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Abstract Reinforcement learning methods can be used in
robotics applications especially for specific target-oriented
problems, for example the reward-based recalibration of goal
directed actions. To this end still relatively large and contin-
uous state-action spaces need to be efficiently handled. The
goal of this paper is, thus, to develop a novel, rather sim-
ple method which uses reinforcement learning with function
approximation in conjunction with different reward-strate-
gies for solving such problems. For the testing of our method,
we use a four degree-of-freedom reaching problem in 3D-
space simulated by a two-joint robot arm system with two
DOF each. Function approximation is based on 4D, over-
lapping kernels (receptive fields) and the state-action space
contains about 10,000 of these. Different types of reward
structures are being compared, for example, reward-on-
touching-only against reward-on-approach. Furthermore,
forbidden joint configurations are punished. A continuous
action space is used. In spite of a rather large number of states
and the continuous action space these reward/punishment
strategies allow the system to find a good solution usually
within about 20 trials. The efficiency of our method demon-
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strated in this test scenario suggests that it might be possible
to use it on a real robot for problems where mixed rewards
can be defined in situations where other types of learning
might be difficult.

Keywords Reinforcement learning - Function
approximation - Robot control

1 Introduction

In robotics as well as other applications it is required to
match the employed learning method to the task. A some-
what extreme example makes this very clear: it is useless
to employ methods for the learning of induction logic to the
learning of motor skills, like the tying of a shoe lace, whereas
such methods are useful for the learning of all kinds of declar-
ative knowledge.

Even within one domain, for example the field of motor
learning, one has still many choices of learning methods
depending on the different target applications and the choice
of the method can much influence success and efficiency of
learning. Many times supervised learning methods are cho-
sen, because they are well controlled and fast. For example
learning from demonstration can be used to teach a robot cer-
tain skills like simple manipulations of objects (Breazeal and
Scassellati 2008; Schaal et al. 2003; Dillmann 2004). Super-
vised learning requires an explicit error function between
outcome and the taught examples for controlling the learn-
ing progress. Reinforcement learning (RL) is more general,
because such an error function is not anymore required and
the system learns from receiving general feedback about the
goodness of its actions. Commonly, the less specific feedback
of RL will, however, lead to slower convergence times espe-
cially in systems with many degrees of freedom, which have
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large state-action spaces. To improve on this an appropriate
representation of the state-action space has to be found. An
appropriate match between problem and method can lead to
major learning successes like in the works of Schaal and col-
leagues, who concentrate on the task of predefined trajectory
following, and use RL approaches tuned to this task (Peters
and Schaal 2006a, 2007, 2008).

In the present study, we will also focus on a reinforce-
ment learning system in a relatively large space asking, how
to bring together a useful, generalizable representation of
the state-action space with a combination of reward and pun-
ishment strategies. Such a problem commonly exists when
robots have to learn to calibrate their own actions relative to
a desired outcome (which defines the reward). For example,
Learning to fill a glass could be learned from demonstra-
tion by a human and “copied” by the robot, but it is known
(A. Ude, personal communication) that the results of such
a plain learning attempt are not satisfactory (spill-over, low
filling level). With an RL method we can, however, recali-
brate the learned parameter set as it will suffice to correct the
robot’s action close to the glass, leading to a small state-action
space. Here we have a natural situation where a combination
of rewards and punishments can be used: the filling level
(recorded from the human’s action) would be the primary
reward, spill over would be a punishment, and the distance
to the target would be a secondary reward.

To generalize beyond this example problem we focus here
on the learning of visual servoing, where the approach to an
objectis guided by the visual difference measure between the
end- effector of the robot arm and the target object. This more
complex learning problem (as compared to the recalibration
mentioned above) is chosen to demonstrate how far we can go
with the newly introduced method. For an excellent introduc-
tion to visual servoing the reader is referred to (Hutchinson
et al. 1996; Chaumette and Hutchinson 2007a,b). A visual
servoing control schema uses the Jacobian matrix to gradu-
ally reduce the difference between the end-effector and the
target object. However, the estimation of the Jacobian matrix
becomes quickly hard as the number of joints and conse-
quently the redundancy of the robot system increases. The
high number of degrees of freedom, especially in humanoid
robot arms and anthropomorphic hands, together with the
necessity to handle constraints in joint space (singular con-
figurations, self- collision and mechanical joint limits avoid-
ance) as well as in object space (obstacles) makes visual
servoing in highly redundant robot systems a difficult prob-
lem.

