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Abstract Recent experimental results suggest that dendritic
and back-propagating spikes can influence synaptic plastic-
ity in different ways (Holthoff, 2004; Holthoff et al., 2005).
In this study we investigate how these signals could interact
at dendrites in space and time leading to changing plasticity
properties at local synapse clusters. Similar to a previous
study (Saudargiene et al., 2004) we employ a differential
Hebbian learning rule to emulate spike-timing dependent
plasticity and investigate how the interaction of dendritic
and back-propagating spikes, as the post-synaptic signals,
could influence plasticity. Specifically, we will show that lo-
cal synaptic plasticity driven by spatially confined dendritic
spikes can lead to the emergence of synaptic clusters with
different properties. If one of these clusters can drive the neu-
ron into spiking, plasticity may change and the now arising
global influence of a back-propagating spike can lead to a
further segregation of the clusters and possibly the dying-off
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of some of them leading to more functional specificity. These
results suggest that through plasticity being a spatial and tem-
poral local process, the computational properties of dendrites
or complete neurons can be substantially augmented.
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Introduction

There is growing evidence that synaptic plasticity changes
during learning. Plasticity seems to be a rather dynamic pro-
cess where the history of pre- and post-synaptic events deter-
mines the form of plasticity. This is partially reflected in the
phenomenon of spike-timing-dependent-plasticity (STDP,
Magee and Johnston, 1997; Markram et al., 1997), which
goes one step further than classical Hebbian learning (Hebb,
1949; Bliss and Gardner-Edwin, 1973; Malenka and Nicoll,
1999; Bi and Poo, 2001) and takes into account the order
of pre- or post-synaptic events: A pre-synaptic event that is
followed by a post-synaptic event, will lead to long term
potentiation (LTP). If the order is reversed, causality cannot
have existed and long term depression (LTD) is found (Bi
and Poo, 2001).

Spike timing dependent plasticity can be modeled by a
static wavelet shaped function (for a review see Kempter
et al., 1999). By contrast here we are going to use dynamic
STDP learning curve which is calculated from the shapes
of the pre- and post-synaptic potentials (Porr and Wörgötter,
2003; Saudargiene et al., 2004). Thus, in this study the shapes
and timings of pre- and post-synaptic events crucially de-
termine synaptic plasticity which is continuously changing
during learning. For example, usually through the synap-
tic activity at a cluster of synapses the post-synaptic spike
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will be triggered. This signal can then travel retrogradely
into the dendrite (as a so-called back-propagating- or BP-
spike, Golding et al., 2001), leading to a depolarization at
this and other clusters of synapses by which their plasticity
will be influenced. More locally, something similar can hap-
pen if a cluster of synapses is able to elicit a dendritic spike
(D-spike, Golding et al., 2002; Larkum et al., 2001), which
may not travel far, but which certainly leads to a local de-
polarization “under” these and adjacent synapses, triggering
synaptic plasticity of one kind or another. Such local plastic-
ity processes, predicted by theory (Saudargiene et al., 2004,
2005b), have indeed been recently confirmed in electrophys-
iological experiments (Froemke et al., 2005). Hence synaptic
plasticity is often, if not always, to some degree influenced
by the history of numerous pre- and post-synaptic events and
by the location of the synapse.

In this study, we will investigate how the temporal relation
between dendritic- and back-propagating spikes could influ-
ence plasticity. We will introduce a setup leading to chang-
ing learning characteristics in spatially distributed dendrites
and we will show that this way useful functional properties
can arise also quantifying the robustness of the observed ef-
fects. Specifically, we will demonstrate that a self-generated
winner-take-all mechanism can arise from synaptic plastic-
ity that changes over time. It appears evident that recurrent
processes will influence plasticity, but so far direct experi-
mental support for this is missing. Hence, this study attempts
to assess possible consequences of such mechanisms from
the theoretical side. However, we note that we do not at-
tempt to be exhaustive with respect of the possible effects
that could occur with such recurrent or spatially separated
plasticity mechanisms. Instead we are focusing on a pre-
designed scenario to demonstrate for the first time possible
functional consequences of such self-influencing plasticity
mechanisms. While recent results have confirmed that synap-
tic plasticity can be a spatially local process (Froemke et al.,
2005), the results of the current study predict that in a sim-
ilar way also temporally local synaptic processes should be
found at the neurons.

To this end, we will be assuming a basic chain of events
to elicit plasticity at our model neuron. Normally a pre-
synaptic spike will lead to some kind of small post-synaptic
depolarization, usually an EPSP. Let us furthermore assume
that through temporal and spatial summation at a cluster of
synapses these EPSPs can lead to a dendritic spike (D-spike
Golding et al., 2002; Gasparini et al., 2004), which rep-
resents a stronger depolarizing signal. Ideally, in this case
pre- and post-synaptic events are temporally closely coupled
with often not much more than 1 ms delay. Groups (bursts)
of dendritic spikes will, in turn, be strong enough to drive
the soma of the neuron into spiking (Golding and Spruston,
1998; Williams and Stuart, 2003). As a consequence, a back-
propagating spike will be elicited and will travel retrogradely

into the dendrite (Golding et al., 2001; Williams and Stuart,
2003). Such a BP-spike occurs normally clearly later, but not
by much, than the pre-synaptic events which have triggered
this chain.

First we note that for many neurons this chain of events
may remain incomplete. Some will not produce D- or BP-
spikes, for others the BP-spike might not travel very far into
the dendrite (Stuart et al., 1997), not affecting more distal
synapses (Sjöström and Häusser, 2006; Letzkus et al., 2006).
These cases will be discussed later. For now we will assume
that this event-chain shall be complete.

As a consequence of the complex dendritic structure, of
most vertebrate neurons, these events can take place at differ-
ent parts of the dendrite without any causal relation between
them (Polsky et al., 2004). Thus, D-spikes and BP-spikes
will to some degree create cross-talk at synapse clusters
from which they have not originated and this cross-talk will
bring signals which are not causally related to each other
into interaction.

The central questions of this study are: How would this
cross-talk affect synaptic plasticity at the different sites? Can
useful functional properties arise from this and how are they
expressed? And are the observed effects robust with respect
to the model assumptions and against parameter changes?

Methods

The central assumption of this study is that different post-
synaptic signals (D- vs. BP-spikes) can lead to different
types of unsupervised (hebbian) learning (Froemke et al.,
2005; Letzkus et al., 2006; Sjöström and Häusser, 2006).
This type of learning requires an initial spatio-temporal bias
from which it can extract relevant correlations. To provide
this, in general, we assume that there are groups of differ-
ently strong correlated input spikes available to a neuron.
This assumption is supported, for example, by the fact that
the anatomical development of the nervous system preserves
neighborhood relations so that spatial correlations will al-
ways exist (e.g. topographic maps (see Swindale (1996)).
The goal of this study is to show how a system might con-
tinue to develop from such an initial condition. Especially we
will investigate what happens when D- and BP-spikes, ini-
tially driven by weakly correlated inputs, “mix” at a synapse
influencing plasticity in specific ways.

