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Abstract Sensor neurons, like those in the visual cortex,
display specific functional properties, e.g., tuning for the
orientation, direction and velocity of a moving stimulus. It is
still unclear how these properties arise from the processing
of the inputs which converge at a given cell. Specifically,
little is known how such properties can develop by ways
of synaptic plasticity. In this study we investigate the hypo-
thesis that velocity sensitivity can develop at a neuron from
different types of synaptic plasticity at different dendritic sub-
structures. Specifically we are implementing spike-timing
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dependent plasticity at one dendritic branch and conventional
long-term potentiation at another branch, both driven by
dendritic spikes triggered by moving inputs. In the first part
of the study, we show how velocity sensitivity can arise from
such a spatially localized difference in the plasticity. In the
second part we show how this scenario is augmented by the
interaction between dendritic spikes and back-propagating
spikes also at different dendritic branches. Recent theoretical
(Saudargiene et al. in Neural Comput 16:595–626, 2004) and
experimental (Froemke et al. in Nature 434:221–225, 2005)
results on spatially localized plasticity suggest that such pro-
cesses may play a major role in determining how synapses
will change depending on their site. The current study sug-
gests that such mechanisms could be used to develop the
functional specificities of a neuron.

1 Introduction

There is growing evidence that synaptic plasticity can be
different for different synapses at the same neuron. Thus,
depending on the location at the dendrite or soma different
forms of plasticity can co-exist at a cell and plasticity appears
to be most often a spatially local process (Froemke et al.
2005). This is partly due to the fact that dendritic compart-
ments are often to a large degree decoupled from each other
such that local, site-specific interactions can take place in
independence making each single dendrite functionally
similar to a whole computational network (Mel 1994; Poirazi
et al. 2003). Furthermore it is known that the electrical and
chemical signals which drive synaptic change can be very
different at different sites (Häusser and Mel 2003; Golding
et al. 2002).

Two types of long-lasting synaptic changes are in gene-
ral observed, long term potentiation (LTP) and long term
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depression (LTD) (Bliss and Lomo 1970, 1973; Bliss and
Gardner-Edwin 1973). Which type of plasticity actually
occurs at a given synapse, however, depends on the synapse
type, the order in which pre- and post-synaptic signals arrive,
the type of transmitter involved and often also on other
modulatory substances.

To induce plasticity a strong depolarization is necessary
at most synapses presumably for the unblocking of NMDA-
channels (Debanne et al. 1998; Chen et al. 1999; Nishiyama
et al. 2000; Sjöström et al. 2001; Kovalchuk et al. 2000;
Bi 2002). Such a depolarization can be achieved by back-
propagating (BP) somatic action potentials. However, at most
cells these signals are only strong close to the soma and
become longer in duration and smaller in amplitude while
propagating into the dendritic tree (Magee and Johnston 1997;
Linden 1999). This attenuation (Stuart and Spruston 1998;
Häusser and Mel 2003) will lead to the fact that in distal den-
dritic parts, BP spikes may not anymore be strong enough
to drive plasticity and instead synaptic changes may be trig-
gered by local dendritic Na+- and Ca2+ channel dependent
spikes (Golding et al. 2002; Larkum et al. 2001). Many times
it can be assumed here that dendritic spikes (D-spikes) are
initiated by localized but strong cooperative synaptic inputs.

The effects discussed above indicate that the different
shapes of BP- and dendritic-spikes, which change along the
dendrite, should lead to different post-synaptic influences on
plasticity depending on the dendritic site.

This hypothesis had been theoretically investigated in a
few of our older studies. By ways of modeling synaptic plas-
ticity with a differential Hebbian learning rule, we were able
to show that different weight change curves will be obtained
depending on the shape of the post-synaptic signals. At that
time we had speculated that: “Such local, site-specific plas-
ticity may be important because at a single neuron different
rules for synaptic plasticity can coexist this way. Networks,
which can implement such “local learning properties”, will
certainly demonstrate substantially enriched computational
properties” (Saudargiene et al. 2005).

It is the goal of this article to provide some theoretical
evidence substantiating this speculation and we will use this
mechanism to show that it is possible to gradually develop
certain functional properties at a neuron. It will be shown that
spatially localized synaptic plasticity can lead to a differential
effect subdividing the responses from different dendrites in
a way which creates a neuron that is sensitive to the velocity
of a simulated visual stimulus.

After introducing our formalism, we will in the first part of
this paper show some results about local plasticity, demons-
trating how different types of synaptic changes can arise in
a spatially localized way. This is partly a summary from our
older work (Saudargiene et al. 2004, 2005). In the second
part we will then first discuss how different D-spikes ari-
sing at different parts of a two-branch dendrite will lead to

increasing velocity sensitivity at the simulated neuron. Fi-
nally we will also discuss what may happen if at some point
during development a global signal, from a BP-spike, will
influence both branches at the same time.