Several methods exist for solving the visual servoing prob-
lem, some are control-based (Espiau et al. 1992; Hosoda and
Asada 1994; Hutchinson et al. 1996; Horaud et al. 1998),
while others focus on learning (Shibata and Ito 1999; Marti-
nez-Marin and Duckett 2004; Perez and Cook 2004; Leonard
and Jagersand 2004).
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Methods range from conventional neural networks, where
some classical work had been performed early by the group
of Schulten (Martinetz et al. 1990) and Torras [mainly in
the domain of inverse kinematics learning, Ruis de Angulo
and Torras (2005a); Ruis de Angulo and Torras (2005b)],
to the now dominating methods of reinforcement learning
(RL). Indeed a very large number of articles has appeared
in the last years on RL for learning arm control as well as
learning grasping. A large diversity of methods has been
suggested exemplary represented by the papers cited here,
Arm: Tham and Prager (1993); Kobayashi et al. (2005);
Lietal. (2006); Wang et al. (2006); Peters and Schaal (2006b);
Grasp: Moussa and Kamel (1998); Moussa (2004); Rezzoug
et al. (2006). This diversity arises due to the fact that con-
ventional RL methods (Sutton 1988; Watkins 1989; Watkins
and Dayan 1992), for which rigorous convergence proofs
exist, cannot be directly used as the state-action spaces in
robot control are too large and convergence will take far too
long, especially when using continuous actions, like here.
As a consequence, the state-action value function of the used
RL-method needs to be approximated by so-called function
approximation methods. This is where the diversity arises
as there is a terrifically high number of possible such meth-
ods existing (e.g. Tesauro 1995; Horiuchi et al. 1997; Fukao
etal. 1998; Gross et al. 1998; Enokida et al. 1999; Qiang et al.
2000; Takahashi et al. 1999; Takeda et al. 2001; Kabudian
et al. 2004; Wiering 2004; van Hasselt and Wiering 2007,
Sugiyama et al. 2007 for a textbook discussion see Sutton
and Barto 1998) and it lies at the discretion of the researcher
to invent more. Convergence to the optimal solution can in
general not be rigorously assured anymore. However, this
aspect is of minor importance for a robot application as any
trial will have to be interrupted if it is too long. Thus, as
soon as these systems reach a “good solution” within “rea-
sonable” time, the used method appears acceptable from an
applied perspective. Especially when considering the task of
learning to calibrate an action using a desired outcome as a
reward one is interested to perform this calibration quickly
and will be satisfied with any action which is good enough
to obtain this outcome.

To achieve this we will adopt a strategy inspired by the
place field system of rats, which is used for navigation learn-
ing as suggested by several models (Foster et al. 2000; Arleo
and Gerstner 2000; Strosslin et al. 2005), and use overlapping
place fields to structure our state-action space (Tamosiunaite
et al. 2008). Rats run on the ground and are, thus, faced
with a 2D target problem with a 2DoF motion needing about
500 place fields in a 1x1 m arena for good convergence
(Tamosiunaite et al. 2008). On the other hand, the simulated
arm, we use, operates in a 3D target domain with a 4DoF
angle space for which we require 10,000 4D place fields. As
a consequence, efficient strategies for structuring the reward
space are required, too, without which convergence to a good



Biol Cybern (2009) 100:249-260

251

2
1
y
or o~
.1O
2741 01 2
X
2
1
FA)
id
274 01 2
X

Fig. 1 Two-joint arm and an object for reaching in 3D space as well
as two projections (x, y) and (x, z) of the arm and the target object for
reaching

solution would take too long. Thus, this paper will compare
different types of visual (distance dependent) and non-visual
(touch, angle configuration) rewards showing that, with this
combination of methods, it is generically possible to find a
good solution within about 20 trials.

2 Methods
2.1 General setup

Figure 1 shows the setup of our system in 3D as well as two
planar projections. The arm has two joints with two angles
each (azimuth « 7 and elevation ¢ ») covering a 3D reach-
ing space of 4.03 units? (each arm segment is 1.0 unit long).
The target for reaching is a sphere with diameter 0.84 units.
Joint angles are constraint between 0 and 360°. Hence, when
at a constraint the arm needs to go back. This simulates simi-
lar constraints in human (e.g. elbow constraint) or robot arms.
The control and learning circuit used for arm acting and
learning is provided in Fig. 2. The four joint angles are con-
sidered to form a 4D-state space. In the state space spherical,
binary 4D-kernels ®* with a diameter between 1, 382 and
3,358 (uniform distribution) are formed in a 4D-space of
10, 000* units*. Those kernels, of which we use 10, 000 in
total, have eight trainable connections to the motor units (total
of 80, 000 connections). Kernels centers are distributed with
a uniform distribution and a coverage of about 10—12 kernels
overlapping for any given 4D-location is obtained. A kernel
is active, with an output value of 1, as soon as the 4D-joint
angle vector falls into the topographical region covered by
the kernel, otherwise kernel output is zero. As kernels are
overlapping, total activity is then given by the average over
active kernels (see definition of Q-values below).
According to the trajectory forming strategy (see below)
the actual movement is then generated from the motor unit

Y

Motor Action

(oc1,¢1,ocz,¢2) Angle vector

in 4D

f

Fig. 2 Schematic diagram of learning and action generation in our sys-
tem. The angle vector (bottom) represents a location in 4D space and,
thus, stimulates the gray kernels which fire while the white kernels are
not stimulated and do not fire. The layers of units above calculate the
finally required values A and D (top box see Eqgs. 3, 4) which control
the motors and move the joints to a new position

activity. The trajectory forming strategy includes, for exam-
ple, the exploration—exploitation trade-off and trajectory
smoothing (if applicable).

