
counting range of one hand, suggesting that finger counting postures

only activate the corresponding mental number representations when

embedded in an appropriate task. Second, the absence of a counting

hand congruency effect shows that using the non-starting hand does

not necessarily activate the respective mental representation for larger

numbers. Third, the finding that finger postures and numbers interact

based on their respective relative sizes demonstrates a more flexible

size activation through finger postures than previously assumed. This

is in line with the idea of a generalized magnitude system, which is

assumed to ‘‘encode information about the magnitudes in the external

world that are used in action’’ (Walsh 2003, p 486). Specifically,

showing almost all fingers of one hand is associated to large mag-

nitudes and showing very few fingers to small magnitudes. The

present study shows that only under certain task demands subjects

activate a one-to-one correspondence between fingers and numbers.

In other situations, magnitudes might not have to be exactly the same,

but rather proportional to be associated.
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Object names correspond to convex entities
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Commonly one assumes that object-identification (and recognition)

requires complex—innate as well as acquired—cognitive processes

(Carey 2011), however, it remains unclear how objects can be indi-

viduated, segregated into parts, and identified (named) given the high

degree of variability of the sensory features which arise even from

similar objects (Geisler 2008). Gestalt laws, relying on shape

parameters and their relations; for example edge-relations, compact-

ness, or others; seem to play a role in this process (Spelke et al. 1993).

Specifically, there exist several results from psychophysics (Hoffman

and Richards 1984, Biederman 1987, Bertamini and Wagemans 2013)

and machine vision (Siddiqi and Kimia 1995, Richtsfeld et al. 2012),

which demonstrate that convex-concave surface transitions can be

used for object partitioning.

Here we are now trying to discern to what degree such a parti-

tioning corresponds to our language-expressible object

‘‘understanding’’. To this end, a total of 10 real scenes, consisting of

3D point cloud data and the corresponding RBG image, have been

analyzed. Scenes were recorded by RGB-D sensors (Kinect), which

provide 3D point cloud data and matched 2D RGB images. Scenes

were taken from openly available machine vision data bases (Rich-

tsfeld et al. 2012, Silberman et al. 2012). We segmented the scenes

into 3D entities using convex-concave transitions in the point cloud

by a model-free machine vision algorithm, the details of which are

described elsewhere (LCCP Algorithm, Stein et al. 2014). This is a

purely data-driven segmentation algorithm, which does not use any

additional features for segmentation and works reliably for in-door

RGB-D scenes with a depth range of approx. 0.5 to 5 meters using

only 2 parameters to set the resolution. Note, due to the limited spatial

resolution of the RGB-D sensors, small objects cannot be consistently

labeled. Thus, segments smaller than 3 % of the image size were

manually blackened out by us as they most often represent sensor

noise. We received a total of 247 segments (i.e. about 20–30 per

image). Segments are labeled on the 2D RGB image with different

colors to make them distinguishable for the observer. To control for

errors introduced by image acquisition and/or by the computer vision

algorithm, we use the known distance error function of the Kinect

sensor (Smisek et al. 2011) to calculate a reliability score for every

segment.

We asked 20 subjects to compare the obtained 247 color-labeled

segments with the corresponding original RGB image, asking: ‘‘How

precisely can you name it?’’; and recorded their utterances obtaining

4,940 data points. Subsequently we analyzed the utterances and

divided them into three groups: 1) precise naming of a segment (e.g.

‘‘table leg’’), where it does not play a role whether or not subjects

would use unique names (e.g. ‘‘table leg’’, ‘‘leg’’, and ‘‘table support’’

are equally valid), 2) definite failure/impossibility to name a segment

and 3) unclear cases, where subjects stated that they are not sure about

the identification.

One example scene is shown in Fig. 1a. Using color-based seg-

mentation (BenSalah et al. 2011) the resulting image segments rarely

correspond to objects in the scene (Fig. 1b) and this is also extremely

dependent on illumination. Unwanted merging or splitting of objects

will, regardless of the chosen segmentation parameters, generically

happen (e.g. ‘‘throat + face’’, ‘‘fridge-fragments’’, etc. Figure 1b).

Instead of using 2D color information, here point clouds were 3D-

segmented along concave/convex transitions. We observed (Fig. 1b)

that subjects many times used different names (e.g. ‘‘face’’ or ‘‘head’’)

to identify a segment, which are equally valid as both describe a valid

conceptional entity (an object). There are however several cases

where segments could not be identified. We find that on average 64 %

of the segments could be identified, 30 % not, and there were 6 %

unclear cases. Are these 30 % non-identified segments possibly

(partially) due to machine vision errors? To assess this, we addi-

tionally considered the reliability of the individual segments. Due to

the discretization error of the Kinect (stripy patterns in Fig. 1c), data

at larger distances become quadratically more unreliable (Smisek

et al. 2011) leading to merging of segments. When considering this

error source, we find that subjects could more often identify reliable

segments (Fig. 1e, red) and unrecognized cases dropped accordingly

(green). The red lettering in Fig. 1d marks less reliable segments and,

indeed, identification is lower or more ambivalent for those segments

as compared to the more reliable ones.