2 Methods

We will first introduce our synapse model before we describe
the more complex full setup of the modeled circuit.

2.1 Synapse model, plasticity rule and saturation
characteristics

Our synapse (Fig. 1) consists of AMPA as well as NMDA in-
fluences. The AMPA influence is only used to drive the soma,
it does not enter plasticity. The NMDA influence constitutes
the pre-synaptic part of our learning rule.

A

B C

ED

Fig. 1 The synapse model (a) and examples of D- and BP-spikes
(b, c), where we have superimposed two real signals recorded in dif-
ferent studies (dashed) as well as (d, e) their model weight change
curves. DS stands for D-spike, BP for a BP-spike, ρ is the synaptic
weight, x, u and v the different pre- and post-synaptic signals explai-
ned in the text. b D-spike with τ = 235 ms, dashed is superimposed
a D-spike taken from Fig. 3b in Saudargiene et al. (2005). c BP-spike
with τ = 40 ms, dashed is superimposed a BP-spike taken from Fig. 3a
in Saudargiene et al. (2005). d, e STDP curves for b, c. d STDP curve
obtained with the model D-spike, e STDP curve from the model BP
spike
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The post-synaptic part arises mainly from dendritic spikes
(D-spikes), which, however, can be summed also with the
influence from a back-propagating (BP-) spike. Detailed equa-
tions for the pre- and post-synaptic signals will be given
below. The model assumes that input synapses are clustered,
so that a longitudinal dendritic dimension may be neglected,
and all the synapses in a cluster share the same membrane
voltage (and other membrane properties) at each particular
moment in time.

We will mainly analyze a combination of spike-timing
dependent plasticity (STDP) and LTP and both types of plas-
ticity are implemented using the same differential Hebbian
learning rule (Porr and Wörgötter 2003; Saudargiene et al.
2004):

dρ

dt
= µuNMDA(t)v̇(t) (1)

where ρ denotes the synaptic weight of synapse ρ, µ the lear-
ning rate and v̇(t) is the temporal derivative of the conjoint
post-synaptic influences. Learning rate µ = 0.03 was used.

Weights were kept in the interval [0,1] using a hystere-
sis type saturation function. The saturation was achieved
applying a weight-dependent nonlinear transformation for
the weight modification term �ρ obtained in one integration
step of Eq. 1. If the weights were increasing towards one, or
decreasing towards zero, the following function was applied
to the weight change �ρ (see inset in Fig. 2):

�ρtr = 1

1 + 1−ρ
ρ

exp(−�ρ)
− ρ (2)

The opposite cases, which capture growth of small weights
and decrease of big weights, were kept linear. The transition
between linear and hysteresis-saturated parts was placed at
a weight value of ρ = 0.5. In the linear part weight modi-
fication �ρ was multiplied by a constant: �ρtr = 0.25�ρ,
to keep the derivative at the boundary between linear and
nonlinear parts smooth.

In real systems some weight stabilization mechanism is
employed to keep weights from excessive saturation (Bi and
Poo 1998) and this is mimicked by our hysteresis function.

Panels (b–e) of Fig. 1 show typical examples of D- and
BP-spikes and the weight change curves derived from them.
Real D- and BP-spike examples taken from the literature are
depicted by the dashed curves, which demonstrates the simi-
larity of the modeled to the real signals. Evidently, D- and
BP-spikes lead to differently shaped weight change curves.
Specifically, and as shown previously (Saudargiene et al.
2004), an output v(t) with a shallow rising flank will pre-
dominantly lead to LTP, while one with a steep rising flank
results in STDP.

2.2 Circuit model

We model AMPA and NMDA receptor activation signals,
dendritic spikes initiated by inputs to the synaptic clusters,
and the back-propagating spikes originating after the cell has
fired. Figure 2 shows the complete setup. The model contains
two dendritic branches which are receiving the same set of
ten inputs x1, . . . , x10. At each individual branch dendritic

Fig. 2 Block diagram of the
model neuron. Each of the ten
inputs x1, . . . , x10 targets two
synapses, one for the LTP-, the
other one for the STDP-branch,
leading to a total of 20 weights.
Filters hAMPA and hNMDA are
used for initiation of a dendritic
spike, and to influence learning.
Weight change is saturated
through a hysteresis-type filter
hHYST, which is characterized in
the inset. We define q1 as the
threshold for eliciting a
dendritic spike. Filter hLTP is
used for shaping a shallow and
hSTDP for a steep dendritic
spike. The threshold for cell
firing is called q2. In the inset
the hysteresis of a weight
change on the weight itself is
specified: solid line—weight
change during weight increase,
dashed line—during weight
decrease (see Sect. 2)
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spikes are elicited following the summation of several AMPA
signals passing threshold q1. We assume the NMDA influence
on dendritic spike can be neglected because the contribution
of NMDA potentials to the total membrane potential is sub-
stantially smaller than that of AMPA channels.