The employed learning scheme uses a certain type of
Q learning with state-action value function approximation,
where function approximation is introduced through the fact,
that we are not using discrete states, but state information is,
instead, provided by the activity of the kernels (commonly
called ‘feature vectors’ in the reinforcement learning litera-
ture) as described above.

Let us use the proximal joint (subscript “1”), and its azi-
muth component «; to explain our methods. Explanation is
the same for other angular components. We will be operat-
ing with Q values, and for the component «| two Q-values
will be defined: Qg,(s,i) and Qg (s,d), where a = i or
a = d denotes the possible actions (increase, decrease of
angle) and s a state. Q values are obtained through function
approximation:

N N
Qo (s,a) = D04 (@)®*(s5) / > k) ()
k=1 k=1

where @ (s) is the activation function of the kth kernel (either
0 or 1 in our case) in state s, 051 (a) are the weights from the
k-th kernel to the motor units for the two possible actions,
and N is the overall number or kernels in the system. Weights
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6 are adapted through learning as described in the subsection
on Q learning below.

Next we calculate the difference A, (s) used for contin-
uous action formation:

Aay (8) = Qg (5,1) — Qu, (5, d) @
Movement direction D is given by the sign function
Dy, = sign(Ag,) 3)

and movement amplitude A by the absolute value normal-
ized against the other components, which are calculated in
the same way (now omitting s for simplicity):

B | A, |
\/Aalz + A+ Ap + Ay

A “

Normalization leads to a situation where the movement vec-
tor is formed proportional to the increase/decrease values,
but the total length of the vector is kept fixed. This is done
to preserve the topology of the space in which learning takes
place.

To cover a full sphere, normally the polar representa-
tion for azimuth is defined over 360° and for elevation over
180°. With the methods used here both, azimuth and ele-
vation, are defined over 360° leading to duplicate angular
space and, hence, an over-representation. Yet it is unnec-
essary to introduce any compensatory space transformation
as the learning overcomes the over-representation anyways.
For the same reason, the action space is duplicate, too, but
this has the nice aspect of allowing us to treat actions at the
angular constraints in a continuous way avoiding having to
deal with wrap-around problems. Noise of around 7% of the
movement amplitude was added to each step. This imitates
imperfections in the control of the angle in a real robot
and introduces the required exploration component into our
model. This way exploration stays “near the path” which
leads to faster convergence than random exploration, which
we had also tried but abandoned for this reason.

Movement strategies with smoothing were employed. All
new steps in angle space were made as a combination of the
currently calculated steps combined with the previous steps:

Acurrent = (A, Agy, Ay, Agpy)current (5)
Aprevious = (Aot] 5 Aaz, Aqb] s A¢>2)previous (6)
using:

Afinal = ¢Acurrent + (1 — C)Aprevious @)

where ¢ = 0.6 was used. Smoothing helps to avoid jerky
movements in the beginning of learning and also influences
the process of learning, asin Q learning with function approx-
imation, which we are using here, the convergence pattern is
dependent on the paths performed during learning.

@ Springer

Finally, if a newly calculated angle falls outwith the con-
straint boundaries, then random steps with uniform distribu-
tion in angle space are tried out until a point satisfying the
constraints is obtained.

2.2 Learning method

From eight possible actions only four learn during a single
step. These are the directions along which the actual move-
ment has been taken. For example, if a particular angle has
been increased, the unit, which has driven the increase, learns
while the antagonistic ‘decrease unit’ will not be changed.
Furthermore, learning will affect connections of all currently
active kernels. Again we will demonstrate the learning rule
for components representing angle o .

Weight update follows an algorithm similar to conven-
tional Q-learning (Watkins 1989; Watkins and Dayan 1992).
For each angle, two actions a; 4 are possible: increase or
decrease. Let us say the current state is described by angles
s = (a1, ¢1, @2, $2)current and some action a (increase or
decrease) is chosen that leads to a state s’ = (ay, ¢1, a2,
®2)next- In our learning framework, the change in the value
04, (a) of that state-action pair follows the mean across all
activated kernels of s’

Ox, (@) = 05 (@) + plr +y Qu, (s, @)

—0% (@)1®*(s) ®)

where k is the number of the kernel to which the weight is
associated, r the reward, u < 1 the learning rate, y < 1 the
discount factor, ®*(s) the activity function for kernel k in
state s, Qq, (s, @) the Q value of the system in the next state,
for action a defined as:

N N
Qo (s',a) = D 0% (@)D" (s") / > k) )
k=1 k=1

Equivalent expressions are used for updating Q values for
the angles ¢1, o and ¢». Throughout this study we use
w = 0.7 and y = 0.7. This rule is called averaging function
approximation rule and is considered to perform more stably
(Reynolds 2002) in function approximation schemes as com-
pared to standard methods (e.g. see Sutton and Barto 1998).

