REPRINTED FROM

REVIEWS
IN THE

NEUROSCIENCES

EIMTOR-IN-CHIEF

J.P. Huston

Institute of Physiological Psychology
University of Ditsseldorf

40225 Disseldorf/Universititsser. 1
Germany

Albert ). Aguayo
Monireal, Canada

Allan Basbaum
San Francisco, IS
. Blakemore
Cford, LK

T.V.P. Bliss
London, UK,

Flovd E. Bloom
La Jolia, T7SA
Ian Creess
Mewark, M1 LISA
T.J, Crow
Ouford, UK
Jeffrey A Gray
London, LK

EDITORIAL BOARD

James 5. Guselia
Boston, USA

I. Hanin
Mawvwood, 1L, TISA
R.AC. Hughes
London, LK

J.8. Kelly
Edinburgh, LIk

A.D. Korczyn
Tel Awiv, Tsrasl

H. Lal
Fart Waorth, TX, LISA

P.L. Lantos
London, LK

Bruce 5, McEwen
Mew York, USA

Eldad Meinmed
Jerusalem, Tseaedl

B.S. Meldrum
London, UK

J, MNewson-Davis
London, TK

Trevor W Robhins
Cambridge, UK

P. Roberts
Southampron, LK

M. Rossor
London, TTK

Paul R. Sanberg
Tamipa, FL, USA

Charles F. Stevens
Mew Haven, CN, LISA

Published quarterly by Freund & Pettman, UK. 2000 subscription price LIS3310.
Website: hrip:/‘waww uni-dugsseldor!. de/WWW/MathNat/ Phy=Psy/ AGHuston/rev/reviews himl

and htip:/fwww angeifire.com/ilfreund/

Indexed and abstracted by: BIOSIS, EMBASE/Excerpta Medica; Index Medicus, Neurescience Citation Index,
Referenice Update, Research Aler

Aims and Scope: This journal provides a forum in which those working in the neurosciences can
find critical evaluations of selective topics. As such, reviews are accepted on the understanding that
they will contain eritical appraisal of specific areas and that they will not simply consist of a report
of the author’s own research, The journal is a prestige reference work providing a source of
reference to all these in the neuroscience area.

Readership includes: neurologists, psychiatrists, neuropharmacologists. neurochemists, neuro-
physiologists, behavioral psychologists and pharmacologists, neuroanatomists and other interested

physicians.




© Freend & Petoman, UK

Reviews in the Neurosciences, 11, 127-146 {2000)

The Control of Low-Level Information Flow in the Visual System

Katrin Suder and Florentin Wirgtter

Institute of Physiology, Department of Neurophysiology, Rubr-University, Bochum, Crermany

EYNOPSIS

Visual information processing needs to be
error free and efficient. Qur visual system tries
to achieve the first goal by accommodating a
wide wvariety of visual algorithms for the
exiraction of the relevant features im the scene,
while at the same time the second goal is
addressed by controlling the amount of visual
information flow in the network employing
selective attention, Attentional or pre-attentional
mechanisms are found throughout many visual
areas and these processes may start as early as
in the visual thalamus (lateral geniculate
nucleus, LGN). In this review we pay particular
attention to experimental and theoretical
findings which indicate that even low-level
structures, such as LGN and V1, can play a
major role in the flow-control of visual
information.

KEY WORDS

attention, computational maodels, thalamus,
dynamic receptive field restructuring, visual cortex,
EEG, brainstem

1. INTRODUCTION

The surrounding world provides us with far
more input than we can process simultaneously due
to the limited capacity of the brain. To be able to
deal with the huge amount of information
bombarding us, a selection process has to be carried
out. The necessity of such a process has been
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shown by psyvchophysical experiments /26,86 (and
references  therein)/ and also by theoretical
considerations, proving that a so-called general-
purpose vision would not be possible without a
reduction of the input to be processed /106,111,
This is exactly where affention comes in as the
process that selects a particular piece of inform-
ation or, for the visual system, a spatial area out of
the whole sensory pattern for further processing.
But how can attention be defined?

In 1890, for William James in his Principles of
Psyvchology, a definition was obvious and without
any doubt: ‘Everyone knows what attention is. It is
the taking possession by the mind [...] of one out of
several simultaneously possible objects of trains of
thought.” But throughout later research it has turned
out that dealing with attention is not as easy as
James thought. Attention has many different facets
and components and it has been studied by all the
different disciplines trying to understand the brain:
psychology /38.94/, psychophysics /33/, neurology
{26/, neuroimaging /37/, neurophyvsiology /22,27,
33/ and computational neuroscience /72.79,107/.
Most of the disciplines have their own focus and
their own definition of attention.

In the context of this review we can give an
operational definition: Exposed to a number of
stimuli, that are equal in their physical appearance,
both animals and humans can respond to certain
stimuli while disregarding others {without the need
for saccadic eye movements]). This internal, covert
focus, this selection of (spatial) items is the basic
operation of spatial selective attention. By selecting
information which is to be gated to higher regions
for further processing, attention will modulate the
signal on its way through the brain. Thereby, a
second major problem of cortical information
processing is solved: the binding problem /33,112/.
Aftention links (or binds) information together
which is distributed over the different parallel
pathways, i.e. the ventral and the dorsal stream
103/,
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128 K. SUDER AND F. WORGOTTER

Attention can be classified in several ways, e.g,
by its different procedural components (engage.
disengage, move) /86/ or by the different regions
involved. Posner and coworkers suggested differen-
tiation between two subsystems: the posterior and
the anteriot attentional systems /85/. The former -
consisting of subcortical areas such as the thalamus
and the superior colliculus - seems to be involved
in directing attention. The latter involves the
anterior cingulate corfex and portions of the basal
ganglia. This anterior or executive system has been
suggested to be responsible for actions and for
ideas.

Preattention vs. attention

From a computational point of view, a different
classification might be useful, namely one due to
the two major functional mechanisms used by
attention: bottom-up vs. top-down processing /12,
13,22,33,72.74.79,94,115/ (Table 1).