Therefore we will first introduce our synapse model before
we describe the more complex full setup of the modeled
circuit.

Synapse and learning rule

Figure 1 shows the synapse model we are using. It consists of
AMPA as well as NMDA influences. The AMPA influence,
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Fig. 1 The synapse model (A) and examples of D- and BP-spikes
(B,C) abbreviated with DS and BP, respectively. Other symbols are:
ρ, synaptic weight; x, input spike train; u, pre-synaptic signal; and v,
post-synaptic signal. The plus represents a summation node, the cross
denotes a multiplication (correlation), d/dt is the temporal derivative
and the amplifier symbol denotes a changeable synapse ρ. (B) D-spike
with τ = 235 ms. (C) BP-spike with τ = 40 ms, In (B) and (C) dashed
is superimposed a D- and a BP-spike taken Larkum et al. (2001). (D)
STDP curve obtained with the model D-spike, (E) STDP curve from
the model BP-spike

does not enter plasticity, but is used to drive the soma. The
NMDA influence is used as the pre-synaptic part of our
learning rule.

The post-synaptic part consists of the sum of two possi-
ble influences, namely D-spikes plus BP-spikes, which arise
from dendrite or soma, respectively. Note, in many cases
only one (D or BP) of the two influences will be active at a
synapse (Sjöström and Häusser, 2006; Letzkus et al., 2006,
see also commentary by Bender and Feldman (2006)) De-
tailed equations for the pre- and post-synaptic signals will
be given below.

Spike timing dependent plasticity is the pattern of learn-
ing analyzed in this study and is implemented using a dif-
ferential Hebbian learning rule (Porr and Wörgötter, 2003;
Saudargiene et al., 2004):

dρ

dt
= µuNMDA(t)v̇(t) (1)

where ρ denotes the synaptic weight of a synapse, µ the
learning rate and v̇(t) is the temporal derivative of the con-
joint post-synaptic influences. Note, since we are interested

in local vs. global influences we assume dendritic spikes
from different dendritic branches represent local processes
and do not influence each other. Back-propagating spikes, on
the other hand, reach all synapses in this model and thereby
represent a global influence.

The learning rule was implemented using the Euler
method for numerical integration with a time step of 1 ms.
Learning rate µ was varied between 0.09 and 1.5.

Panels (B-E) of Fig. 1 show typical examples of D- and
BP-spikes and the weight change curves derived from them.
Note, a detailed analysis for example of how AMPA and
NMDA influences as well as other intrinsic parameters may
modify an STDP learning window is given in our older works
(Saudargiene et al., 2004, 2005a,b). Real D- and BP-spike
examples taken from the literature are depicted by the dashed
curves, which demonstrates the similarity of the modeled to
the real signals. Evidently, D- and BP-spikes lead to dif-
ferently shaped weight change curves. Specifically, and as
shown previously (Saudargiene et al., 2004), an output v(t)
with a shallow rising flank will predominantly lead to LTP,
while one with a steep rising flank results in STDP.

The main question of this study is: How will synaptic
weights change if during the development of a given synapse
the weight change curve itself changes? To address this ques-
tion we need to introduce the full model and its equations
next.

Circuit model

The model analyzed here follows the tradition of
“electrically-equivalent circuit models” in physiology often
employed to model neuronal channel characteristics, but in
our context it is an abstraction of a real neuron including
several clusters of synapses on its dendritic branches. We
model AMPA and NMDA receptor activation signals (Koch,
1999), dendritic spikes initiated by inputs to the synaptic
clusters (Golding et al., 2002; Larkum et al., 2001), and the
back propagating spikes (Golding et al., 2001) originating
after the cell has fired.

A block diagram of the model is shown in Fig. 2. Den-
dritic spikes are elicited following the summation of several
AMPA signals passing threshold q1. NMDA receptor influ-
ence on dendritic spike generation was not considered as the
contribution of NMDA potentials to the total membrane po-
tential is substantially smaller than that of AMPA channels
at a mixed synapse.

Each synaptic cluster is limited to generating one den-
dritic spike from one arriving pulse group. Cell firing is not
explicitly modeled but said to be achieved when the summa-
tion of several dendritic spikes at the cell soma has passed
threshold q2. This leads to a BP-spike. Progression of signals
along a dendrite is also not modeled explicitly, but expressed
by means of delays. Since we do not model biophysical
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Fig. 2 Basic learning scheme with x1, . . . , xn representing inputs to
cluster 1, hAMPA, hNMDA - filters shaping AMPA and NMDA signals,
hDS, h̃DS, hBP - filters shaping D and BP-spikes, hHYST - hysteresis type
weight saturation function (see inset down left, calculated by Eq. (6)
using �ρ = 0.1), q1, q2 - differential thresholds, τ - a delay. Only the
first of m clusters is shown explicitly; clusters 2, 3, . . . , m would be
employing the same BP-spike (not shown). The symbol ⊕ represents a
summation node and ⊗ multiplication

processes, all signal shapes are obtained by appropriate fil-
ters (see below). D- and BP-spikes are of an all-or-none type.

As shape and timing interplay is the most important aspect
of this study, we provide realistic timing in milliseconds
for the employed signals. Absolute signal amplitudes are
irrelevant and only arbitrary units are used here. Furthermore,
most of the computational experiments are performed with
small number of synapses in comparison to realistic synaptic
convergence to save simulation time. Some, however, use
large numbers, to check the validity of the other results.

Model equations

We define:

uNMDA(t) = x(t) ∗ hNMDA(t),
(2)

uAMPA(t) = x(t) ∗ hAMPA(t)

where x(t) is a spike train given in the usual way as a se-
quence of δ-functions. Note, all functions h(t) are a filter
functions defined in the section on Signal Shapes below. The
“*” denotes a convolution.

Furthermore we define a local dendritic-summation pro-
cess with:

y(t) =
∑

j

ρ j u j,AMPA(t) (3)

where we sum over all synaptic inputs j .
We elicit a D-spike if this process exceeds a certain thresh-

old q1, hence if at time-points ti we get y(ti ) > q1 we elicit

a D-spike vDS with:

vDS(t) = δ(t − ti ) ∗ hDS(t) (4)

where hDS(t) is a filter shape for a D-spike. Note, we as-
sume that pulse groups remain temporally separate such that
D-spikes will not follow each other closely.