Note, the algorithm is not so easy to attribute to standard
Q- or to SARSA-learning. It is neither SARSA, because it
does not take into account where the system has gone in the
next step; nor is it Q-learning, as it does not consider which
action is best in the next step. The algorithm rather considers
if continuing along the current direction is valuable accord-
ing to the Q-values of the next state Qq, (s, a) and attempts
to straighten the path.

Also Q-learning and SARSA-learning can be implemen-
ted onto the same function approximation scheme, for which
we will give the equations in the following. For Q-learning
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we use:
O, (@) = 0 (@) + plr +y max Qp(s', @)

—0s (@)1®*(s) (10)

where maximum operation runs over all actions a and all
angles (aq, oz, @1, ¢2) here subsumed under the index S,
finding the biggest value from all possible action descriptors
associated with the state s. For SARSA learning we use

0 (@) = 08 (@) + ulr + yM(s', a')

—0s (@)1®*(s) (11)

where M(s’, a’) is defined by the magnitudes of the action
components of the next performed action:

M(s/, a/) — Z Q,B(S/’ a/)2
V 8

where S runs over all four angles.

Finally, to reduce computing time, we have introduced a
variable path-length limit. If the arm has not reached the tar-
get within this limit, it is reset to the start and all changes
in Q-values learned during this trial are undone. For a new
experiment, path length limit starts with /(1) = 1,000, and
further develops according to the following recurrent equa-
tion:

12)

2.5 % k(n) if goal obtained in n™ trial

lnt+1)= l(n)420 if goal not obtained in n'® trial.

(13)
where k(n) is the number of steps to goal in trial n. That
is, the limit comparable to the previous path to the goal is
imposed once the goal has been obtained, but if the goal is
not obtained in some trial, then the limit is relaxed by 20
units.

2.2.1 Reward structure

Different rewards have been used, alone and in combination,
in this study (Fig. 3) normalized to a maximal reward of 1.
Highest reward is (usually) obtained on touching the target
(Fig. 3a), but we also define a vision-based reward struc-
ture (Fig. 3b). For this, we assume that the distance between
tip of the arm and target can be evaluated. Distance depen-
dent reward is then defined linearly along this distance. Dif-
ferent combinations of distant dependent and touch rewards
are shown in panels cl and c2 of Fig. 3. Panel d shows an
approach distance (differential) dependent reward structure
were reward is only given if the arm has approached the tar-
get, while reward is generally zero if the arm has moved
away. These reward structures are using absolute distance x
to define the reward. By contrast, we have also used a dif-
ferential, relative reward structure (Fig. 3e). For this we first
normalize the distance to target at the start of an experiment to

L[ EE— A B

= touch

g | Goal

% r location distance

b L
Position x

................ c1 c2
. touché&dist.

touché&dist.

reward(d)

Fig. 3 Schematic representation of different types of rewards used in
this study. The bar in the middle of the x-axis represents the target
location. Reward can be given only there a or on approach b or com-
bining approach with touch (c¢1, ¢2). d depicts a situation where reward
is given on approach (fop) but not on leaving (bottom, see direction of
the arrows). e Shows a purely differential reward calculated by how far
the arm has moved forward to the target

one. Then reward is given according to the relative approach
d. Hence alarger step towards target was rewarded more than
a smaller one, where absolute distance does not play any role.
In the following, we will always refer to the different rewards
used in individual experiments using the panel labels from
Fig. 3.

Furthermore, we also introduced punishments (negative
rewards) for approaching the constraint boundaries. For this,
we were increasing punishment linearly, starting with zero
at a distance of 1/20th of the field width to the border up to
a certain maximal value reached when touching the border.
Maximal values were changed in different experiments and
details will be given below.

3 Results
3.1 Individual convergence patterns

The main aim of the paper is to demonstrate condensed sta-
tistical results that help comparing convergence of learning
processes using various reward structures and other learning
parameters. However, before presenting those statistics, we
will show examples of individual training sessions to provide
a better intuition about the behavior of this system. In Fig. 4
five qualitatively different cases of system development are
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Fig. 4 Different example runs. a Quick convergence to a good tra-
jectory within about 22 trials. b Delayed convergence (*50 trials).
¢ Quick convergence in less than 20 trials and thereafter some diver-
gence and re-convergence to a different trajectory. Note from a practical
perspective the robot would just stop learning after about trial 20 and
the second phase is not of relevance. d Badly convergent case. e Good
convergence but with interspersed other, longer trajectories (light shad-
ing). Also here the robot would normally stop learning after having
found the better trajectory and ignore the others