Bottom-up (pre-jattention is data-driven and
involuntary, Any kind of new or salient stimulus

will automatically attract our attention, ea: the
random flight of a large fly or the newly red-dyed
hair of our partner. Bottoem-up attention accounts
for pre-attentive effects, i.e. the well-kiown pop-
out phenomenon. These effects are transient (0-300
ms), since the saliency of a new object quickly
decays with time, and they are fast, to enable us to
react adequately to new situations. The speed can
be ensured by low-level implementation, therefore
bottom-up attention should also show effects in the
early visual system (V1 or even subcortical, see
Section 2).

In contrast, top-down attention acts on a differ-
ent, longer time-scale (up to several seconds). We
all know from experience that we can voluntarily
direct attention to a specific region of interest, e.g.
while searching for a certain object. This task-
driven form of attention must involve high-level
regions, i.e. those responsible for cognitive funec-
tions, Top-down attention is what James described
in his definition and ¥t is part of conscious
processing /4/.

TABLE ]

Bottom-up vs. top-down attention

[ preattentive processing attentive processing
data flow bottom-up top-down
driven by input data task data (memory)

controlled by

unconscious, involuntary

conscious, voluntary

processed where

low-level regions

high-level regions

time-scale

transient (0-300 ms)

sustained (100 ms - seconds)

responsible for

pop-out effects

connection schema

OO

Q(Q

'
i
1

i

IHpUE stimibus

kst stimualug

The figures at the bottom show that top-down influences {right) can actually overrule bottom-up attention
(left), i.e. although the stimulus presented 1o the right neurons is more salient, the left location can *win’ if

additional top-dowr excitation is on.
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Psychological models

Early evidence for the existence of covert visual
attention came from psychophysical reaction time
studies (see /84,102,115/ for reviews). Subjects are
asked to find target objects in a visual display. It
has been shown that in trials where a valid cue was
given before the target presentation, reaction times
were significanily reduced.

The resulis of several years of research led to
the formulation of many different models and
hypotheses as to how the search experiments could
be explained, e.g. Treisman’s fearure integration
theory [103/ or Julesz’s texton theory /58! Many of
the proposed models share the same basic idea,
which is probably the most prominent and also
most accepted psychological model: the spor- or
searchlight paradigm /15,28.75/. It has two stages.
First, as soon as a new stimulus is presented, the
whole visual field is processed in parallel during
the pre-attentive mode. For many tasks (especially
for pop-out effects) this mode alone is sufficient.
For more complex tasks (conjunctive search), a
different, second strategy is needed; ie. the
attentive mode described by the spotlight metaphor.
Only a limited area is highlighted and analyzed in
detail. whereas the rest is in the dark. In a serial
process the whole field is scanned. The enhance-
ment of a specific region has different effects
characteristic for the processing of attended stimuli:
reaction times are reduced. discrimination thresh-
olds are lowered and neural activity 15 increased
/86,94 (and references therein)/.

Bince not all search experiments could be
explained by the purely bottom-up approach of the
searchlight hyvpothesis, top-down components were
added to the model. In his guided search model
Wolfe proposed that top-down processes favor
features belonging to the target object /115/,

A different view emphasizes the idea that
attention always works as a parallel process /17,33/.
In the framework of this biased competition model
{334, attenfion is not a fast, serial scanning mech-
anism, but a slow. competing interaction of all
neurons. [t can be biased by bottom-up mechanisms
such as figure-background stimuli or by top-down
mechanisms that select certain behaviorally relev-
ant objects.

MOLUME 11, BNO, 2-3; 2000

Owver the vears many hybrid models have been
developed which integrate serial, parallel, bottom-
up and top-down processing (e.g. /50/). It has
furthermore been proposed that the notion of serial
vs. parallel search should be omitted altogether,

-since there is no significant experimental evidence

for this kind of dichotomy /115/ (for a discussion of
the two processing strategies from a computational
point of view see /79/).

Computational models

The dichotomy between bottom-up and top-
down processing is a dominant category for most
computational models trying to simulate selective
attention or its effects. These models deal with the
problem of how a focus of attention can be selected
and how its information can be routed through the
network. They are included in one class of models,
1.e, selection and routing models (see Fig. 2). A
second class of model deals with another dimension
of how to implement selective attention. The aim is
to find answers to the question of how the firing of
neurons inside the spotlight of attention might be
maodulated, i.e. how the selected neurons differ in
their behavior from neighboring neurons (fagging
models).

In Section 2. we review the most important
experimental results which form the basis for
computational models. After reviewing the selec-
tion and tagging models in Section 3. we introduce
a third kind of models, i.e. models of low-level
(pre-Jattention which try 1o -build biologically
plausible implementations and focus especially on
the role of the thalamus for (pre-)jattention. These
models are discussed in detail in Section 4,

2. EXPERIMENTAL BASIS

Attention has been studied by the various
disciplines in neuroscience: by lesion studies and
functional mapping 27,85/, by behavioral and
psychophysical methads /37,38/, by pharmacolog-
ical studies /27/ and also by single unit recordings
/22.33/. In this review, we concentrate only on
summarizing the most important results relevant for
the modeling of visual attention.
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One of the first cellular studies of selective
attention was made by Wurtz and coworkers /120
Experiments were carried out in awake primates
while recording neurons from the superior colli-
culus (SC), striate cortex (V1) and posterior
parictal cortex (PP). The basic finding was that
cells in VI and in SC responded with a higher
firing rate when the animal oriented to an aftracting
spot with a saccade, while there was no change in
response when the animal maintained fixation at a
central spot and only shifted its attention covertly.
PP neurons, in contrast, also show an activity
enhancement due to covert shifts of attention. Since
then, many studies examining the neural basis of
overt and covert attentional shifts have been carried
out. Thereby, researchers explored most of the
different brain regions looking for their role in
attentional processing (Fig. 1).

