is combined with an energy-reducing
learning algorithm (longer time scale). In Manoonpong et al.
(2012) a reactive learning algorithm (shorter time scale) is
combined with a reinforcement learning algorithm (longer
time scale) to increase total learning speed.

Thus, multiple time scales do indeed appear to be advanta-
geous. On the other hand, it seems that organisms do not nec-
essarily always make use of the potentially large time spans
bridged by multiple scales. For example, no experience-
based structural plasticity [(Chen et al. 2006; Varshney et al.
2011), long time scale] was found in the “simple” worm Cae-
norhabditis elegans, while it can still make use of synaptic
plasticity [(Dabbish and Raizen 2011), shorter time scale].

This, and similar restrictions on time scales in other organ-
isms, may well be due to the responses of the phyla to the
evolutionary pressure they have experienced. For example,
an organism that lives only for a few weeks will never “feel”
the evolutionary pressure to develop long-term memories
for planning food harvesting for the winter season. In other
words, there exist many different short- or long-term corre-
lations that may or may not be important for the organism
in the physical world (Pitti et al. 2005). Thus, time scales
of learning and memory probably only evolved if they were
meaningful for the organism. The foregoing arguments also
entail that, if the (relevant) environment for an organism has
only a few time scales or the organism has only a limited
behavioral repertoire, the underlying physiological mecha-
nisms should also rely on only a few time scales.

7 Open questions

Up to this point we have only discussed links for which there
is already experimental support or theoretical modeling. Nev-
ertheless, to guarantee the correctness of these links, all of
them must be tested according to the four criteria proposed
by Martin et al. (2000) (detectability, mimicry, and antero-
grade and retrograde alteration). Furthermore, the following
missing links should also be investigated in more detail.

First, all plasticity mechanisms we reviewed are inves-
tigated mainly for excitatory synapses. Only a few exper-
imental studies have been done on inhibitory plasticity
(Kilman et al. 2002; Woodin et al. 2003; Haas et al. 2006;
Wenner 2011), and theoretical modeling is almost nonexis-
tent (Vogels et al. 2011). It would be important to study the
advantages and possibilities of inhibition so that more links
to memory and learning could be made.

The theoretical modeling of activity and short- and long-
term plasticity is more advanced than modeling of structural
plasticity. One reason is that analytical models of topological
changes in networks have not yet been developed. As a con-
sequence, only computational models exist [cf. Table 1—8
and (Van Ooyen 1994; Poirazi and Mel 2001; Butz et al.
2009; Tetzlaff et al. 2010; Knoblauch et al. 2010)] and many
of them originated from developmental neuroscience (van
Ooyen 2011).

Although the separate study of structural plasticity is still
difficult, the interplay of structural and long-term plastic-
ity could give additional hints as to the discussion of the
consolidation of short-term memory into long-term mem-
ory. To date, only a few studies have started to tackle this
interplay (Adelsberger-Mangan and Levy 1994; Chklovskii
et al. 2004).

In summary, it is interesting to note that there exist exper-
imental support for links between (1) working memory and
activity and (2) long-term memory and structural plasticity,
but the very early proposed link between long-term memory
and long-term plasticity (Hebb 1949) is still under debate
[see, e.g., Martin et al. (2000)]. A detailed understanding
of controversial experiments and their biological differences
could lead to better understanding of the link between long-
term plasticity and memory.

8 Summary

In this prospect we tried to argue that time scales are an inev-
itable property of our nervous system. In this context, we
reviewed different memory and learning concepts and their
underlying physiological mechanisms, always in relation
to their time scales. Because it is not clear which mecha-
nism is responsible for which behavior, we discussed possi-
ble links. This leads to many new questions, not only with
respect to those links but also in research fields that use those
mechanisms (e.g., robotics, artificial intelligence, machine
learning).
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