shown: (a) quick convergence, (b) delayed convergence, (c)
intermittent episode of divergence, (d) bad convergence; and
(e) the persistently falling back onto a wrong trajectory, when
the optimal trajectory has already been learned. The bars
shown in black demonstrate successful runs; the bars shown
in gray are for unsuccessful runs, where the limit for the path
length was exhausted before the goal was reached. For these
experiments, a D type reward (Fig. 3) has been used. It is
of interest to make a practical remark here: cases shown in
Fig. 4 panels ¢ and e are largely irrelevant from a practical
point of view as any robot learning system of this kind would
either have to be controlled by an operator or—at least—
would require a stopping criterion, which tells the machine
to stop as soon as it has found a reasonably good solution.
In both cases the longer trajectories, which occur later in (c¢)
or in an interspersed way in (e), would just be ignored (or
not even be recorded). Note, Fig. 4 showed five archetypical
examples. Many times transitions between them exist, which
cannot easily be distinguished. As a consequence, from now
on we will not separate these cases anymore and perform
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statistical analyses always across whole data sets. In the fol-
lowing for every experiment we train the system for 20 trials
and then for another 100 trials we will determine the average
trajectory length and the percentage how often the system
has reached the goal. As this is indicative of the average
convergence property of a certain setup, it will allow us to
compare strategies. In general we repeat every experiment
50 times.

Observations show that for best learning regimes diver-
gent cases never occur, but various intermittent phenomena,
or delayed convergence were present. For bad regimes about
three to five divergence cases happen during 50 experiments,
and quick and clearly convergent cases are relatively rare
(e.g. 15 out of 50), the biggest proportion being taken by
delayed convergence or by cases with intermittent behav-
iors.

3.2 Comparison of learning modes

In the simplest case reinforcement is only given when the
target is actually hit (reward type A). Note, this would cor-
respond to a task of finding an unknown object in the dark.
As touching is a singular, rare event, this leads to a pro-
nounced temporal credit assignment problem for large
state-action spaces such as here. Thus, this case will only
be considered for comparison reasons and not analyzed any
further.

Of much more relevance for robotic applications is the
case where visual information is used to position the arm
(visual servoing) and this can be encoded by a distance depen-
dent reward structure (reward type B). On touching additional
reward may be given (reward type C). Furthermore, it makes
sense to avoid giving a distance dependent reward when the
arm has actually moved away from the target (reward type D).
First, experiments to compare influence of these three differ-
ent basic reward structures were performed. In Fig. 5a the
average number of steps to target is shown and in (b) the
percentage of cases reaching the goal is presented. The bars
show the standard deviation of the distributions. We observe
that in the case where vision is excluded the trajectories of
the arm are around ten times longer as compared to cases
with vision. Standard deviation is 218 steps, and is clipped
to preserve the scale of the figure. Similarly, the percent-
age of attaining the goal without vision is only around 50%.
This happens because in 3D space the target only takes a
small part of the total space and it is not easy to hit it by
chance. Furthermore, due to the singular reward structure,
kernels with non-zero Q-values after around 100 runs are
still too sparse to give clear indications about preferred tra-
jectories in the 4D angle space. Runs for distance rewards
(middle column) are substantially longer and the percentage
of successful trials is smaller, as compared to the case that
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Fig. 5 Statistics for different reward types. a, b Two distance depen- g gg S+ g 7 n?_, é u?_, é S
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For ¢, d slope values from left to right are: 1/3 (no touch reward case), g & b4
1/3, 1/4, 1/5, 1/10, 1/20, 1/50, reaching values at the goal boundary 2

correspondingly: 0.86, 0.65, 0.52, 0.26, 0.13, 0.05. Touch reward is 1

includes the approach distant dependent component (right
column). Thus, in the following, we will focus our attention
on cases with a approach distant dependent reward compo-
nent, as these have noticeable better convergence properties
compared to the others.

Next we analyze the steepness of the distance dependent
reward curve in Fig. 5c, d. Reward for reaching the target was
kept at one and the slope of the distant dependent reward was
varied from 0.86 (almost reaching one, the value of the touch
reward) at the border of the target for the steepest slope to
down to 0.05 for the shallowest slope. One can observe that
for steep slopes (c, d left) values are quite similar and better
than for shallow slopes. The first column shows the limiting
case when no special reward for touching was applied. Here
the entire process of approaching the target was regulated
using exclusively distance-dependent rewards. This case in
terms of convergence appears among the best cases, but step
length was longer than for some of the mixed cases. Thus,
for further experiments we were choosing slope steepness
0.25, which seems a good compromise. Using this steepness
parameter, more reward structures were explored in Fig. 6a,
b. In the columns from left to right, we compare (1) differ-
ential reward (type E), (2) approach distance (type D), (3) a
variant of type D, where we always give the same amount of
reward r = 0.3, and (4) type D but applying punishment of
the same size as reward on approach would be, if the action
leads away from the goal by more than a certain distance. In
general results are very similar where the rightmost column
is slightly better than the others.