Moran and Desimone extended the first app-

ventral siream
[ IT
1
T Vd
¢ +
V2
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roach by showing that also neurons from the
inferior temporal cortex (IT) and from V4 behave
differently depending on the attentional task /69/. In
the experimental setup, two objects were placed
inside the receptive field of an IT neuron, one being
an effective stimulus for that neuron and the other
ineffective. [f attention was focused on the
ineffective stimulus, the activity of the neuron
deereased, while it increased if attention was on the
effective stimulus. It seems as if the receptive field
shrinks around the attended object.

Similar attentional medulations have been found
m other areas and with other techniques, e.g.
Biichel and Friston /16/ showed an attentional
modulation of V5 and PP measured with fMRI,
Connor et al /24/ concentrated on the spatial
relationship between stimulus and attention in V4,
and others looked at orientation tuning curves
67,1044,

A
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Fig. 1:
are included. The fact that cover

Simplified schema of the visual processing system. Only the areas and connections relevant for the purpose of this review
attention influences neural firing in high regions of the processing stream [such as the

posterior parietal (PP) or the inferior temporal cortex (1T 1 seems to be indisputable today, but whether, or under which
conditions, it also influences low-lfevel structures (Sich . as V1) is still a debated issue {e.g /647 Evidence has also been
provided for an anentional modulation of V4 and the medio-temporal cortex (MT) /23.66/. The frontal eve field {FEF) and

the superior calliculus (SCY are mainly involved in ov
structures, especially the different thalamic nuclei - the reticular nucleus (RNT) with its substructure
nucleus (PGN) which is inhibitorily connected to the lateral geniculate nucleus (LGNY and

ert shifts of attention, e in eve movements /86.119/, Subcortical

thi perigenicufate
the pulvinar - are also supposed

to play.an important role in {pre-)attentional processing (se4 lext).
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The most debated question is whether the
influence of attention starts as early as the striate
cortex. V1 poses a problem because receptive fields
are s0 small that even small eye movements may
destroy the measurement of attentional effects.
Furthermore, it is extremely difficult or even
impossible to place competing stimuli - an
important condition for attentional experiments /64/
- inside these small receptive fields.

Moran and Desimone /69 did not see any
modulation of V1. V2 or V3 neurons. Luck er al.
163,64/ also reported no attentional modulation of
ERP signals or firing rates for V1 cells. In contrast,
other studies did indeed find an attentional
influence on the early visual system. For example,
Motter /70/ found significant attentional effects in
Vi, V2 and V4. These early results have been
confirmed by more recent publications: Using
fMRI signals, Martinez er ai. /65/ found that net
only the extrastriate but also the striate cortex is
involved in spatial attention. V1 exhibited a later
attention dependent response component than the
extrastriateé cortex, which could be seen as a delay-
ed, re-entrant feedback component. Using fMRI
Brefczynski and DeYoe also reported a modulation
of W1 and the extrastriate cortex by:a shifting focus
of attention /14/.

Taking the studies together, the picture arises
that attentional modulation is most prominent in

higher cortical areas, where receptive fields are
wide and where several objects can compete inside
a single receptive field. In V1 attentional effects
seem to be existent and measurable. but less strong,
and may be related to specific experimental setups
164/,

However, not only cortical areas are influenced
by attention. The different thalamic nueclei in
particular seem to play an important role in visual
attention /22,27,28,93/. The specific connection
structure - not only receiving input from the retina,
but also from the brainstem and from higher
cortical areas - supports this. There seems to be
convincing evidence that the pulvinar is directly
involved in attention. Single cell recordings showed
an attention-dependent enhancement of the firing
rate, and pulvinar lesions led to an impairment in
the ability of engaging attention /86,90/. The
possible role of other thalamic nuclei is discussed
in Section 4.

3. COMPUTATIONAL MODELS OF SELECTIVE
ATTENTION

Apart from the neurophysiological implement-
ation (discussed in Section 4), modeling selective
attention has two major and independent problems
which need to be solved (Fig. 2): One concerns the
guestion of how to select and implement the focus

Computational Meodels
of Selective Atftention

T o Ml

Selection and Routing Tagging
Bottom-Up Top-Down Temporal Frequency
Tagging Tagging
- serial, grouping models - guided search models - by oscillations
- parallel models - selective tuning - by bursts
- task-dependent
expectation

Fig. 3:

Schema showing the main model classes. A third group of models - those concentrating on the role of the thalamo-cortical

eirewit i attention - is not included in the schema. They are discussed in more detail in Section 4. (For alternative

classifications see /72,790.)

VOLUME 11, NOC2-3, 2000



132 K. SUDER AND F. WORGOTTER

of attention (Section 3.1), and the other provides
solutions to the question of how to mark or
modulate the neurons which are in the focus of
attention (Section 3.2).

3.1 Selecting and routing the focus of attention

Most of the models dealing with attention pro-
pose answers to the question of how to select the
focus of attention and how to route the information
from the focus of attention through the various
stages of the network. Due to the close relationship
to search processes, the number of models increases
even further, especially since search procedures are
also of technical importance, i.e. in robotics /7,40,
56/ or hardware implementation /54/. Again, it is
necessary to differentiate between purely bottom-up
models and those including task-dependent top-
down components.

3.1.1 Bottom-up models

In bottom-up (pre-)attentional models it is
assumed that different regions of the input field
differ in their information content, e.g. in contrast
distribution. This difference of a specific region
from its surroundings is sufficient to assure that this
region will be preferentially processed further up in
the system. Two major subclasses can be different-
iated (see Table 1): those regarding attention as a
serial operation and those regarding it as a parallel
operation.