In a similar way, at the soma a BP-spike vB P (t) will be
elicited if the signals that arrive at the soma exceed threshold
q2. In the context of this study, we assume that this happens
as a consequence of one or more D-spikes arriving at the
soma. Smaller somatic AMPA (or NMDA-) inputs are not
considered, but could be built in in a similar way. Hence, if
at time-point ti we find that

∑
k vk

DS(ti ) > q2, where k is the
number of clusters, then we elicit a BP-spike vBP with:

vBP(t) = δ(t − ti ) ∗ hBP(t) (5)

Synaptic saturation

Weights were kept in the interval [0,1] using a hysteresis type
saturation function (inset at bottom of Fig. 2). The saturation
was achieved applying a weight-dependent nonlinear trans-
formation for the weight modification term �ρ obtained in
one integration step of Eq. (1). If the weights were increas-
ing towards one, or decreasing towards zero, the following
function was applied to the weight change �ρ:

�ρnew = 1

1 + 1−ρ

ρ
exp(−�ρ)

− ρ (6)

The opposite cases, which capture growth of small
weights and decrease of big weights, were kept linear.
The transition between linear and hysteresis-saturated parts
was placed at a weight value of ρ = 0.5. In the linear
part weight modification �ρ was multiplied by a constant:
�ρnew = 0.25�ρ, to keep the derivative at the boundary be-
tween linear and nonlinear parts smooth.

It is known that in real systems some weight stabiliza-
tion mechanism is employed to keep weights from excessive
saturation (Bi and Poo, 1998), yet we did not employ such
mechanisms in our study.

Instead the experiments were performed up the point
where weights stayed in the interval [0.1, 0.9]. In Fig. 8
we will discuss that in this range saturation still does not
distort the results.

Signal shapes

Filter shapes forming AMPA and NMDA channel responses,
as well as back-propagating spikes and dendritic spikes used
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in this study were described by:

h(t) = e−2π t/τ − e−8π t/τ

6π/τ
(7)

with h(t) = 0 for t < 0, where τ determines the total du-
ration of the pulse. The ratio between rise and fall time is
1:4. Parameter for the standard signals were adapted from
textbooks (Koch, 1999), other obtained from own curve fit-
ting with real DS- and BP-spikes (e.g. see Fig. 1. Hence,
for modeling the AMPA channel potentials (hAMPA) a filter
with τA = 6 ms was used, for modeling the NMDA channel
potentials (hNMDA) we use τN = 120 ms, for dendritic spikes
(hDS) we set τds = 235 ms and for back-propagating spikes
(hBP) a filter with τbp = 40 ms is employed. As described
above, AMPA signals were employed for initializing den-
dritic spikes, NMDA signals were used as inputs u(t) to the
learning rule, and dendritic spikes, and the back-propagating
spikes were used as outputs v(t) for the learning rule.

Note, in this study, we have approximated the NMDA
characteristic by a non-voltage dependent filter function. In
conjunction with STDP, this simplification is justified by the
analytical solutions for STDP curves derived in Saudargiene
et al. (2005a), which show that voltage dependency induces
only a second-order effect on the shape of the STDP curve
and is confirmed by the similarity of the curves in the current
study (Fig. 1(D) and (E)) to those obtained with a more
complete model used in our older studies (compare to Fig. 5
in Saudargiene et al. (2004)). This approximation leads to
a gain in simulation speed particular for simulations with
several 100 synapses.

Results

Analytical integration of the learning rule for interacting D-
and BP-spikes

In local synaptic growth when only a dendritic spike is
present the STDP window is obtained by integrating the
learning Eq. (1) over time:

�ρ(T ) =
∫ ∞

−∞
uNMDA(t)v̇(t) dt

=
∫ ∞

−∞
hNMDA(t + T )

d

dt
hDS(t) dt

=
{∫ ∞

0 hNMDA(t + T ) d
dt hDS(t) dt if T > 0

∫ ∞
−T hNMDA(t + T ) d

dt hDS(t) dt if T ≤ 0
(8)

where T is a time shift of the input in respect to the dendritic
spike. Hence in the following it is important to remember

that we always use the occurrence of the D-spike, which is
the first possibly occurring post-synaptic signal, as our zero
time-point! Note, furthermore, that these equations assume
single signals, hence we do not treat multiplets of inputs
here.

After integration one obtains:

�ρ(T ) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎝τds
2 τN

2 e
− 2 π T

τN

⎛

⎜⎝4 τds +τN −(τds +4 τN ) e
−

6 π T

τN

⎞

⎟⎠

⎞

⎟⎠

12 (τds +τN ) (4 τds +τN ) (τds +4 τN ) π2
if T >0

⎛

⎜⎝τds
2 τN

2 e
8 π T
τds π2

⎛

⎜⎝4 τds +τN −(τds +4 τN ) e
−

6 π T

τds

⎞

⎟⎠

⎞

⎟⎠

12 (τds +τN ) (4 τds +τN ) (τds +4 τN ) π2
if T ≤0

(9)

where τN is the filter parameter for the input NMDA signal,
and τds the filter parameter for the D-spike (Eq. (7)). The ob-
tained learning window in each of the two parts is composed
as a difference of two exponentials (similar to a spike itself),
and has a shape with a maximum in the interval T > 0 and a
minimum in the interval T ≤ 0. An example of this is shown
in Fig. 1(D). Remember that positive values of T represent
the case where the input was coming before the output and
vice versa. The curve has mainly an LTP characteristic for
positive shifts T , and an LTD characteristic for the negative
shifts (see also Saudargiene et al. (2004, 2005a)).

Figure 1 (E) shows an STDP curve, obtained with a much
sharper BP-spike, using τbp instead of τds . Most often in
this study both such post-synaptic signals will interact in
time. In these cases, one finds that, as soon as a strong BP-
spike occurs, the expression of the type of plasticity (LTP
or LTD) will be dominated by the temporal relation between
pre-synaptic signal and the BP-spike and not any more by
its relation to the much weaker D-spike. Alternatively if the
D-spike at a synaptic location is stronger than any other
post-synaptic signal it will continue to dominate plasticity.
This seems to correspond to new physiological observations
concerning the relations between post-synaptic signals and
the actually expressed form of plasticity (Wang et al., 2005).

We will analyze the influence of the BP-spike on the
weight change �ρ by analyzing the function �ρ(Tbp),
where Tbp is a relative time shift of a BP-spike in respect
to the D-spike (the zero time-point) and not relative to the
pre-synaptic signal. We assume that if a cluster of synapses
itself initiates the BP-spike, through the D-spike generated
by this cluster, the BP-spike comes with a positive shift Tbp

of several milliseconds. This case is important also in the
sections below and we call it the “causal chain of events”:
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Fig. 3 Weight change dependence of a BP-spike shift: function
�ρ(Tbp) for T = 0 (A) and weight change dependence on input and
BP-spike shifts: function �ρ(T, Tbp) (B). Parameters: A = 10, τN =

120; τds = 235, τbp = 40, arrows will be explained in the Appendix.
Panel C shows different integration windows relevant for the section on
“Self-influencing plasticity"

input→D-spike→ BP-spike. Consequently for such causal
cases the interval of small positive shifts is of interest in
the �ρ(Tbp) function. If a BP-spike is caused by another
cluster, we assume that it can come at any random moment,
with either a positive or a negative shift, consequently here
we analyze both positive and negative shift intervals.