When applying distant dependent rewards, the problem
arises that the joint might be drawn to go towards some direc-
tion, though this movement is not allowed due to physical
limitations of the joint construction. For example here the
joints were not allowed to cross the border of 0-360°. The

Fig. 6 Statistics for other types of rewards. a, b As per annotation at
the bottom (see Fig. 3). ¢, d Reward Type D is combined with punish-
ment on approaching the maximally allowed joint angles. Note light
gray shaded cases are identical across panels

position and size of the reward was chosen such that again
and again learning tried to violate these constraints. This
problem can be mitigated best by applying punishment also
at the constraints as described in the methods section. This
additional mechanism leads to a noticeable improvement of
convergence times (Fig. 6¢) and a much higher percentage
of convergent cases (Fig. 6d).

In the columns from left to right in Fig. 6¢, d maximal pun-
ishmentis 1, 5, 20, 35, 50, 75 and 100. The rightmost column
shows a control experiment without punishment. Reward
structure was the same as in panels A,B column 2. Hence
gray shaded columns in panels a, b are the same as those in
c, d.

One can observe that punishment at constraints in gen-
eral improves rate and speed of convergence. Performance
of learning first increases with increasing punishment values
and approaches an optimum around a punishment of 35-75
and then slightly drops again. Of importance, however, is that
punishment at constraint works rather reliably over a large
parameter range and that the variances have been drastically
reduced. Hence quick convergence became rather reliable
with this mechanism.

Combining constraint-based punishment, specifically
employing the case with the maximal punishment value 35,
with punishment for going away from the reward, as descri-
bed before (column 4 in panels A,B), did not provide better
results, remaining in the range of an average of 13—14 steps
to the goal with around 90% of successful trials.

The system was also tested with changing the position of
the goal, and reverting positions of start and goal, to exclude
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Fig. 7 Statistics for other types of learning methods. PS = path straight-
ening (our method). We used reward type D, no punishment, discount
factor y = 0.7 for all cases except case “fully discounted”, where we
have y =0

possibilities of some special circumstances which were only
providing good performance for one specific task. Trials with
changed position were providing similar average trajectory
length, and success percentage results.

3.3 Comparison of methods

3.3.1 Comparing different update methods using
the same function approximation

In the following section, we will use always the same function
approximation method and compare different update algo-
rithms like Q-learning and SARSA-learning with our path
straightening PS as well as with a fully discounted version
of the algorithms (Fig. 7). In general, all methods produce
similar results where the path straightening method is only
non-significantly better than the others. Hence, while reward
structure and function approximation methods are clearly
influencing the performance in a critical way, the choice of Q-
value update method does less so. “Fully-discounted” refers
to a simulation where y = 0 has been used. This case also
produces similar results arguing that it would be possible for
this problem to reduce the learning problem and even operate
with fully-discounted rewards. Note, all update equations (Q,
SARSA, PS) become the same when using y = 0. Care, how-
ever, has to be taken in this case that there are no states with
zero or indistinguishable reward, where a fully discounted
method would fail. As this can in general not be assured, a
fully discounted procedure should not be adopted. In general,
the conclusion of this subsection is that the actual choice of
the update method is not critical as long as an appropriate
function approximation as well as reward structure is being
used.

@ Springer

3.3.2 Comparing to natural actor critic reinforcement
learning

Peters and Schaal (2006b, 2007, 2008) use policy gradient
methods for robotic applications. These form a different class
of RL methods as compared to the one analyzed in this study,
as the policy is updated not in every step, but only after sev-
eral trajectories have been produced. Also no representation
of state is being considered, but actions are described directly.
As currently natural actor-critic RL is often considered to be
the method of choice in robotics we made a comparison of
our method to the version of the episodic natural-actor critic
with time-variant baseline for learning the same reaching
task, following Peters and Schaal (2008). We have made a
simplifying assumption that the best path to goal is straight.
We were describing the trajectory by a difference equation:

s+ 1) =) +u) (14)

where state vector s (#)=[a (1), ¢1(t), a2(), P2 M1 includ-
es the analyzed angles, and u(¢) is a 4D control signal. We
used the following normal distribution N (-) for the control
signal: u(t) ~ N (6, o21), where 6 is a 4D vector of con-
trol averages and / is the 4 x 4 unit matrix. The value of
o determines the variability (“exploration”) in the different
trajectories.

Reward was provided under reward structure C (Fig. 3),
where in each step the distance to the target was evaluated
and a bigger reward was given on touching the target. We
did not use the (D)-reward structure (Fig. 3) preferred in our
on-line method, as the preliminary assumption for the imple-
mented natural actor-critic was a straight trajectory and the
(D)-structure is only meaningful when curved trajectories are
allowed. We used a discount factor of y = 0.95, to empha-
size rewards that are obtained earlier. If the trajectory was
leaving the allowed angle range (0, 360°), negative rewards
of the size of —1 were given. Each trajectory was composed
of 15 steps of the same average length as for our on-line
learning method. We always used the same total trajectory
length (that is, we did not stop the trajectory after a touching
event had happened) and were giving maximum reward sev-
eral times, if the trajectory stayed in the volume of the object
for several steps.