Most of the models share the same basic
elements as suggested by Koch and Ullman in 1985
/60/. They proposed a computational structure
implementing Treisman’s feature integration theory
or - more generally - the serial spotlight model.
Different elements can be distinguished (Fig. 3):
1. An early, topographic representation of element-
ary stimulus characteristics - e.g. color, contrast,
orientation - in so-called feature maps, which are
computed in parallel. Lateral inhibition within the
feature maps enhances regions that differ signifi-
cantly from their neighborhood. This implements
pop-out effects of stimulus-driven attention. 2. In
the next step, the most salient region is selectively
mapped to a higher non-topographic representation
for further analysis, e.g. object recognition. 3. The
selection process is implemented via a so-called

saliency map, which combines the information of
the individual feature maps into one global repres-
entation. The saliency map can also be seen as an
interface between pre-attentive bottom-up and
attentive top-down mechanisms (for a more detail-
ed discussion of the saliency map see /79/). A
winner-takes-all (WTA) network filters out the
most salient region to be mapped into the central
representation. In order to achieve a convergence of
the WTA algorithm, Koch and Ullman proposed a
pyramidal strategy. The algorithm itself has been
the topic of several further investigations, e.g.
/62,107/. 4. Finally, delayed inhibition of the
currently selected region will enable a shift of the
processing focus to another location.

The first implementation of the Koch and
Ullman model was supplied in 1990 by Chapman
/20/ showing that the proposed structure is actually
able to select locations of interest, which can be

Central
Representation

Feature Maps

I 51 Input Map
oo o

Fig.3: Koch’s and Ullman’s model for selective attention
using a pyramidal mechanism. The visual input is
first split in parallel into different characteristics of
the stimulus (e.g. contrast), which are represented in
feature maps. The saliency of the different stimuli is
coded in a saliency map on which a pyramidal
winner-takes-all mechanism looks for the most
salient region, Only information from this region is
routed to a central representation. (Adapted from
/60/.)
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used as starting points for further processing, e.&.
for motor routines. However, the pyramidal net-
work used has several drawbacks. e.g. the fixed
size of the focus of attention or the slowness of the
algorithm (see /1,107/).

In their shifter circuit model, Anderson and van
Essen focus less on the saliency mechanism, than
on how the focus of attention is shifted and how the
containing information is routed from the retina
a central representation /3/. The original idea was
further elaborated by Olshausen er al. /81/. The
main achievement of the shifter circuit model is a
successive, object-centered representation of differ-
ent salient inputs. The sophisticated representation
algorithm furthermore provides position- and scale-
invariance, which dramatically eases object recog-
nition, since different sizes and retinal positions are
coded in one single representation (for a more
detailed discussion of the preservation of spatial
relations see /79/). This is achieved by a dynamic
routing mechanism which modifies the synaptic
weights in such a way that only certain regions are
routed (mapped) to the top of the processing
stream. Spatial relationships inside the routed
region are preserved throughout all mapping stages,
thus the name shifter circuits. This is accomplished
by a connection structure inspired from biology, in
which the distance between neighboring neurons
increases systematically while the topography is
preserved. The mechanism that selects regions of
interest is purely bottom-up. The input image is
low-pass filtered so that the input objects (letters
were used in /81/) are blurred into blobs. The
brightest or largest blob is selected and this inform-
ation builds the basic input for control units which
are responsible for the gating of the desired region.
These inhibitory control neurons function as a
WTA mechanism based on local competition and
selectively’ suppress ascending pathways. The
‘surviving’ region will be routed to the top where
object recognition takes place, Based on an associ-
ative memory mechanism, the content of the high
resolution attentional window will be compared to
the memory content, In the case of a good agree-
ment, the object is counted as recognized, the
corresponding input area is inhibited, and the next
region is then analyzed. One interesting aspect is
the use of control units, which allow a dynamic

VOLUME LENO, 2-3, 2000

modification of the synaptic weights on a short time
scale.

Other models followed those first proposals
(e.g. /87/). Mozer /71/ introduced a different strat-
egy to find the focus of attention. Instead of a
pyramidal structure, he favors an iterative relax-
ation mechanism, in which the activity of different
neurons (or processing units) is compared to the
surrounding activity and locally adjusted at each
time step. This will finally lead to a “winning”
region of maximal activity, with the advantage that
this région is not fixed in size. However, Mozer’s
model does not provide an explicit integration of
top-down information.

Recently, it was shown that the original Koch
and Ullman /60/ proposal can be extended and
implemented in such a way that it can be used for a
rapid scene analysis of different real world input
images, ie to detect traffic signs /536,77/. To
achieve a robust and computationally efficient
algorithm, the medel is more abstract and only the
basic features are biologically plausible.

In contrast to the serial models, a number of
proposals have been made for the implementation
of the biased competition idea /33,89/. In this
framework, objects are supposed to be processed in
parallel and attentional selection is made of those
objects that ‘win’ a competition. Consequently. a
representation in the form of a saliency map is not
necessary.

In a series of papers Bundesen and coworkers
developed a computational theory of attention
based on stochastic processes /17.18 (and referen-
ces therein)/. The basic idea - which is closely
related to the biased competition model - 1s that the
selection of targets from multi-element displays can
be described by so-called race models. Elements
compete for processing capacities and those
elements that first finish the processing - ie. the
winner of the race - will be in the focus of
attention. It has indeed been shown that responses
to objects with a low contrast - that would not be
very salient - have a longer latency. and that latency
differences between objects with different contrast
could be used to improve object segmentation
/116/. In general, these race models are very similar
to the described WTA networks, with the differ-
ence that Bundesen et @/ do not use the connec-
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tionist framework. Since the model is mathemat-
ically treatable the interplay between serial and
parallel processes can be studied in detail. Also,
different experimental data can be explained. On
the other hand, the model is still mainly phenomen-
ological and Bundesen e al have just started to
analyze possible microscopic or neurophysiological
implementations and/or consequences of their
mathematical theory /19/.

The biased competition idea has also been
carried out with the help of a more biological
implementation, introduced by Reynolds er al. /89/.
Data from experimental recordings (from V2 and
V4) are in accordance with the results from a model
simulation with a simple feedforward competitive
neural network.

The notion that attention modulates local
competition is also used in a recent model study by
Lee et al. /62/. In their model, attention changes the
lateral inhibition between filters and thereby modu-
lates the winner-takes-all competition. Among
other things, the model can explain threshold
changes for discrimination tasks.