To get the required function we will integrate Eq. (1)
from −∞ to ∞ to obtain the overall weight change obtained
in one learning epoch. As compared to the previous case,
where we had looked only at the dendritic spike, here we are
adding a BP-spike hBP(t − Tbp) to the output, multiplied by
an amplitude factor A. We calculate the result for the case
where D-spike and inputs occur together (T = 0):

�ρ(Tbp)

=
∫ ∞

−∞
hNMDA(t)

d

dt
(AhBP(t − Tbp) + hDS(t))dt

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0
hNMDA(t)

d

dt
(AhBP(t − Tbp) + hDS(t))dt

if Tbp ≤ 0

∫ ∞

Tbp

hNMDA(t)
d

dt
(AhBP(t − Tbp) + hDS(t))dt

if Tbp > 0

(10)

�ρ(Tbp ≤ 0)

=
A τbp

2 τN
2 e

2 π Tbp
τbp

(
−τbp − 4τN + (4τbp + τN ) e

6 π Tbp
τbp

)

12 (τbp + τN ) (4τbp + τN ) (τbp + 4τN ) π2

+ τds
2 (τds − τN ) τN

2

4(τds + τN ) (4τds + τN ) (τds + 4τN ) π2
(11)

�ρ(Tbp > 0)

=
A τbp

2 τN
2 e− 8 π Tbp

τN

(
−τbp −4τN +(4τbp +τN ) e

6 π Tbp
τN

)

12 (τbp +τN ) (4τbp +τN ) (τbp +4τN ) π2

+ τds
2 (τds −τN ) τN

2

4(τds +τN ) (4τds +τN ) (τds +4τN ) π2
(12)

As can be observed from the expressions the actual direction
of weight change heavily depends on filter width parameters
τN , τds , τbp. In our experiments τds was kept bigger than
τN , so the second term gives a positive lift of the function.
Furthermore we observe that the �ρ curve is composed as a
difference of two exponentials, as in the previous case. The
plot of the weight change curve is provided in Fig. 3(A).
Since here D-spike and inputs are assumed to occur together
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(T = 0) we observe that the flat parts of the curve, where
the BP-spike is too far away to exert its influence, still re-
main clearly above zero, which is due to the fact that the
D-spike alone triggers LTP. Furthermore, one can see that
the synapses for which a BP-spike comes several millisec-
onds later than the D-spike (causal case) will be growing
most strongly. For the synapses where a BP-spike comes
several milliseconds earlier than a D-spike weights will be
most strongly depressed.

Releasing the constraint that the input comes together
with the D-spike, expressions for the function �ρ(T, Tbp)
gets more complex but could still be calculated (not shown).
Instead a contour plot for the resulting function, with ampli-
tude factor for the BP-spike A = 10, is provided in Fig. 3(B).
Weights are mainly increased when the time shift Tbp is big-
ger than −T . The case Tbp > −T corresponds to the situa-
tion when the BP spike comes after the input and weights
increase (upper right triangle, lighter colors), while they are
decreased in the lower left triangle (dark colors). However
some finer structure exists due to interplay of BP-spike and
D-spike. Remember, the D-spike is assumed to be elicited
at zero time point. Thus regions of opposite sign close to
T = 0 (negative, darker in the right and positive, lighter in
the left) are obtained due to the D-spike influence. The slope
at the line Tbp = −T is steep, and the behavior of the sys-
tem is rather sensitive to small shifts of the BP-spike if it is
close to the input spike. Note, panel A is really a horizontal
cross-section at T = 0 through panel B.

Self-influencing plasticity

The goal of the following section is to investigate into tem-
porally changing plasticity. We will investigate a setup where

During the learning process, at a given set of synapses
plasticity is first dominated by the D-spike and later
by a BP-spike leading to two different “phases” in the
plasticity of the respective synapses.

Figure 4(A) shows how two-phase plasticity could arise
from a generic setup. We can assume that inputs to large
compact clusters of synapses are similar (within all left or
all right branches in Fig. 4(A)) but dissimilar over larger
distances (between left and right branches). First, e.g. early
in development, synapses may be weak and only the con-
joint action of many synchronous inputs will lead to a local
D-spike. Local plasticity, from these few D-spikes (indicated
by the circular arrow under the dendritic branches in Fig. 4),
however, might strengthen these synapses and at some point a
D-spike is elicited more reliably. Hence more often more than
one D-spike will be elicited within a short temporal interval,
(e.g. from similar inputs at the top and bottom branches from
either side) and these D-spikes might sum at the soma driving
the cell into spiking. As a consequence a BP-spike will be

Fig. 4 (A) Model neuron with two dendritic branches (left and right),
consisting of two sub-branches which get inputs X or Y , which are sim-
ilar for either side. (B) Schematic diagram of the distribution of input
spikes for two pulse groups. Each line carries only a single spike. Learn-
ing is performed in an adiabatic condition, where only one pulse group,
will influence plasticity at the given moment. Individual input tim-
ings are drawn from a uniform distribution from within a pre-specified
interval. We distinguish three basic input groups: strongly correlated
inputs (several inputs over an interval of up to 10 ms), less correlated
(dispersed over an interval of 10–100 ms) and uncorrelated (dispersed
over the interval of more than 100 ms). (C,D) Mixed D- and BP-spike
signals showing how signal summation arises in our model. (C) D- and
BP-spikes, with τ = 235 ms and τ = 40 ms, time shift of the BP-spike
−10 ms (acausal, BP-spike comes after D-spike), (D) the same D- and
BP-spikes but with a 10 ms causal BP-spike shift

elicited and this, being of higher amplitude, might then exert
a more global effect on plasticity by traveling back to (all)
different synapse clusters, taking over the helm of plasticity
there. In this case, however, only that cluster from which the
BP-spike originated will continue to grow (causal coupling
in the STDP curve), while all others might even shrink.

We emulated such a system by a simplified model system
with only one left and one right branch, assuming that in the
beginning the cell does not fire, and synapse development
on both branches is based on dendritic spikes. Further we
assume that at some point (after synapses have strengthened)
the cell is driven into spiking from one of the two sides, and
the BP-spikes start influencing learning.

In the next section we will quantify what happens in such
a setup, when multiple inputs with different degrees of syn-
chrony arrive.