We used the natural actor-critic algorithm with time-
variant baseline to optimize 6 and o. An experiment was
made using the same initial position of the arm, as well
as the same position of the ball as in our on-line learning
experiments. We were using hand-tuned parameters, as pro-
posed by Peters and Schaal (2008). Learning for this type of
algorithm is divided into “epochs”. Every epoch consists of
20 trajectories after which the gradient needed for the RL-
update could be calculated. One learning “trial” consists of
n epochs, where we usually chose n = 50 leading to 1,000
executed trajectories. Step size for the gradient calculation
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Fig. 8 Learning curves for natural actor-critic: a good convergence
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was tuned to obtain quick convergence and at the same time
relatively stable optimization performance. Using less than
20 trajectories in a single epoch to evaluate the gradient made
the learning process unstable. Initial values for 6 were chosen
randomly from the interval [—1, 1] with uniform distribution.

At first we observed that usually one learning trial (50 x 20
traj.) was enough for the algorithm to lead to a good final tra-
jectory. In Fig. 8a an example of a well convergent trial is
shown, while in Fig. 8b we show an example with delayed
convergence. This shows that (similar to our algorithm) con-
vergence varies and, thus, we performed 100 learning trials
for a statistical analysis (100 x 50 x 20 traj.) were we used
100 different initial values for the 6-vector. From this sta-
tistics, in Fig. 8c the average number of successful reaches
obtained at a certain epoch is shown. The marked crossing
point (x = 16.48, y = 15) is of interest as this represents
15 successful reaches after on average 16.48 epochs of here
amounting to about 329.54 performed trajectories. By con-
trast, in our algorithm we get 15 successful reaches after
about 20 trajectories (as we do not have to use epochs, hence,
for us every “epoch” is just one single trajectory). However,
the intermediate trajectories may be longer (curved) in our
case.

4 Discussion
In this paper, we have developed a novel action approxima-

tion scheme for reinforcement learning, and implemented
three methods: path straightening, Q-learning and SARSA

-learning based on this scheme. This kernel based approach
for value function approximation was inspired by the place
-field system in the hippocampus of rodents (Tamosiunaite
et al. 2008). Our focus lay on a comparison of different
reward structures and we could show that a combination of
distance dependent rewards with constraint punishment and
extra reward on touching will lead to a fast convergence to
“a good” trajectory.

A central problem for the use of RL in large state-action
spaces is that convergence of conventional methods will take
far too long. Thus, value function approximation is required
for which a wide variety of methods exists. Alas, only few of
them have proven convergence properties (Sutton and Barto
1998; Gordon 2001; Reynolds 2002; Szepesvari and Smart
2004) and those are in praxis many times not the fastest ones.
Hence, the field of applied robotics is largely uninterested in
the mathematical rigor of a given method as long as the trade-
of is reasonable between goodness of solution and time to
find it. From a practical perspective, on any humanoid robot
learning will be stopped by force as soon as a predefined
variable, which handles this trade-off, approaches a desired
threshold.

The control of a multi-joint arm poses a terrific prob-
lem for RL methods as the state-action spaces are in general
very high, needing to cover a space—time continuous system
within which redundant solutions exist. While a very large
number of papers exist on space-time continuous
low-dimensional problems (e.g. Qiang et al. 2000; Gross
et al. 1998; Gaskett et al. 2000), only few articles try, to
tackle this problem with a reasonable degree of complexity
in a high dimensional system (Perez and Cook 2004; Peters
and Schaal 2007, 2008). Also many times action spaces of
the problems solved are discrete or quite limited (Enokida
et al. 1999; van Hasselt and Wiering 2007; Martinez-Marin
and Duckett 2004) and, even if continuous state representa-
tions are used, actions are kept discrete in continuous task
approximations (Enokida et al. 1999; Li et al. 2006). This is
possible when action spaces are small, but with bigger action
spaces (4D in our case) the usage of discrete actions becomes
impractical. If continuous actions are to be used, often meth-
ods for the interpolation of discrete samples are employed
relying on weighted sums or wire fitting (Gaskett et al. 2000;
Takeda et al. 2001; van Hasselt and Wiering 2007). Instead,
here we are offering a generic approach to continuous action
formation, where reinforcement learning is implemented on
the features defining continuous actions.

A recent and quite successful contribution to RL in robot-
ics concerns the so-called natural-actor critic method (Peters
and Schaal 2006b, 2007, 2008). This algorithm belongs to the
class of policy gradient methods (Williams 1992; Baxter and
Bartlett 2000; Sutton et al. 2000), which are structurally quite
different from the one analyzed here (see Sect. 3.3.2 above for
details). Policy gradient methods work directly with action
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representations, and thus need much less parameters than
on-line RL methods. Also one can choose appropriate repre-
sentation of the initial trajectory. The advantageous feature of
the implemented natural actor critic method, to our observa-
tion, is that the convergence performance does not decrease
too dramatically with rising dimensionality of the problem,
what is very important in robotic applications. Yet the natu-
ral actor-critic in our implementation was quite sensitive to
parameter choices, and the number of trajectories required
to obtain a good policy was one order of magnitude larger
than for our on-line method. The inventors of the natural actor
critic method originally implemented it in a different context.
They start with a very close to target trajectory and attempt
to improve it, while here the method was applied for learning
from scratch, without any “close to target” initial trajectory.
Although formulation of robot learning tasks as in (Peters
and Schaal 2006a, 2008), with a very close to optimal ini-
tial trajectory obtained from demonstration is very appealing,
tasks exist (especially for when there is a large mismatch in
embodiment between human and robot) where there is no
possibility to obtain a (human-) demonstration, and our cur-
rent experiments indicate that on-line learning methods, like
the method proposed here, may be more efficient in such
“learning from scratch” tasks.