Using a neural network approach, Wu and Guo
/118/ also showed that a parallel competition
mechanism - in contrast to the serial searchlight
mechanism - can successfully carry out attentional
processing. They introduced a computational model
based on a two-layered network (hippocampus and
cortex) with phase oscillators showing that atten-
tion can be seen as an emergent property of the
dynamic cell assemblies.

3.1.2 Top-down models

Since the initial selective routing models were
purely bottom-up, they cannot account for more
complex phenomena, e.g. those occurring during
visual search for specific objects (see /1,115/). In
addition, computational complexity arguments have
shown that a purely feedforward and parallel
network is not sufficient to provide solutions to
general search problems /106/. Therefore, it has
been suggested to add a feedback control to the
basic feedforward model structure (sece Table 1).
Top-down information can be used for grouping or
weighting of selected features or to favor a specific
region, and may even overrule bottom-up attention.
Consequently some sort of memory or learning

algorithm is necessary which matches the data from
the focus of attention with the stored target
information /6,108,109/.

In the implementation of his guided search
model, Wolfe /114/ suggested that top-down feed-
back from higher visual areas weights or biases the
importance of different features. Only those regions
with additional weighting are further processed.

Several models including top-down feedback
and/or improving the basic structure proposed by
Koch and Ullman have been published over the
years /2,6,50,53,72,107,109/.

Apart from including top-down information,
Tsotsos /106,107/ furthermore proposed a way to
integrate the control process, which was suggested
within the scope of the shifter circuit model, in the
processing stream in his selective tuning model.
Thereby, he proposed that there is not one single
saliency map, but that each processing layer has its
own representation of what is salient. At each level
a winning unit exists which inhibits its neighbor-
hood. This has been described as an attentional
beam shining through the network.

Another very interesting approach is provided
by Rao /88/. He suggests viewing attention as an
emergent property of a distributed network of
neurons whose primary goal is visual recognition.
The simulations are based on a predictive filtering
model (Kalman filter), in which bottom-up signals
of presented objects interact with top-down expect-
ations due to learned and stored object patterns.
Given multiple objects or conflicting stimuli, the
responses of feedforward, feedback and predictive
neurons are modulated as if certain objects were
being attended to, although attention is nowhere
explicitly used in the model.

A model implementing the idea of competition
as the basic attentional driving mechanism in a
search task has also been proposed by Usher and
Niebur /108/. As is typical for competition models,
a saliency map is not needed. The competition is
implemented with an inhibitory cell pool via which
all parallel maps - representing the visual input -
interact. Top-down influence is assumed to come in
via weak excitatory projections from a higher,
working-memory level. In this way, searching for a
specific target will interact with bottom-up signals.
Simulated cell activities are in good agreement with
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experimental data from IT cells recorded by
Chelazzi and coworkers /21/.

Major attempts towards understanding atten-
tional processing and its computational modeling
have been provided by Grossberg and coworkers
(see /47485051 and references therein). Their
aim is to find a basic and unifying framework
which can explain as many experiments as poss-
ible. We selectively discuss here two important
papers, one providing a solution of how to model
search processes including top-down and bottom-
up mechanisms, and one suggesting a detailed
physiological basis of attentional priming.

In 1994, Grossberg et al. published a paper /50/
in which a neural theory of attentive visual szearch
was suggested. Their (computational) model pro-
vides an altermative to Treisman's feature integ-
ration theory /103/ and to Wolfe's guided search
model /115/ insofar that not only bottom-up and

top-down mechanisms are implemented but that,

furthermore, spatial grouping and object recog-
nition are included. The wvisual input is first ana-
lyzed in parallel by preattentive processes, which
filter out basic stimulus features. In a second step
these extracted features support boundary segment-
ation and surface formation - thus achieving
grouping. In the next step, a candidate region is
selected for further analysis. Finally, ohject recog-
nition takes place by matching objects from the
selected region with stored targets. The different
steps are compared to resulis from earlier models,
which simulated single facets of the problem, e.g.
the boundary contour system (BCS), which is used
to find boundary segmentations. All processing
steps are mapped to neurobiological circuits. The
final simulations, though, are carried out using a
more abstract model to describe reaction times in
search experiments as a result of processing times
in the single steps. Good agreement with several
different search experiments has been achieved.
Physiological implementation is the main topic
of another, more recent paper entitled ‘How does
the cerebral cortex work?" /49/. Grossherg suggests
‘how bottom-up, top-down and horizontal inter-
actions are organized within visual cortical areas
V1 and V2' and how these connections might
implement learning, attention and grouping. Special
emphasis is put on the laminar circuits, i.e, on the
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interplay between layers 2/3, 4 and 6. One main
hypothesis is that via feedback from layer 6 to 4 the
preattentive perceptual grouping - e.g. that respons-
ible for illusory contours - serves as its own
attentional primer; thus the priming mechanism can
also work at regions which do not receive direct
bottom-up input. For the matching process between
bottom-up and top-down signals, Grossberg reuses
his ART {Adaptive Resonance Theory) /45.46/ but
now with a detailed physiological implementation.
Simulations are not provided. but several interest-
ing predictions arise from this model.

Although at a macroscopic level there seem to
be many similarities between biology and the
individual models introduced in this section, many
of the selective routing models still fail to provide
any explanation of how their algorithmic features
could be implemented in the real brain.

3.2 Tagging the selected focus of attention

After a region of interest is selected the question
arises of how this region differs from other regions.
Higher processing areas have to be able to detect
regions of interest out of the whole incoming data
stream, i.e, the neurons currently in the focus of
attention have to be tagged in some way., Two
major strategies can be differentiated: temporal
tagging and rate modulation,

3.2.1 Temporal tagging

Crick and Koch /29/ hypothesized that cell
assemblies - which are made up of these neurons
currently in the focus of attention - are glued
together by a specific temporal firing pattern. In
particular, they proposed that this is done ‘in a
coherent semi-oscillatory way, probably in the 40-
70 Hz range’, This first proposal of temporal
tagging as a way to mark neurons in the focus of
attention also solves the binding problem /112/ in
an elegant way (for the connection between binding
and attention, see /64,103/). The idea was comput-
ationally carried out by Niebur and coworkers /80
Attentional modulation was added to the output of
the cells of the primary visual cortex and was
suppesed to affect only the temporal structure of
neural firing. V1 cells project to V4, where fre-
quency-selective inferneurons are supposed to exist
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and to block out all non-frequency modulated
signals, i.e. the activity of neurons not currently in
the focus of attention.