Cell firing is not explicitly modeled but said to be achie-
ved when the summation of several dendritic spikes at the
cell soma has passed threshold q2. This leads to a BP-spike.
Progression of signals along a dendrite is also not modeled
explicitly, but expressed by means of delays. All signal shapes,
which influence plasticity, are obtained by appropriate filters
(see below).

As shape and timing interplay is the most important aspect
of this study, we provide realistic timing in milliseconds for
the employed signals. Absolute signal amplitudes are irrele-
vant and only arbitrary units are used here.

2.2.1 Model equations

We define it below:

uNMDA(t) = x(t) × hNMDA(t) (3)

uAMPA(t) = x(t) × hAMPA(t) (4)

where x(t) is a spike train given in the usual way as a sequence
of δ-functions.

Filter functions h(t) define the signal shapes of D- and
BP-spikes. We use Eq. 5 for modelling the shapes of the
AMPA and NMDA channel responses, as well as those of
back-propagating spikes and some forms of dendritic spikes:

h(t) = e−2π t/τ − e−8π t/τ

6π/τ
(5)

where τ determines the total duration of the pulse. The ratio
between rise and fall time is 1:4.

For modeling the AMPA channel potentials (hAMPA) a
filter with τ = 6 ms was used, for modeling the NMDA chan-
nel potentials (hNMDA) we use τ = 120 ms, for dendritic
spikes (hDS) we set τ = 235 ms and for back-propagating
spikes (hBP) a filter with τ = 40 ms is employed.

Note, in this study, we have approximated the NMDA
characteristic by a non-voltage dependent filter function. In
conjunction with STDP, this simplification is justified by the
analytical solutions for STDP curves derived in Saudargiene
et al. (2005), which show that voltage dependency induces
only a second-order effect on the shape of the STDP curve.

To get a pure LTP-case a wider and shallower rising den-
dritic spike has been employed:

h(t) = t p
(

e−bt − e−at
)

(6)

with p = 2, a rise time of a = 1/1 ms and a decay time of
b = 1/40 ms following Saudargiene et al. (2004).

To actually elicit a D- or BP-spike, we define two summa-
tion processes (1) a local dendritic-summation process and
(2) a somatic summation process.

(1) Dendritic summation is given by:

y(t) =
∑

j

ρ j u j
AMPA(t) (7)

where we sum over all synaptic inputs j .
We elicit a D-spike if this process exceeds a certain threshold
q1, hence if at time-points ti we have y(ti ) > q1 then we elicit
a D-spike vDS, receiving a train of signals:

vDS(t) =
∑

i

δ(t − ti ) × hDS(t) (8)

Outside the convolution, vDS is set to zero.
(2) In a similar way, at the soma a BP-spike vBP(t) will be

elicited if the signals that arrive at the soma exceed threshold
q2. Hence, if at time-point ti we find that

∑
k vk

DS(ti ) > q2,
where k is the number of inputs, then we elicit a BP-spike
vBP also here receiving a train of signals:

vBP(t) =
∑

i

δ(t − ti ) × hBP(t) (9)

3 Developing a velocity sensitive neuron using spatially
separated learning rules

Let us consider a model neuron with only two dendritic
branches, where on one of the branches an LTP- and on
the other one an STDP-rule drives the learning (Fig. 3).
Both dendritic branches get inputs from the same stimulus

Fig. 3 Model neuron with two dendritic branches. We assume that each
branch gets input from an elongated sensor field containing ten sensors
(called “pixels”). The pixel signals arrive at the dendrite driving one
synapse each on the left and on the right branch top. Dendritic spikes
(DS) drive local learning and travel towards the soma to fire the cell. A
shallow dendritic spike is used to obtain LTP-type learning on the left
branch, and a steep dendritic spike is used on the right branch to get
STDP
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moving along a one-dimensional sensor field, hence the
inputs reach the dendrite strictly ordered in time. While we
do not explicitly simulate space in our model, this setup
effectively emulates a space to time transformation and leads
to summation effects on the dendrite. Note, it would also be
possible to replace the LTP branch with an LTD-dominated
branch. As will be discussed below (see Sect. 4), the develop-
ment of velocity sensitivity relies on the differential effects
at the STPD branch, where the other branch plays a smaller
role.