A self-generated winner-take-all mechanism

In Fig. 5 we have simulated two clusters each with seven
synapses. For both clusters, we assume that the input
activity for three synapses is closely correlated and that they
occur in a temporal interval of 6 ms (group x, y: 1 − 3).
Two more inputs are wider dispersed (interval of 35 ms,
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Fig. 5 Temporal weight development for the setup shown in Fig. 4 with
one sub-branch for the driving cluster (A), and one for the non-driving
cluster (B). Initially all weights grow gradually until the driving cluster
leads to a BP-spike after 200 pulse groups. Only the weights of its group
x1−x3 will continue to grow, now at an increased rate. Parameters: µ =
0.1, BP-spike initiated 10 ms later than the driving D-spike, correlated
inputs distributed over the interval of 6 ms, less correlated −35 ms, least
correlated −150 ms, BP-spike/D-spike amplitude relation 4.2, shaped
by Eq. (7), non-driving cluster center randomly shifted over ±20 ms
interval around the driving cluster center

group x, y: 4, 5) and the two remaining ones arrive rather
uncorrelated in an interval of 150 ms (group x, y: 6, 7). The
notion of clustered synapses is to a great extent discussed
in Govindarajan et al. (2006) supporting our assumptions.
In all experiments, inputs are uniformly distributed within
their respective intervals. Hence each pulse group was 150
ms long, where a complete pulse group determined by the
above parameters was elicited. The activity of the second
cluster is determined by the same parameters. Pulse groups
arriving at the second cluster, however, were randomly
shifted by maximally ±20 ms relative to the center of the
pulse group of the first cluster.

All synapses start with weights 0.5 (medium), which will
not suffice to drive the soma of the cell into spiking. Hence in
the beginning plasticity can only take place by D-spikes. As
mentioned before, we assume that D-spikes will not reach
the other cluster. Hence, learning is local. The small initial
weights also lead to the fact that at the beginning of learning
more inputs (roughly four within an interval of 4 ms) need
to arrive synchronously to elicit a D-spike than later.

The wide D-spikes will lead to a broad STDP-like learning
curve, employing a span of the curve about ±20 ms around
zero, that covers the dispersion of input groups 1–3 as well
as 4, 5. Furthermore it has a significantly bigger area under
the LTP part as compared to the LTD part at that span. As
a consequence, in both diagrams (Fig. 5(A) and (B)), up to
pulse group 200) we see that all weights 1−5 grow, only 6, 7
remain at 0.5. The correlated group 1−3, however, benefits

most strongly, because it is more likely that a D-spike will be
elicited by this group (and probably one other spike) than by
any other combination. Hence their pre-post firing relation
remains close to the origin of the STDP curve.

Conjoint growth at a whole super-cluster of such synapses
would now, as described above, at some point drive the cell
into somatic firing. We emulate this for the driving cluster at
time point 200 where the signal coming from its converging
synapses has reached the required strength (Fig. 5(A)). In
general, firing of one, but not the othe cluster is due to the
fact that the input properties of the two input groups are
different leading to less weight growth in the other cluster.

As soon as this happens a BP-spike is triggered and
the STDP curve takes a shape similar to that in Fig. 1(E)
now strongly enhancing all causally driving synapses, hence
group x1 − x3 (Fig. 5(A)). This group grows at an increased
rate while all other synapses, both in driving and non-driving
cluster shrink.

The system described so far consists of a first, “pre-
growth” phase (until the BP-spike sets in) and a second
phase where only one group of synapses grows strongly.

In general this example describes a scenario where groups
of synapses will alter their plasticity characteristics during
learning. First they undergo less selective classical Hebbian-
like growth, while later more pronounced STDP sets in se-
lecting only the driving group.

The question arises, why a pre-growth phase would be
beneficial? Cannot the same results be achieved with just the
second phase? To answer this question, control simulations
in a once more simplified model system with only one driv-
ing cluster, and only two pulse groups, correlated and less
correlated, three synapses each, have been performed, where
the BP-spike was immediately elicited. In this case, learning
is much faster from the very first iterations, and as a conse-
quence several times synapses of the less-correlated group
take the lead just growing by chance more than the others in
the first few pulse groups (one case of such an event is shown
in Fig. 6(A)), while in the two phase case the more corre-
lated group grows without notable disturbance from the less
correlated group (Fig. 6(B)). The local and “much softer”
pre-growth phase avoids unwanted noise-induced symmetry
breaking by gradually separating the correlated from the less
correlated synapses, before introducing a strong mechanism
of final growth. Hence, with a pre-growth phase higher val-
ues of µ can be set right from the beginning, where µ will
exert its true influence only after pre-growth, which is de-
sirable because it makes learning faster. Particularly early
in development, when, presumably, there is still little struc-
ture and very weak synapses in the network such a 2-phase
mechanism may assure correct development.

The above obtained results from our calculations allow us
to qualitatively explain the weight growth in the three differ-
ent groups (correlated, less-correlated and uncorrelated).
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Fig. 6 Temporal weight development: (A) when the preliminary soft
growth phase is absent, and (B) when it is present. Three correlated
input weights—solid lines, three less correlated- dashed lines. In (B) the
dotted line shows where the second phase starts. Parameters: µ = 1.5,
BP-spike initiated 10 ms later than the driving D-spike, correlated
inputs—distributed over the interval of 9 ms, less correlated 34 ms,
BP-spike/D-spike amplitude relation 4.2., shaped by Eq. (7)

D-spike without BP-spike. As before we assume that single
inputs will not trigger D-spikes. Figure 7(A), (C) and (E)
shows three typical distribution of D-spike times relative to
the inputs of each group. The high peaks at zero reflect the
case where an input had actually caused a D-spike follow-
ing some pre-depolarization from other inputs. Clearly this
happens most often in the correlated group. In the other two
groups a much wider dispersion of D-spike times is observed.

During phase 1 (pre-growth in Fig. 5) no BP-spikes occur
and we can consider the interaction of these distributions with
the plain D-spike-dependent weight change curve shown in
Fig. 1 and re-plotted in panels B, D, F here. The overlap
between distributions and weight change curve are shaded
in gray. Growth strongly dominates in the correlated group,
is less expressed in the less correlated group, and in the un-
correlated group positive and negative influences are almost
equal, thus only very little growth occurs. This explains the
drifting apart of the curves in the pre-growth phase in Fig. 5.

D-spike and BP-spike. Once a BP-spike is triggered (phase
2) things become more complicated but we can unravel this
looking at Fig. 3(B) and (C).

The six different panels in Fig. 3(C) depict over which
parts of the two-dimensional curve we have to integrate in or-
der to get the average effect observed in the different groups

Fig. 7 Sample input-D-spike shift distributions obtained in a model
run for the correlated inputs (A), less correlated (C) and uncorrelated
(E). Spans of distributions of inputs on an STDP learning window
(D-spike based), correlated (B), less correlated (D) and uncorrelated
(F). Correlated inputs are distributed over the interval of 6 ms, less
correlated - 35 ms, least correlated - 150 ms, µ = 0.09, first phase 200
pulse groups, second phase 400 pulse groups, results taken beginning
with the 50 pulse group to avoid the transient

in Fig. 5. On the right side of panel C the different groups
x1 − x7 and y1 − y7 of the driving and non-driving cluster
are associated to the small panels labeled a–f.