Following this first paper, several other mechan-
isms have been proposed implementing the remp-
oral tagging hypothesis. Niebur and Koch /78/
suggested that temporal tagging does not nec-
essarily have to be oscillatory but might be in
the form of a non-homogeneous Poisson process.
Kazanovich and Borisyuk implemented the idea of
a central element {see /26/) which oscillates as soon
as the attentional system is switched on /10.59/.

A more abstract, but nevertheless very interest-
ing approach comes from non-linear system theory.
Chaotic neural networks exhibit complex dynamics
including unstable periodic orbits. These can be
stabilized by small parameter changes via feedback
control /35/. It has been proposed that a similar
mechanism might underlie attention, i.e. specific
oscillatory modes, which code behaviorally relev-
ant stimuli, ate linked by transient chaotic states
182,97/

Carvalho et al. /32/ presented a biologically
realistic model of the vismal pathway from V1 to
IT, based on a detailed description of lonic currents.
The neurons have different firing modes, ranging
from adaptation to bursting, depending on the
caleium level. Attention is assumed to influence the
conductance of calcium channels, thereby causing
burst activity in V2. The pathway along which the
bursting signals propagate wins the competition,
i.e. is in the focus of attention. The physiological
mechanism behind the model is not discussed. The
idea that the attentional signal groups several spikes
into bursts has also been adapted by Bosch er al
/11/. There, the burst activity is used to synchronize
the neurons,

One general problem of the temporal tagging
hypothesis is that the mechanisms which tag the
attended neurcons are quite artificial in most of the
proposed models and have also noi finally been
proven to exist.

3.2.2 Rate modulation

Maost of the models not explicitly dealing with
temporal tagging use another straiegy to mark the
neurons belonging to the focus of attention, i.c. the
regulation of the mean firing rate of newrons. In

accordance with experimental evidence (see Sec-
tion 2), the activity of newrons in the focus is
enhanced while it is inhibited outside (e.g. /81,
1974,

4. MODELING LOW-LEVEL (PRE-JATTENTION
WITH THALAMO-CORTICAL CIRCUITS

In Section 2 we mentioned that the thalamus has
been suggested as an important structure for the
gating of attentional processing, This idea has been
elaborated by different authors, not only on an
abstract level /26.28,55,73,76/ but also suggesting
biologically plausible implementations /9,32.61,
g9 100/, Those models concentrate mainly on
stimulus-driven (pre)-attention and its interaction
with the thalamo-cortical circuit.

4.1 The hypothesis

Our own hypothesis is that attentive processing
can be explained by different spatial and temporal
firing patterns of low-level visual structures (LGN
and V1) which will lead to a dynamic adaptation of
the temporal and spatial resclution in order 1o
differentiate attentive and non-attentive regions of
the primary visual pathway. This idea is based on
experimental findings showing that receptive ficlds
in V1 change their size as a function of different
EEG states /99,117/. They are wider during synch-
ronized than during non-synchronized EEG (see
Fig. 4A and B). It has also been shown that the
receptive fields restructure from wide to small
during the non-synchronized state when a stimulus
is left on (Fig. 4C).

The different EEG states are classified by their
frequency components. We distinguish between a
globally synchronized EEG (6-waves) and a locally
synchronized or non-synchronized EEG (a/fp-
waves) (Fig. 5 top). The states correspond to differ-
ent levels. of alertness, e.g. 8-wave activity usually
oceurs during deep sleep or sleepiness, whereas
higher frequencies are dominant during drowsiness
or alert wakefulness.

We suggest that the two main EEG classes
distinguished in the experiment can be further sub-
divided, especially for the less synchronized EEG
states (Fig. 5). In that framework atiention can be
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synchronized EEG non-synchronized EEG
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] 20
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Fig. 4; Experimental data from an anesthetized ¢at showing spatio-temporal receptive field restructuring in the early visual
system, Cortical receptive fields (V1) are wider during synchronized EEG (A) than during non-synichronized EEG (B). In
addition they shrink over time (C}. {Insefs show the EEG races. For details about the experimental setup see /991170 D
and E show data from the thalamus, for which spatial characteristics are constant, whereas the tempordl characteristics
chiange, LGN cells are in g burst mode during the synchronizéed state and in a tonic firing mode in the non-svnchromized
state /41689395, 117/, For PGN cells it 1¢ the other way round {see /44/),

EEG
MM%* 1S 2 gm“’.s' m
-9.\ /a‘-"e;?

globally locally synchronized /

synchronized non-synchronized
(6 - waves) (/P - waves)

very wide wide 9 small

receptive fields receptive fields °  receptive fields
low spatial resolution high spaticl resolution

Fig. 5: Different EEG states - as characterized by wiaves in a certain frequency range (5: 1-4 Hz, o 8-13 Hz, #nd 8: 14-30 Hz) -
can be associated with different global states. Changing states are characterized by changing receptive field sizes and,
thereby, by different spatial resolutions
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seen as-a local enhancement of alertness charact-
erized by high frequency components ([-range). or,
alternatively, the non-attentive state as a more
drowsy and relaxed mode (corresponding to a local
EEG synchronization with lower frequencies, ie
g-range). We furthermore propose that receptive
field sizes change continuously from sleep to
attentive wakefulness, i.e. cortical receptive field
sizes as early as in V1 should not only depend on
EEG states but alsp on the attentional state, being
smaller in a state of focused attention and wider in
a non-attentive situation (Fig. 5 bettom). Support
comes from experimental findings - as explained in
Section 2 - that receptive fields in V4 have been
shown to shrink in size from the non-attentive to
the attentive state /69

The guestion remains as to what would be the
functional advantages of this kind of size change.
Wide receptive fields only provide a low resolution
picture of the environment, but they can integrate
activity over a wide region, thus ensuring that any
important stimulus is: detected. Thus, wide recept-
ive fields are suited to a non-attentive state.
Furthermore, the information - that a relevant
stimulus has occurred - has to be processed fast,
since this kind of wake-up call should reach higher
areas as quickly ag possible. In contrast, small
receptive fields provide a high resolution picture.
But only the most salient regions of the visual
scene can be analyzed in such detail to avoid
information overflow. Thus, small receptive fields
should dominate during focused attention.