As described above in this simplified model each dendri-
tic branch gets ten inputs from adjacent pixels of the sensor
field. The output signal in the form of a dendritic spike on
each branch is generated when the sum of AMPA receptor-
like input signals at that branch reaches a specified thre-
shold. Thus inputs on the dendritic branch occur in a
specific temporal relation as compared to the output: the first
inputs arrive before the output in the form of a dendritic
spike has emerged while the last come after it. In the LTP-
case all weights are expected to grow, as the whole group of
inputs is close enough correlated, while for the STDP set-
ting only the first few weights grow while the other weights
shrink.

The model cell fires when a sum of two dendritic spikes
goes beyond threshold q2 (Fig. 2). The threshold is adjusted
so that a single dendritic spike is not enough to fire the cell,
hence, cooperation of dendritic spikes is required.

Thus, the cell is designed to fire when two conditions are
fulfilled: (1) dendritic spikes, both, for the LTP and the STDP
branches are present and (2) the time interval between them
is relatively small. Both conditions in the current design are
easier to achieve for larger velocities, and both mechanisms
take part in creating the specificity of the detector.

For training of the model neuron, stimuli moving at varying
velocities were applied. For each trial, the interval between
excitations was obtained from a uniform distribution ranging
from 2 to 12 ms/pixel (corresponding to a velocity range
from 1

2 to 1
12 pixel/ms, although not uniformly distributed in

the velocity dimension). Additional noise from an interval
of ±3 ms/pixel (or equivalently ± 1

3 pixel/ms) was added to
disperse the timings between adjacent pixels or even inter-
change the spike order in some cases. The noise has been
added, both, to reflect possible realistic noise influences and
to ease reaching thresholds in early learning stages when
weights are still small. This creates a rather high degree
of variability. Stimuli moving in both directions defined by
negative intervals between adjacent pixel excitations with
intervals ranging from −1 to 9, −3 to 7 or −5 to 5 ms/pixel
(corresponding to velocities: −1 to 1

9 , − 1
3 to 1

7 , and − 1
5 to

1
5 pixel/ms) were investigated as well.

Learning was initiated with all weight values 0.5.
Threshold q1 was kept at the level where 2–4 roughly
simultaneous inputs were needed to initiate a dendritic spike

at the beginning of learning for the greatest velocities. Hence,
for smaller velocities even more simultaneous inputs are nee-
ded to initiate a D-spike. Threshold q2 for cell firing was kept
at the level where a single dendritic spike was not enough
to initiate the cell firing, as mentioned earlier. A range of
thresholds, both, for dendritic spike initiation as well as cell
firing, was investigated. A low learning rate of µ = 0.03
was used. This way the model mostly operated in the linear
region or with only slight saturation of weight growth during
several thousand excitation trials.

Apart from this basic setup, two more types of modified
models were analyzed.

1. In the first modification we investigated the effect of
an additional back-propagating (BP) spike on the lear-
ning. Here again two cases were analyzed: the BP-spike
reaches the STDP cluster, or the BP-spike reaches both
clusters. It has been suggested that STDP more likely
happens at synapses closer to the soma, whereas pure
LTP like plasticity can more easily be observed at dis-
tal dendrites (Saudargiene et al. 2004). Hence, either the
BP-spike reaches both clusters or rather only the STDP
one. The BP-spike was modeled to be shorter than a den-
dritic spike (τ = 40 ms as compared to 235 ms), but
higher in amplitude. To make effects more comparable,
BPs spikes were normalized to the same integral area as
the used D-spikes.

2. In a second modification, we assumed that both dendri-
tic spikes were identical (STDP type), but on one of the
branches the D-spike was supplemented with a BP-spike.
This was done to investigate an initially similar situa-
tion where only later an asymmetry through the added
BP-spike arises.

3.1 Results for the velocity detector development

In the experiment where the detector neuron was trained
with no added BP-spikes (basic model), weights growth was
approximately linear, as obtained from an experiment with
the stimulus 900 times crossing the sensory field (900 trials)
with different velocities in the same direction. Learning
showed almost no saturation effects due to the small lear-
ning rate. The development of the two clusters of weights is
presented in Fig. 5a, b. Weights on the LTP branch stopped
at very similar values (Fig. 5b, c) at the end of the expe-
riment, with minimally bigger values for the central synapses,
while for the STDP branch the biggest weights are obtained
(as expected) at the first synapses relative to the movement
direction (Fig. 4a, c).