The here performed segmentation generically renders identifiable

object parts (e.g. ‘‘head’’, ‘‘arm’’, ‘‘handle’’ of fridge, etc.). Clearly,

no purely data-driven method exists, which would allow detecting

complex, compound objects (e.g. ‘‘woman’’) as this requires addi-

tional conceptual knowledge. Furthermore, we note that we are here

not concerned with higher cognitive aspects, relating to context

analysis, hierarchization, categorization, and other complex pro-

cesses. Our main observation is that the purely geometrical (low-

level) breaking up of a 3D scene, most often leads to entities for

which we have an internal object or object-part concept which may
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reflect the low-level perceptual grounding of the ‘‘bounded region’’

hypothesis formulated by Langacker (1990) as a possible foundation

for grammatical entity construal.

It is known that color, texture and other such statistical image

features vary widely (Geisler 2008). Thus, object individuation cannot

rely on them. By contrast, here we find that convex-concave transi-

tions between 3D-surfaces might represent the required prior to which

a contiguous object concept can be unequivocally bound. These

transitions render object boundaries and, consequentially leads to the

situation that we can name them.

In addition, we note that this bottom-up segmentation can easily

be combined with other image features (edge, color, etc.) and also—if

desired—with object models where one now can go beyond object

individuation towards true object recognition.
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Haptic feedback systems can be designed to assist vehicular steering

by sharing manual control with the human operator. For example,

direct haptic feedback (DHF) forces, that are applied over the control

device, can guide the operator towards an optimized trajectory, which

he can either augment, comply with or resist according to his pref-

erences. DHF has been shown to improve performance (Olivari et al.

submitted) and increase safety (Tsoi et al. 2010). Nonetheless, the

human operator may not always benefit from the haptic support

system. Depending on the amount of the haptic feedback, the operator

might demonstrate an over- reliance or an opposition to this haptic

assistance (Forsyth and MacLean 2006). Thus, it is worthwhile to

investigate how different levels of haptic assistance influence shared

control performance.

The current study investigates how different gain levels of DHF

influence performance in a compensatory tracking task. For this

purpose, 6 participants were evenly divided into two groups according

to their previous tracking experience. During the task, they had to

compensate for externally induced disturbances that were visualized

as the difference between a moving line and a horizontal reference

standard. Briefly, participants observed how an unstable air- craft

symbol, located in the middle of the screen, deviated in the roll axis

from a stable artificial horizon. In order to compensate for the roll

angle, participants were instructed to use the control joystick.

Meanwhile, different DHF forces were presented over the control

joystick for gain levels of 0, 12.5, 25, 50 and 100 %. The maximal

DHF level was chosen according to the procedure described in

(Olivari et al. 2014) and represents the best stable performance of

skilled human operators. The participants’ performance was defined

as the reciprocal of the median of the root mean square error (RMSE)

in each condition.

Figure 1a shows that performance improved with in- creasing

DHF gain, regardless of experience levels. To evaluate the operator’s

contribution, relative to the DHF contribution, we calculated the ratio

of overall performance to estimated DHF performance without human

input. Figure 1b shows that the subject’s contribution in both groups

de- creased with increasing DHF up to the 50 % condition. The

contribution of experienced subjects plateaued between the 50 and

100 % DHF levels. Thus, the increase in performance for the 100 %

condition can mainly be attributed to the higher DHF forces alone. In

contrast, the inexperienced subjects seemed to completely rely on the

DHF during the 50 % condition, since the operator’s contribution

approximated 1. However, this changed for the 100 % DHF level.

Here, the participants started to actively contribute to the task

(operator’s contribution [1). This change in behavior resulted in

performance values similar to those of the experienced group Our

findings suggest that the increase of haptic support with our DHF

system does not necessarily result in over-reliance and can improve

performance for both experienced and inexperienced subjects.
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According to the embodied cognition framework, comprehension of

language involves activation of the same sensorimotor areas of the brain

that are activated when entities and events described by language

structures (e.g., words, sentences) are actually experienced (Barsalou

1999). Previous work on the comprehension of sentences showed

support for this proposal. For example, Glenberg and Kaschak (2002)

observed that judgment about sensibility of a sentence was facilitated

when there was congruence between the direction of an action implied

by the sentence and the direction of a movement required for making a

response,while incongruence led to slower responses. It was also shown

that linguistic markers (e.g., negation) could modulate mental simula-

tion of concepts (Kaup 2001). This finding was explained by the two-

step negation processing: (1) a reader simulates a sentence as if there is

no negation; (2) she negates the simulated content to reach fullmeaning.

However, when a negated action was announced in preceding text,

negated clause was processed as fast as the affirmative one (Lüdtke and

Kaup 2006). The mentioned results suggest the mechanism of negation

processing can be altered contextually.

In this study, we aimed at further investigating the effects of

linguistic markers, following the assumptions of embodied

Fig. 1 a Performance of the experienced and in experienced

participants as well as the baseline of direct haptic feedback (DHF)

assistance without human input for increasing haptic gain. b The ratio

of overall system performance to DHF performance without human

input for increasing haptic gain
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