Driving Cluster: For example, for the correlated group of
the driving cluster the generic “causal chain of events” is
that the input occurs (almost) simultaneous to the D-spike,
hence T ≈ 0 ms; and the D-spike is soon followed by a BP-
spike, hence realistically at TBP ≈ 5–10 ms. This is depicted
in sub-panel a, where we use the TBP = 10 ms line because
this had actually been used in the model. Thus, integration
of the 2-D weight-change curve takes place most often at or
very close to the cross-section of both dotted lines, which is
clearly a positive domain, leading to weight-growth.

For the less-correlated groups of the driving cluster (sub-
panels b,c) TBP remains at the same time-point but the aver-
age integration window gets widened along the vertical line
(T 	= 0), indicated by the red line segment, and growth and
shrinkage average out.

Non-driving Cluster. For the non-driving cluster there is no
relation between the moment when the BP-spike occurs
to that of the cluster’s D-spikes. Above we had, however,
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Fig. 8 Robustness of the
observed effects. Plotted are the
average weights of the less
correlated group (ordinate)
against the correlated group
(abscissa). Colors depict
different plasticity
characteristics. Simulation with
three correlated and three less
correlated inputs, for AMPA
τ = 6 ms, for NMDA
τ = 117 ms, for D-spike
τ = 235 ms, for BP-spike
τ = 6–66 ms, q1 = 0.14,
D-/BP-spike amplitude relation
from 1/1.5 to 1/15, depending
on BP-spike width, and keeping
the area under the BP-spike
constant, µ = 0.09, first phase
200 pulse groups, second phase
400 pulse groups. Inset
histograms show the cumulative
correlated and less correlated
weights

described that we had on purpose restricted the center of
activity of the non-driving cluster to an interval of ±20 ms
with respect to the center of activity of the driving cluster.
Thus, now we get an integration window of about 40 ms
width centered at the BP-spike occurrence time (sub-panels
d–f). The gross-effect, however is the same, synapses will on
average not grow in these integration windows. In the next
section we will try to show that the observed effects are also
robust against parameter variations and noise.

Robustness

Figure 8 shows a color coded plot of 5000 experiments with
the same basic architecture, using only one synapse cluster
and the same chain of events as before but with variable
parameters. Only “strong correlated" (<10 ms) and “less
correlated" (10−100 ms) inputs were used in this experiment
where we vary the distributions and provide an analysis.
Each point represents one experiment consisting of 600 pulse
groups. On the abscissa we plot the average weight of the
three correlated synapses; on the ordinate the average weight
of the three less correlated synapses after these 600 pulse
groups. Learning rate and other parameters were chosen so as
to avoid strong saturation effects (outside the weight interval
[0.1, 0.9]). This was verified by assessing possible distortions
of the distribution of the data points for correlated and less-
correlated weights binning the data accordingly and plotting
histograms (insets in A). These histogram show, as expected,
that correlated weights on average grow more strongly than
less-correlated ones, but there is no distortion visible from
possible saturation effects.

Furthermore, we assume, as in the last experiment, that
a BP-spike is triggered as soon as q2 is passed, which, we
suppose, happens around pulse group 200 in all cases.

Four parameters were varied to obtain this plot.

1. The width of the BP-spike was varied between roughly 5
ms and 50 ms.

2. The interval width for the maximal dispersion of the tem-
poral distribution of the three correlated spikes was varied
between 1 ms and 10 ms. Hence 1 ms amounts to three
synchronously elicited spikes.

3. The interval width for the maximal dispersion of the tem-
poral distribution of the three less correlated spikes was
varied between 1 ms and 100 ms.

4. The shift of the BP-spike with respect to the beginning of
the D-spike was varied in an interval of ±80 ms. Acausal
cases were included because they represent the situation
where the driving cluster has elicited a BP-spike which
can arrive at any time at the non-driving cluster.

We will see that mainly parameters 3 and 4 have an effect
on the results. The first parameter, BP spike width, shows
some small interference with the spike shift for the widest
spikes, but these are not causing significant effects on the
results and will not be shown. The second parameter has
almost no influence, because the total interval is rather small
even if it is 10 ms.

Color coding is used in Fig. 8 but color transitions are
arbitrary and we use coloring only to better depict the influ-
ence of parameters 3 and 4 in their different ranges. Colors
“black”, “green” and “others” (all other colors) refer to a BP-
spike shift TBP of less than −5 ms (black), between −5 ms
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and +5 ms (green) and larger than +5 ms (others). Other
colors specify dispersions of the less correlated group in
the region of causal (>+5 ms) BP-spike shifts TBP. The re-
gion of causal BP-spike shifts considered in more details as
the example of a slower and then more pronounced growth
demonstrated in (Fig. 5(A)) has been drawn specifically from
that region.

As the main observation of this section we state that two
distinct regions (tails) can be distinguished in the figure, a
diagonal and a horizontal one. If a point falls on the diagonal
tail, that shows that both, the weights of the more- and those
of the less correlated group, grow; while on the horizontal
tail only the more correlated ones grow. This distribution
confirms that there are many cases which correspond to the
case shown in Fig. 5(A) (points in the horizontal tail of
Fig. 8) demonstrating that the parameter range for this type of
behavior is considerably large. There are, however, also many
conventional situations, where both groups grow in a similar
way (diagonal tail). The actual location of any data point is
determined by two parameters: 1) the dispersion of the less-
correlated group (relative to the correlated group) and the
shift of the BP-spike. In general, one finds that with a small
dispersion (colors red and yellow) data points cluster on the
diagonal tail. This is due to the fact that is this case there
is little difference between the correlated and less-correlated
group, because their spike-dispersions are similar. However,
already for the yellow group (but not yet for the red) data-
points may fall onto the horizontal tail or lie in between.
This happens for small BP-spike shifts (e.g. <20 ms). The
limit case of a zero BP-spike shift may help to understand
this: In this case spikes from the less-correlated group come
very often later than the BP-spike and fall in the LTD-part of
the STDP window, hence growth and shrinkage average out.
Whereas spikes from the correlated group come before the
BP-spike and their synapses grow. As a consequence these
data-points are on the horizontal tail.

In the Appendix we provide a very detailed analysis of the
complete set of data points over wider parameter ranges in-
cluding learning rates, amplitudes, number of synapses, and
thresholds, helping the interested reader to better understand
and reproduce these results if desired.

Discussion

In the current study we have investigated how different learn-
ing rules can interact in space and time. Our study rests of
the plausible suggestion that synaptic plasticity itself might
not be a pre-defined, static process, but that it can change
following the properties of the electrical and (not-modeled)
chemical signals, which, in turn, are derived from the activity,
elicited by these and other synapses, themselves. Clearly this
paper cannot try to capture the true complexity of synaptic

plasticity, which relies on complex cascades of enzymes and
second messengers. Already in the precursor of this study
(Saudargiene et al., 2004, 2005a), we had at great length dis-
cussed the shortcomings of such state-variable based mod-
eling approaches and would like to direct the reader to these
papers concerning such questions. Here we would like to
address different issues.