The temporal distance between two dendritic spikes on
the two branches increases with learning. This happens as
for the STDP setting the first weights increase relatively
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Fig. 4 Developing a velocity
detector. a Development of
STDP weights; b of LTP
weights; c final weight
distributions, LTP upper part,
STDP—lower part.
d Development of the time lag
between dendritic spikes for the
LTP and STDP branches. Solid
line for velocity 1

6 pixel/ms and
dashed line for a velocity of
1
3 pixel/ms. Learning was
performed with velocities
variable in the interval
1

12 − 1
2 pixel/ms. D-spike filters

followed Eq. 5 with τ = 117 ms
for the STDP branch, and Eq. 6
for the LTP branch. AMPA
signal filters were derived from
Eq. 5 with τ = 20 ms, NMDA:
τ = 117 ms, thresholds
q1 = 0.25, q2 = 3.39, learning
rate µ = 0.03

A B

DC

strongly and the first inputs require less and less “help” from
the subsequent inputs to produce a dendritic spike. Thus on
the STDP branch a dendritic spike comes increasingly ear-
lier in the course of learning. For the LTP branch the relative
weighting does not change during learning, consequently its
spike always comes later. This time gap increase is demons-
trated for two test velocities in Fig. 4d. For slower velocities
the development of the inter-spike time gap is a fraction slo-
wer, but the time gap itself reaches greater values (solid vs.
dashed line in Fig. 4d). This is the core effect leading to
the development of a velocity detection mechanism in the
models presented here.

As a consequence, the detector model cell was firing a
somatic spike for bigger velocities and was silent for smaller
ones. The distribution of cell firing (or not firing) versus sti-
mulus speed, and the development of these distributions in the
course of learning is shown in the histograms in
Fig. 5a–c. In part Fig. 5a the distribution obtained for the first
300 learning trials, in part Fig. 5b for trials 301–600, and in
part Fig. 5c for 601–900 is presented. The so-called discri-
minant boundary between firing and not firing falls between
the velocities 1

8 and 1
7 pixel/ms in the first 300 trials, between

1
6 and 1

5 pixel/ms in the second 300 trials, and between 1
5 and

1
4 pixel/ms in the last 300 trials. The shift of the discriminant
boundary with learning towards higher velocities shows that
the development of a temporal distance between dendritic
spikes plays an important role in this design, as the simpler
mechanism of firing a cell just by coincident inputs would

not lead to the discriminant shifting towards higher velocities
with increasing synaptic strength.

When stimuli were allowed to move in both directions,
but one direction was preferred (velocities from −1 to 1

9 , and
from − 1

3 to 1
7 pixel/ms) the detector properties were develo-

ping slower but in the same way as described earlier. Note,
also with a symmetrical speed interval from − 1

5 to 1
5 pixel/ms

detector properties develop but in a slightly different way. On
the STDP branch, weights of the first inputs from either side
were during half the trials potentiated and during the rest of
the trials depressed. Hence, they did not grow on average.
Weights in the middle, however, get on average depressed.
All weights on the LTP branch, however, grow. As a conse-
quence the D-spike of the LTP branch preceded that on the
STDP branch. Due to the shape differences of the LTP and
STDP dendritic spikes, this interchanged firing order at soma
made the cell firing pattern different from the one descri-
bed above. This leads to the result that this detector is most
sensitive for intermediate velocities. The bidirectional case,
however, will not be analyzed further.

The detector’s sensitivity for both thresholds q1 and q2

was also analyzed (Fig. 5d). Increasing of the threshold q1 for
D-spike formation shifts the discriminant for firing towards
higher velocities. The same happens when increasing the
threshold q2 for somatic firing for which the model sys-
tem is very sensitive: Increase in threshold of around 1%
results in substantial discriminant velocity changes of up to
20%.
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Fig. 5 Firing characteristics of
the velocity detector and its
dependency on threshold q2.
a Distribution of velocities
when the model cell is firing
(upper part) and not firing
(lower part) depicting also the
discriminants (dashed vertical
lines in a–c) between these two
situations, learning trials 1–300,
b same as in a but learning trials
301–600, c same but trials
601–900. Parameters as for
Fig. 4. d Dependence of the
discriminant (obtained from
learning trials 101–900) on
thresholds q1 of D-spike
formation (x-axis, values from
0.1 to 0.37, step 0.03) and on
threshold q2 for cell firing
grouped as quadruplets (q2
values for each bar quadruplet
are 3.37, 3.38, 3.39 and 3.40)

A B

DC

Concerning the effect exerted by q1, we observe that two
mechanisms interact here: (1) for a higher threshold, the ini-
tiation of a dendritic spike is more difficult and possible only
for rather synchronous input groups and (2) larger time gaps
between dendritic spikes at the LTP and STDP learning clus-
ters develop, which, in turn, reduces the likelihood for coin-
cident D-spikes at the soma.