Support for this idea of adapting the wvisual
resolution to different states by changing receptive
field sizes comes from psychophysical experiments,
in which it was found that attention improves
performance in a texture segregation task /121/ and
in a task in which the length of lines had to be
Judged /105/. It was found that lines are judged
longer when no attention is paid to them. The most
reasonable interpretation of these results is that the
point spread of activity changes its size correlated
to the tramsition from the non-attentive to the
attentive state, thereby changing visual resolution.

4.2 Modeling changing receptive field sizes as a
function of attention

As a next step, we want to find out how the
proposed receptive field restructuring could be
achieved. With the help of a computational model
of the early visual system (retina-LGN/PGN-V1),
using simple integrate-&-fire neurons and a biolog-
ically plausible connection structure, we tested the
hypothesis that different thalamic firing patterns in
the different EEG states are responsible for this
restructuring. These different firing patterns have
been known to exist in the LGN for quite some
time /41,68.93,95/, but were recently also found in
the PGN (see Fig. 4 and /42,44/). The mechanism
of the restructuring is illustrated in Figure 6. (For a
detailed description of the model see /99/) Figure

HA pictures the situation during a globally synch-

ronized EEG, which is typical for sleepy states.
Brainstem influence is low, therefore PGN neurons
are highly active (see Fig. 4D. /44/), while LGN
neurons are inhibited by PGN and brainstem
activity /43/. LGN cells are, therefore, in a hyper-
polarized state. If a stimulus is presented to the
retina, they answer with a high-frequeney burst

response 52,57/, This strong signal is able to drive

cortical cells also further away from the main
projection column, resulting in a wide point spread
function or - leoking from top to bottom - in a wide
cortical receptive field.

Figure 6B and C describes the network during
an awake state, corresponding to the right part of
Figure 5. In contrast to Figure 6A, the ascending
reticular arousal system (ARAS) of the brainstem is
now active, As a consequence. PGN neurons are
inhibited /42/ and LGN neurons activated /39/ (Fig.
6B and C, cf. Fig, 4E).

LGN newrons will be relatively hyperpolarized
in the drowsy state (Fig. 6B), due to the remaining
PGN activity and due to cortico-fugal input. As
compared to Figure 6C, in 6B intermediately strong
bursting activity will, consequently, be elicited as
soon as a retinal input is given. This activity profile
is still strong enough to drive a relatively wide
cortical area leading to medium-size receptive
fields in V1.

The situation in Figure 6C - which corresponds
to an alert state with focused attention - differs
from B in that cortico-thalamic feedback becomes a
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Connection schema and model data of a generic and biologically plausible model of low-level preattentive processing (see
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Fig. 5). A: Siwation during sleepiness, in which the brainstem influence is very low and consequently PGN activity is
high, whereas LGN activity is low. In B and €, which correspond to an awake state. brainstem influence is highly active
leading to a depolarized LGN state. In C, additionally, the cortico-fugal feedback is active. The lower part shows twa-
dimensional cortical point spread functions for a model simulation. The spike activity is grev-seale epded. Since
orientation tuning was not included in the model, the activity fields are concentric. The point spread function - looking
from top to bottom - of the receptive field shrinks continuously from left (sleepy state) to right (alern state),

dominant functional compoenent. It is essential to
keep the level of depolarization high at the central
LGN cell to enable a switch to the tonic firing
mode /304, This tonic component is necessary to
code specific information about the stimulus. e.g.
contrast or color. But since this tonic firing activity
is much lower than the burst activity in A and B, it
cannot drive cortical cells lateral to the main pro-
jection column, As a consequence. the cortical
point spread function (and, thus, also the receptive
field) is narrow.

In summary, the brainstem and its effects on the
thalamo-cortical pathway play a special role in the
realization of different global states /83/ in the
context of our hypothesis, In the model, the general
shift between different levels of alertness is medi-
ated by different levels of brainstem activity and,
consequently, different firing activities of PGN and
LGN cells. The RNT (of which the PGN is a part)
has already been shown to play a special role in the
contral of different sleep states /5,34,92,113/ and,
together with the cortex, it contributes to a wide-
spread synchronization of low frequency oscill-
ations /25,96/,
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4.3 Modeling bottom-up induced shifts of attention

In the next step, we want to extend our model to
also allow for shifts berween different locations of
interest and not only between non-attentive and
attentive states. As in Figure 6C, the cortico-fugal
connections become important, since a specific and
localized enhancement and restructuring is needed
which cannot be provided by the diffuse thalamic
connections which we used to implement global
changes. Figure 7 illustrates how such a shift bet-
ween two locations eould be accomplished with our
model. One can imagine that just before situation
A, the model was in a non-attentive state with wide
receptive fields everywhere, as in Figure 6B. The
simulated network is similar to the one in Figure
6C, except that now the shilt between two stimuli is
analyzed.

Now that two stimuli are presented, LGN neur-
ons of both regions switch to tonic firing. Stimulus
1 has a slightly higher contrast than stimulus 2, i.e,
it is more salient, which leads to a slightly higher
firing of neurons at location 1. This small differ-
ence is potentiated by cortico-fugal feedback and
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focus at location 1

stimulus

focus at location 2

B

stimulog

Fig. 71 Model simulation showing:how the focus of attention shifts from one location to snother: Two stimuli of almost similar
contrast were presented. The shill between the two regions is mediated via cortico-fugal feedback and via defayed
feedforward and intracortical inhibition. The plots show the firing activity in the cortical laver as a two-timensional point

spread [unction with-grey-scale coded spike activity.

by lateral network effects, especially by the
inhibitory connections inside the LGN and the
cortical layers (WTA). Lateral connections are a
necessary prerequisite for the implementation of a
WTA mechanism, and the thalamus, supported by
the cortex, is an ideal candidate for this /100/.