To this end we would like to first summarize the main
assumptions of our study, to give the reader also an idea
about possible shortcomings of our model. All these assump-
tion are, however, supported by the literature (as discussed
throughout the text of this paper) and it appears to be a quan-
titative rather than a qualitative issue for a given synapse
to which degree each individual prerequisite summarized
here would exert its influence. We assume that (1) inputs
having originated from the same source tend to terminate
in a restricted area of a dendritic tree (synaptic clustering,
(Govindarajan et al., 2006)); (2) inputs from the same source
are correlated in time; (3) input activity passing a threshold
can produce a dendritic spike; (4) dendritic spikes having
originated locally in a dendrite can travel to and sum up at
the soma; (5) weight change at a synapse is governed by the
STDP rule, where (6) both D, and BP-spikes, or the combi-
nation of the two can play the role of an output signal; (7) BP
spikes start being elicited only after weights have grown to
some extent (through more reliable induction of D-spikes),
(8) learning starts locally with first only D-spikes influenc-
ing learning and (9) continues with both D- and BP-spikes
influencing learning; (10) BP-spikes have a shorter duration,
and a bigger amplitude than D-spikes, and (11) thus pro-
duce more selective STDP learning windows; (12) inputs to
a model neuron come in groups, which are spread out over
time that each group can be considered separately, (13) in
each group only one input spike per synapse occurs (or al-
ternatively we consider the influence of only the first spike
pair on learning).

Hence, it is obvious that the shown architectures had been
specifically designed for this model. The goal of this study,
however, was to show how useful computational properties
can arise from such dendritic designs in a robust way. To this
end, we had tried to raise confidence in the results of this
study by investigating broad ranges of the parameter space,
showing that the observed effects are essentially robust.

Temporal selectivity was also the topic of a study of Eurich
et al. (1999) which, however, addresses the question of how
to select an appropriate subset of delay lines from a range of
delays in a network of neurons. By contrast, in our paper, we
had focused on temporal effects showing how learning rules
could change over time as the consequence of the changing
synaptic properties themselves. In the chosen setup, slow
synaptic growth first drives a group of synapses apart accord-
ing to their intrinsic “correlatedness,” then in a second phase,
when a BP-spike gets elicited, these pre-sorted synapses
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become finally separated and only the best-correlated group
continues to grow. This two-phase process makes our ap-
proach different to that of Song et al. (2000) who had shown
in a single-phase learning scenario how strengthening of a
cluster of synapses might be achieved through STDP-based
learning from random fluctuation of otherwise uniform input
by which a better correlated cluster wins.

In this study we have been using a model setup with only
one pulse on each input line during one learning trial. It is
conceivable that combinations of more than on pulse on any
given input line might lead to still more complex results. Yet
due to the known fact that the first pairing essentially de-
termines if LTP or LTD will occur, any following spike will
have much less influence (Froemke and Dan, 2002; Wespatat
et al., 2004; Shouval and Kalantziz, 2005). Thus, these physi-
ological findings suggest, that the effects observed here using
only one spike pair would hold also for multiplets, at least in
a qualitative sense. To directly address multiplets one could
increase the model complexity towards higher biophysical
realism, where only the latest models make serious attempts
to capture pulse groups, too (Abarbanel et al., 2003; Rubin
et al., 2005; Yeung et al., 2004). There are, however, also
simpler ways to mend this situation without having to alter
the basic model structure as discussed in Saudargiene et al.
(2005b).

In our model a linear D- and BP-spike combination was
influencing otherwise non-linear weight-saturated learning.
Such a model may interact “too soft” with respect to the
interactions of D- and BP-spikes. Transitions between LTP
and LTD may in reality occur more abruptly, or, once trig-
gered, LTD (or LTP) may not be reversible through an ad-
ditional later coming signal, usually through the BP-spike.
Experimental results, however, are not conclusive and it re-
mains unclear under which conditions LTD and LTP can be
reversed or not (Wang et al., 2005). These questions can
only be addressed with a more realistic model (Senn et al.,
2000; Castellani et al., 2001; Karmarkar and Buonomano,
2002; Karmarkar et al., 2002; Abarbanel et al., 2002; Shou-
val et al., 2002; Abarbanel et al., 2003; Rubin et al., 2005;
Yeung et al., 2004), but we believe that the core conclusions
of this study, which concern influence of recursiveness and
distributedness of synaptic plasticity on learning, will remain
qualitatively valid even in more complex scenarios.

At the moment it is difficult to assess to what degree
our conclusions will hold. There are recent results in the
literature which seem to contradict our study. For example
the results from Holthoff et al. (2004) and Holthoff et al.
(2005), who have shown, that D-spikes will lead to a different
type of plasticity than BP-spikes in layer 5 pyramidal cells
in mouse cortex with single shock experiments. They have
found, different from the suggestions of our study, that D-
spikes will trigger mainly LTD, whereas a D-spike paired
with a BP-spike will lead to LTP. This may, however, have

to do with the fact that the elicited D-spikes are not strong
enough to induce a large enough Calcium flux such that
the low level of Ca2+ reached can only induce LTD. Here
we have assumed that D-spikes are slow but always large
enough to induce either LTP or LTD depending on their
timing relation to the pre-synaptic signal, whereas this seems
to be not the case in the study of Holthoff and co-workers,
which would resolve the apparent conflict.

Also, it may well be that different cell types will react in
a different way. For example in the hippocampus it has been
shown by Golding et al. (2002) that bursts of dendritic spikes
can indeed trigger LTP even if the back-propagating spike is
blocked by TTX.

These and other experimental results suggest that plas-
ticity is indeed a spatially and temporally localized process,
which may lead to more complex dendritic computational
properties as suggested in the current study. Especially the
effect that plasticity can influence itself over the course of
time appears interesting in conjunction with neural network
properties.

Appendix: Detailed statistical analysis

This Appendix will provide a detailed parameter analysis of
Figs. 8 and 9.

The black region of Fig. 8 (<−5 ms) shows cases of
acausal BP-spike shifts TBP < 0, that could happen at the
non-driving cluster by crosstalk between clusters. In this
case correlated synapses will grow to some extent, while
less correlated synapses can grow or shrink. This happens
because the BP-spike is too early to influence plasticity in
the strongly correlated group, which will grow by the DS-
mechanism only, but the BP-spike still falls in the dispersion
range of the less correlated group, influencing its weights.
When sub-structuring the black region one would see that
lower dispersions of less correlated inputs are represented in
the upper part of the black region and bigger dispersions in
the lower part. The vertical stripes, which appear in the black
region in the diagram, occur as a consequence of the finite
sampling of parameter 2 (dispersion in the more correlated
input group).