While the first mechanism is obvious from the explana-
tions above; Table 1 shows what the second effect does. In
the table the maximum values of the time gap between the
two dendritic spikes developed in a 2,000 trial experiment are
given for different thresholds q1. For very small thresholds
(q1 = 0.04 and smaller, not in table) no separation in time
of the two D-spikes develops. With a rising threshold, the
inter-D-spike time gap increases. Increase of the time gaps

Table 1 Maximum distance between two D-spikes in ms depending on
threshold q1. Velocity is given in pixel/ms

q1 0.10 0.15 0.20 0.25

V
1
6 4 6 12 43
1
5 3 5 9 15
1
4 2 4 5 8
1
3 1 3 3 4
1
2 1 2 2 3

between the two D-spikes with higher thresholds q1 is obtai-
ned because of the specific form of the signal used for D-spike
initiation which is a sum of low-pass filtered pulses. Their
sum’s rising phase is steeper and similar on both branches,
but shows a more shallow development thereafter, which is
different on the two branches. This effect leads, at a high
threshold, to considerable time gaps between the D-spikes
on both branches.

Varying the shape of the dendritic spike also influences
the detector properties. An experiment was performed with
varying p in Eq. 6 between 0.05 and 2.05 for only one
D-spike, which changes the rising flank of its shape from
steep to shallow (Fig. 6a). The other D-spike was kept steep-
flanked (Eq. 5 with τ = 117 ms, dashed line in Fig 6a)
throughout all experiments. Hence, learning on the shape-
manipulated branch was varying from STDP to LTP with
increasing p.

With steep flanks speed differentiation was obtained only
due to the different likelihood of dendritic spike formation for
different stimulus velocities as explained above. For shallow
flanks, on the other hand, the cell firing threshold q2 added
its considerable influence. The change of the discriminant
firing velocities for the analyzed forms (Fig. 6b) shows a
trend towards bigger velocities with a more LTP-like lear-
ning characteristic on the shape manipulated branch. For very
small values of p the curve also drops which is due to more
subtle effect of the fine interplay between the different filter
forms in the used model/plasticity setup.
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A B

Fig. 6 Influence of the filter shape. a Varying filter shapes on one lear-
ning branch, solid lines with p values 0.05, 0.55, 1.05, 1.55, and 2.05
increasing from left to right, normalized to have constant area under
the curve, and the constant filter shape used for the other branch (Eq. 5

with τ = 117 ms, dashed line), velocity interval; 1
12 − 1

2 pixel/ms.
b Discriminant between velocities for cell firing and not firing for
different shapes, versus filter parameter p, q1 = 0.2, q2 = 3.39,
µ = 0.03

In Fig. 7 we finally look at the two modifications of the
basic setup obtained following the ideas from the first part of
the study about the possible interplay of dendritic and back-
propagating spikes:

1. First, we investigate the influence of an additional
BP-spike—first influencing only the STDP branch. We find
that the time gap between both D-spikes developed faster and
increased in absolute value in comparison to the case without
BP-spike (see Fig. 7a, b for a comparison). The discriminant
obtained with a BP-spike is shifted towards bigger velocities
(Fig. 7c, compare to Fig. 5b). This effect can be expected, as
adding an even steeper BP-spike on top of D-spike, which
is responsible for STDP, will drive the learning curve even
more towards an STDP characteristic. This makes learning
still more selective for the first weights in the series of inputs
and consequently the two weight distributions become more
different (not shown). In the case with a BP-spike added to
both clusters, the difference between the initiation times of
the two dendritic spikes became smaller and the discriminant
was shifted towards slower velocities (Fig. 7d).

2. In the case where both branches are driven by steeply
rising dendritic spikes and adding a BP-spike only to one of
the branches, learning could not be exactly attributed to LTP-
STDP differences. Both learning rules were starting with and
continuing to have an STDP characteristic, yet different: the
one with the BP-spike was even more selective for the first
inputs. Due to the different characteristics, different weight
distributions were obtained (not shown), which still were able
to yield the necessary time gaps (Fig. 7e) required to develop
a velocity detector (Fig. 7f).

4 Discussion

In this study we have shown that it is possible to develop
certain functional properties (velocity tuning) in a single

neuron from developing interactions between its dendrites.
We would like to first discuss some limitations of our model
and in the final paragraphs embed our study in the existing
literature on velocity- and directional-tuning.

4.1 Limitations of our model

The model used here relies on a state-variable description
of STDP or LTP and does not attempt to model the under-
lying second messenger chains which are quite complex. A
detailed discussion of the limitations that arise from model-
ling single synapses with such an approach is provided in
Saudargiene et al. (2004, 2005), and we will focus here on
other aspects which are more directly related to the chosen
model level of a small functional dendritic network.