Another theoretical development of the current study is the
analysis of different reward structures for RL in visual servo-
ing tasks. Robotic applications tend to be multidimensional,
and if a reward is provided only at the goal, then additional
means to guide a robot to the target are required, like ‘learn-
ing from easy missions’ (hence, bootstrapping the system
with simple tasks) or using simpler controllers (like teach-
ers, Martinez-Marin and Duckett 2004), otherwise learning
times would be impractically long. In image based visual ser-
voing (IBVS) systems, richer reward structures were many
times used, attempting to achieve convergence in bigger state
spaces (Leonard and Jagersand 2004; Perez and Cook 2004).
We analyzed and compared about half a dozen of vision-
based reward structures and studies addressing applications
of visual servoing could gain from that comparison using the
structures that performed best according to our modeling.
Although we are investigating these structures in the frame-
work of position based visual servoing (PBVS), similar ones
could be applied to IBVS, using visual error instead of dis-
tance. Possibly some adaptations of the method we used here
would be required, as mapping from distance to visual fea-
tures is rather complex.

Of specific interest is that our formalism is very simple
and can still handle large state-action spaces in a moder-
ately high-dimensional problem. Currently, this method is
being implemented on ARMAR III, a humanoid robot built
by the University of Karlsruhe (Asfour et al. 2006). Each
arm has seven degrees of freedom: three DOF in the shoul-
der, two DOF in the elbow and two DOF in the wrist. For
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this purpose, a control schema of the arm is realized which
makes use of hypothesis and results from neurophysiology on
human movement control (Soechting and Flanders 1989a,b).
Soechting and Flanders have shown that arm movements are
planned in shoulder-centered spherical coordinates and sug-
gest a sensorimotor transformation model that maps the wrist
position on a natural arm posture using a set of four param-
eters, which are the elevation and azimuth (yaw) of both the
upperarm and forearm similar to the problem addressed in the
current paper. Once these parameters are obtained for a given
position of the wrist, they are mapped on the joint angles
of the shoulder and elbow of the robot arm, which com-
pletely define the wrist position. For more details the reader
isreferred to (Asfour and Dillmann 2003). In the Introduction
we had mentioned the task of recalibrating an agents move-
ment, which is the task to be performed by ARMAR III. The
agent holds a container full of liquid and needs to learn filling
another glass standing in front. Figure 9 shows a simulation
of this task and the agent’s performance. A full description
of this simulation and its modeled physics goes beyond the
scope of this paper. This figure, however, is meant to show
the efficiency of our new method in a task which is difficult to
achieve by methods other than reinforcement learning and we
note that already after three trials (a) the agent has learned the
task to more than 50%. In panel (b) one sees that the agent
moves around over the glass and keeps on pouring liquid
until its container is empty. Panel (c) shows the vector field
of O-values, which point towards the center of the glass. This
experiment carries a natural reward structure (liquid filled)
and is, thus, well-adapted to the assumptions of RL and the
methods developed here allow solving this task with very few
trials only. In the central part of this paper we deal, however,
with position based visual servoing (Chaumette and Hutch-
inson 2007a), assuming that the inverse kinematics is not
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Fig. 9 Example of a glass-filling RL task as mentioned in the Introduc-
tion, where the agent learns to recalibrate a prior learned target position.
The simulated agent is supposed to learn approaching a glass (circles)
to optimally pour liquid into it. The reward is defined as the amount
of liquid filled into the glass. The agent starts exploring from a loca-
tion close to the glass, reached for example by plain visual servoing
or by learning from demonstration. a Return versus number of trials.
b Example trajectory. ¢ Q-vector field after 20 trials
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known and that the arm has to learn to target an object with-
out this knowledge. This task had been chosen as it is much
harder than the glass-filling problem and we wanted to show
that our methods still reach quite a high performance in order
to raise confidence in this approach.

In summary, our method is meant to provide a solution
with some practical relevance for robotics, but, given the ker-
nel structure, it is also possible to combine it with a newly
developed biophysical framework for implementing Q- or
SARSA learning by an LTP/LDT based differential Heb-
bian framework (Worgotter and Porr 2005; Kolodziejski et al.
2008). Hence, from a biophysical point of view receptive
field based (i.e., kernel based) function approximation could
indeed operate in a Hebbian network emulating not just cor-
relation based unsupervised, but also reward based reinforce-
ment learning.
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