At a BP-spike shift TBP of −5 ms a transition in the
weight development occurs, where most of the time weights
do neither grow nor shrink in both, the correlated and less
correlated, groups. This transition has been made visible in
the diagram by coloring BP-spike shifts between −5 ms and
5 ms in green. The reason for this type of behavior is that the
BP-spike, being very close to the D-spike, overrules in these
cases the effect of the D-spike. The randomness, whether the
BP-spike comes causal or acausal to an individual synapse, is
large enough in both, correlated and less correlated, groups,
and leads to an averaging-out of the weight changes. Some-
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Fig. 9 Statistical parameter analysis. As in Fig. 8, plotted are the aver-
age weights of the less correlated group (ordinate) against the correlated
group (abscissa). Colors depict different plasticity characteristics. Orig-
inal parameter used in Fig. 8 were: AMPA τ = 6 ms, NMDA τ = 117
ms, D-spike τ = 235 ms, BP-spike τ = 6–66 ms, q1 = 0.14, D-/BP-
spike amplitude relation from 1/1.5 to 1/15, depending on BP-spike
width, and keeping the area under the BP-spike constant, µ = 0.09,

first phase 200 pulse groups, second phase 400 pulse groups. Changed
parameters in this fig. are now: (A) half of the BP-spike amplitude
used in Fig. 8; (B) 100 simulated inputs in each group instead of three
(threshold q1 = 2.4). (C) faster learning rate µ = 1.5, and 20 pulse
groups first, 20 pulse group second phase, (D) the same as (C), but the
second learning phase sets in at once, lasting 40 pulse groups

times also weight shrinkage is found in these cases probably
as a consequence of the larger LTD-part in the STDP-curves.

It is probably reasonable to consider the green region with
more general caution, too. In the model, the starting point
of each signal (time point t = 0) can be well defined. In
physiology, this time point is less obvious. Hence, close to the
zero time point in the model actual physiological results may
vary rather strongly like suggested by the rapid transition be-
tween LTP and LTD which occurs at this time point in the
STDP-curves. Hence, black and colorful regions represent in
our model the zone where results are clearly robust against
this contingency, whereas green points may in reality some-
times “jump” into another domain in individual situations.

The remaining colors encode the dispersion of the wide,
less correlated spike distributions in the case when time shifts
of the BP-spike are positive (>5 ms, hence BP-spike after
D-spike). Note, the black (less than −5 ms) and red-to-blue
colored dots (more than +5 ms) overlay each other and at a
BP-spike shift TBP of +5 ms we find ourselves again on the
left side of the black region. Dispersions are getting wider
essentially from top to bottom (red to blue).

Multiple regions (from yellow to blue) show a transition
from almost equal weight growth (diagonal tail) to asym-

metric weight growth (horizontal tail). The exact location of
this transition depends on the BP-spike shift TBP.

The circle in the figure shows for the yellow (21–40 ms)
or purple (41–60 ms) dots how the different BP-spike shifts
TBP are roughly represented in the figure. The diagonal tail
develops from left to right for BP-spike shifts from about
TBP = 80 ms down to TBP = 30–40 ms. Then data points
drop until they reach the horizontal tail for about TBP =
20 ms. Even smaller BP-spike shifts are represented towards
the left side of the horizontal part of the curve.

Why are these changes arranged on a circle? For large
BP-spike shifts, the BP-spike has little influence and both
groups grow by the DS-mechanisms. If correlated and less
correlated dispersions are similar, weights will grow in the
same way (red, 1–20 ms), if the less correlated group has a
wider dispersion, its weights will grow less (dark blue, 81–
100 ms). As soon as the BP-spike gets closer to the D-spike,
it will start to exert its influence. But this will first affect
the less correlated group as there are almost always some
inputs so late that they “collide” with the BP-spike. Time of
collision, however, is random and sometimes these input are
“pre” while sometimes they are “post” with respect to the
BP-spike. Hence LTP and LTD will be essentially balanced
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in the less correlated group, leading on average to zero weight
growth. This effect is of course very pronounced when the
less correlated group has a wide dispersion (blue, 81–100
ms), while it does not occur if the dispersion of correlated
and less correlated groups are similar (red, 1–20 ms).

This also explains the not-shown inner structure of the
black region (less than −5 ms), only here, negative BP-spike
shifts TB P < 0 lead to STDP curves with a dominance of the
LTD part leading in many cases to weight shrinkage below
zero.

The structure presented in Fig. 8 is not very sensitive
to the BP-spike amplitude, as could be expected because
the amplitude influences the function �ρ(T, Tbp) linearly. In
part A of Fig. 9 the same diagram obtained with a BP-spike
with half amplitude is shown. In this case the general pattern
persists, though the transitions to the lower tail of yellow or
purple points are less pronounced.

The structure in Fig. 8, 9 is valid for a wide range of
thresholds. To obtain the figures a threshold value q1 = 0.14
was used. Similar distributions of colored clusters were ob-
tained with thresholds in the interval [0.07, 0.2]. Below 0.07
the trivial case occurs, where a single spike is enough to
pass threshold. Whereas beyond 0.2, passing the threshold
became very rare, with almost no weight growth happening
in the system.

In part B of Fig. 9 we show a plot of 1000 experiments per-
formed with an original amplitude but with 100 inputs in each
cluster (all threshold parameters were scaled accordingly),
leading to the similar pattern. This shows that the results
from the much higher number of experiments performed in
the simplified model with less inputs can be trusted.

In part C we show a plot of 1500 experiments performed
with much higher learning rate µ = 1.5 and, consequen-
tially, fewer iterations. In this situation the pre-growth phase
is soon replaced by the fast-growth phase and noise-induced
symmetry breaking effects play a stronger role. As a conse-
quence the diagram, while still preserving the main features
of panel A, becomes more diffuse and the horizontal tail be-
gins to vanish. Many more “wrong” growth cases occur, too,
similar to those in Fig. 6, leading to this increased disper-
sion. This effect becomes even more pronounced when we
remove the pre-growth phase altogether in panel D of Fig. 9.
All other parameter are like in C and now the diagram has
lost most of its features, only the diagonal tail remains for
clear-cut parameter combinations.

Finally it is interesting to relate these results to the an-
alytical solutions provided above. The lines and arrows in
Fig. 3(B) indicate what happens. The BP-spike shift, en-
coded by the different colors in Figs. 8, 9 is represented by
the location of the black dot, which may shift along the x-
axis (double arrow at the bottom). Colors black and green in
Figs. 8, 9 relate to negative shifts in Fig. 3(B). The integra-
tion interval (brackets in Fig. 3(B)) depends on the degree of

“correlatedness” of the inputs. It is smaller for the correlated
group in Figs. 8, 9 and wider for the less-correlated group.
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