The velocity detector mechanism proposed in our study
relies on different distributions of weights in different clusters
of synapses obtained if those employ different learning rules.
As discussed above, velocity sensitivity will arise immedia-
tely from different spatial summation properties, where, for
example tighter input coincidence (at bigger velocities) might
trigger an output, whereas more dispersed inputs will not.
This will in our model always create some kind of velo-
city high-pass tuned cell, which fires only above a certain
velocity (Fig. 8). In cortical cells there are, however, also
other tuning curves observed, for example a large group fol-
lows a velocity low-pass characteristic and many are tuned
with a bell shaped curve (Movshon 1975; Orban et al. 1981;
Baker 1998). To obtain these characteristics, one needs to
also include mechanisms of temporal summation not present
in the current model. Temporal summation will be especially
effective at low velocities, creating by itself a low-pass tuned
cell. Different combinations of such low-pass with high-pass
characteristics, obtainable from our model would lead to the
required variety of tuning curves.
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Fig. 7 Influence of BP-spikes.
Comparison of time gap
development between dendritic
spikes on both branches:
a without BP-spikes and b with
a BP-spike on the STDP branch
only (solid line: 1

5 pixel/ms;
dashed line: 1

3 pixel/ms).
Dependence of the discriminant
on thresholds q1 (x-axis, values
from 0.1 to 0.37, step 0.3) and q2
(quadruplets, from left to right:
q2 = 3.37, 3.38, 3.39, 3.40).
c Here the BP-spike was on the
STDP branch and in d on both
branches. Time gap
development and discriminants
for a detector with two steep
dendritic spikes. Hence, both
branches have initially an STDP
characteristic with a BP-spike
complementing learning on one
of the branches. e Development
of the time gap (solid:
1
5 pixel/ms, dashed: 1

3 pixel/ms).
f Distribution of velocities when
the cell fires (upper histogram)
and does not fire (lower
histogram), which determines
the discriminant (dashed line).
Simulation parameters: D-spike
filters Eq. 5 with τ = 117 ms
for the STDP branch, and Eq. 6
with p = 2 for the LTP branch
(a–d), BP-spike filters Eq. 5
with τ = 40 ms, AMPA signal
filters Eq. 5 with τ = 20 ms,
NMDA—τ = 117 ms;
thresholds q1 = 0.25,
q2 = 3.39, learning rate
µ = 0.03, velocity range
1

12 − 1
2 pixel/ms

A

D

E F

One advantageous property of the velocity detector pro-
posed here is that it does not require a specific learning phase,
and that it can operate already during learning, as the detec-
tion boundary is gradually changing. Furthermore, the detec-
tor adapts to different input patterns arriving (whether inputs
move from left to right, or reverse, or both sides). Clearly the
mechanism, however, is symmetrical and we did not aim to
deal with direction selectivity. Furthermore, the model does
not contain any weight stabilization mechanisms.

Weight stabilization and a larger dynamic range of the
model could be achieved, for example, by including LTD
at both branches, which represents a physiologically more
realistic situation (Tomita et al. 2005). At the STDP branch,
this is already implicitly present through the bimodal cha-
racteristic of the STDP window, which would only have to
be augmented. The other branch would need to be modi-
fied though. On both branches, one would have to make sure
that the employed/augemented mechanisms will lead to the
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Fig. 8 Influence of the final
weight distributions on the firing
properties of the model neuron

desired weight stabilization (Royer and Pare 2003). Also
there are physiological studies which show that weight growth
is intrinsically limited (Bi and Poo 1998). Implementation of
such mechanisms, however, have been deliberately excluded
to keep this article better focused.

This, however, raises another issue. How would additional
plasticity mechanisms change the finally received detector
properties? Since we are here dealing only with spatial sum-
mation this issues can be analysed by considering three limit
cases shown in Fig. 8. Hence, the question can be reduced to
asking how (e.g.) additional LTD would lead to different final
weight distributions. The situation on top represents the one
observed in Fig. 4, where the LTP branch essentially arrives
at a flat distribution. The activity of our cell is determined
by y(t) = ∑

j ρ j u j
AMPA(t), which will lead to a D-spike

as soon as y exceeds a threshold. Hence, if the first-passed-
by synapses (see “Stimulus movement direction”) on both
branches are strong enough their combined influence will be
enough to push the cell above threshold. This is different in
the bottom example, where the first synapses on the right
branch are weak and a higher velocity is required to drive
the cell. The middle example represents the case which is
sensitive to the lowest velocities here. As mentioned above,
all these are velocity high-pass cells, which can be altered
into low-pass or maximums-tuned cells by adding temporal
summation mechanisms to the model.

Of more central interest in the context of this paper was
the question how different detector properties can be obtai-
ned when a dendritic spike on one branch is supplemented
by a back-propagating spike, addressing the interaction of
different depolarization sources on a dendrite. In view of the

recent literature on spatially and temporally localized synap-
tic plasticity it appears to be a timely question to ask how
such interactions could influence the functional properties at
a neuron, like its velocity tuning.

4.2 Physiology and models of velocity and direction
selectivity

The property that visual cortical neurons are selective to spe-
cific aspects of the stimulus, like its orientation, its direction
of motion and its velocity, has been known since around 1960
(Hubel and Wiesel 1962) and in the next 20 years many papers
were published trying to quantify these response specificities
(for a review of the older work see Orban 1984).

In our study we were concerned with the development
of a velocity sensitive neuronal response from differently
developing dendritic branches and in this discussion section
we would like to embed our study in the tradition of existing
works on velocity sensitivity.

Indeed velocity sensitivity has almost never been conside-
red on its own (Movshon 1975; Orban et al. 1981) but rather
normally mostly in conjunction with direction selectivity.
The first studies to show direction selective responses where
those of Hubel and Wiesel (1962) followed by several other
early papers (Barlow and Levick 1965; Pettigrew et al. 1968;
Sillito 1977; Hammond 1978). The first models suggested
that direction selectivity could be generated from the linear
interaction between excitatory and inhibitory influences pos-
sibly arising from receptive field subfields, that converge onto
a given cell (Emerson and Gerstein 1977; Goodwin et al.
1975; Movshon et al. 1978). Soon, however, it became clear
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that a purely linear model does not describe the degree of
response depression in the non-preferred direction accura-
tely (Tolhurst and Dean 1991; Reid et al. 1991). Not one of
the first, but certainly one of the most appealing models that
tries to account for these observations had been presented in a
series of studies by David Heeger (1992a,b, 1993) who used
the principle of squaring rectified responses to introduce the
required non-linearities. His models are especially convincing
because of their simple construction and high explanatory
value with ideas that are influential to date and taken up even
in the most recent models (Kouh and Poggio 2004). Des-
pite the, by modern scientific development processes, almost
ancient topic, there are several very recent papers which
suggest different additional mechanisms to explain direc-
tion and/or velocity sensitivity (Sherman and Spitzer 1995;
Hillenbrand and van Hemmen 2001; Priebe and Ferster 2005)
supported also by new experimental observations about the
structure of visual subfields (Livingstone 1998; Livingstone
and Conway 2003; Pack et al. 2006). Direction response
asymmetries, however, do not seem to be reflected by
possible asymmetries in in the anatomical structuring of the
corresponding dendrites (Anderson et al. 1999).

In addition to “adult” models for direction and velocity
sensitivity there are also some that try to explain how these
features could emerge during development (Feidler et al.
1997; Wimbauer et al. 1997a,b). The finding that neuronal
plasticity can be temporally asymmetrical (STDP, (Markram
et al. 1997; Magee and Johnston 1997)) has led to some
boosting of specifically these modelling efforts. After all,
it appears straight-forward to use an asymmetrical plasti-
city mechanism to generate asymmetrical responses. Spike
timing dependent plasticity has the nice property that growth
or shrinkage of a synapse can be controlled by the temporal
order of input and output of a cell which—as soon as they are
derived from a moving stimulus—will have different timing
dependent on the direction and velocity of the stimulus. Seve-
ral developmental models for direction and/or velocity sensi-
tivity rely in one way or another on this property (Blais et al.
2000; Buchs and Senn 2002; Senn and Buchs 2003; Shon
et al. 2004; Wenisch et al. 2005). These models develop di-
rection and/or velocity sensitivity in a “holistic” way where
local dendritic processes do not play a dominant role. This
is to some degree intriguing. As discussed above, there exist
results that direction and velocity sensitivity arises from the
interaction of receptive field subfields which could be of den-
dritic origin. Also, there is evidence that, in spite of the lack of
anatomical specificity (Anderson et al. 1999), there is proba-
bly a clear functional structure on each dendrite, which leads
to local dendritic computations (Mel 1994). In our special
case it is, therefore, conceivable that such local dendritic cal-
culations could be the underlying process for the generation
of subfields that lead to direction and/or velocity sensitivity.
A recent paper by Mo et al. (2004) indeed relates these cor-

tical specifics to the local development of a combination of
excitation and shunting inhibition on a dendrite.

In our study we have tried to combine some of the ideas of
Shon et al. (2004) about employing STDP for the generation
of motion sensitivity with those of Mo et al. (2004) for using
local dendritic development and we tried to generate velocity
tuning by local dendritic STDP processes.
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