After a short time (approx. 50 ms) this data-
driven restructuring leads to narrow cortical
receptive fields at location 1, which are specific and
which provide a high-resolution picture (Fig. 7A),

In order to work as an atlentional scanning
mechanism. the focus of attention must shift to
analyze a second location. To achieve this, inhib-
ition of the first selected region is necessary so that
a new region has a chance to get into focus (see
step 4 of the Koch and Ullman model explained in
Section 3.1.1). Both LGN and cortical cells project
excitatorily to interncurons, which in turn inhibit
the cortical cells. This (recurrent) inhibition will

suppress the firing of those cells which initially
fired strongly (Fig. 7B). It has been shown that the
inhibition has its strongest influence after approxi-
mately 50 ms /8.36/, which is in accordance with
the time scale of attentional shifts /38,917 This
(delayed) inhibition leads to a restructuring of the
thalamic and cortical network with an increase of
firing at location 2, 1.e. this location is now in the
focus of attention.

The question arises what happens if the two
stimuli are equal in their saliency or if they are
farther apart than the range of the inhibitory
connections in the LGN and the cortex. In these
cases a purely bottom-up (pre-Jattentive mechanism
is not able to account for a proper analysis of the
input scene. Additional symmetry breaking is
necessary. If7it is nol given by the initial conditions.
a possible solution is that it is induced in a top-
down manner, Still, totally egual stimuli are VETY
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unlikely, and even small differences can be greatly
amplified by cortical excitatory circuits, as has been
shown by Douglas er af. /36.98/. In our model, top-
down influences can be easily implemented by a
pre-depolarization of a certain region in V1 by
feedback from higher cortical areas (see Fig. 6).
This region would then be processed first, In a
similar way. top-down feedback can volumarily
direct attention to a weaker input or to a certain
region.

In a model study based on varying ionic cur-
rents, Carvalho /31/ has shown that cortico-fugal
activity can be efficiently used to control the
thalamic gateway. He explicitly associates the feed-
back activity with attention marking relevant
information. Still, local inhibitory circuits in the
thalamus (RNT-dorsal thalamus) also play an
important role for filtering the information.

Taken together. our simulations showed that the
concept of changing receptive fields can be extend-
ed to implement shifts between different locations
of interest. Until now, V1 and LGN have often
been suggested to play a role mainly in the building
of basic feature maps. But due to its specific
connection structure with inhibitory circuits and
recurrent connections to many different cortical and
also subcortical regions, we in accordance with
others /26.28.55.73,76,93/ suggest that effective
attentional (pre-)processing and gating can be
accomplished in the early visual pathway,

Different aspects of the thalamo-cortical cir-
cuitry and its relation to attention have already been
examined by others. Especially due to its inhibitory
connections and the fact that it receives input from
very many different areas (including brainstem
influences). the RNT has ofien been suggested to
play a central role in the control of the informiation
flow between the thalamus and the cortex /26.76/,
In detailed model simulations of different pulvinar
circuits, LaBerge ef al /61/ showed that lateral
thalamic inhibition together with cortico-fugal
feedback is able to effectively enhance small input
ditferences and thus selectively process information
from specific spatial locations, supporting our more
generalized scheme. The possibility of bottom-up
priming of certain information due to interactions
between different thalamic and cortical neurons has
also been tested by Bickle ¢r al. /9/. They showed
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that areas of stronger inputs persist while the
activity of neurons activated by weaker stimuli
declines.

5. DISCUSSION

Computational models and experiments have
shown that attention is an essential operation not
only for animals and humans but also for machine
vision. It is necessary to avoid information overload
which would be inevitable if all incoming stimuli
were  processed  simultaneously.  This  is
accomplished by a selection mechanism, which
leads to the processing of only the most salient or
relevant stimulus at any time. The relevance - or
saliency - can depend on either bottom-up or top-
down factors, i.e. it may be involuntary and data-
driven, conscious and top-down induced, or a
combination of both. From an information process-
ing point of wiew, this means that symmetry
breaking between different regions of the visual
input has to be enhanced in a way that only one
region wins and that only this region will be
processed in detail. The determination of the
saliency - and especially the physiological pro-
cesses underlying this - is still one of the major
unsolved problems in studying attention,

If a strong symmetry breaking is already con-
tained in the input, e.g. in the form of a pop-out
stimulus, attentive scanning can be carried out
without any high-level pracessing, i.e. pre-attentive
processing is sufficient and dominant. Bottom-up
mechanisms are extremely fast and efficient. Both
qualities are necessary to enable the system to react
adequately to non-ambiguous and demanding
situations. Consequently, pre-attentive, bottom-up
mechanisms play an important role in the visual
syatem.

Immediately the questions arise of which areas
carry out this processing and which functional
mechanisms underlie it. We suggest. conforming
with: other authors /26,28,55,73,76/, that the
thalamo-cortical circuit mediates attentional pre-
processing and that, therefore, low-level compon-
ents are sufficient to implement these bottom-up
mechanisms. The advantages of low-level imple-
meéntation are speed and simplicity, which are nec-
essary for stimulus-driven situations. Indeed, visual
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processing can be very fast, as has been shown
experimentally by Thorpe et al /101/ showing that
it is even possible to react to higher cognitive cues
within 200 ms (for a model study based on the
experimental findings see /110/).

The thalamus is ideally suited for implementing
low-level information flow control, not only
because of its connection structures but also by its
ability to fire with different modes (burst vs. tonic).
These modes can be additionally influenced by
brainstem inputs which converge at the different
thalamic nuclei, Furthermore, the thalamus is the
first stage where lateral inhibition is efficiently able
to implement a WTA mechanism. In addition to
this, there are many cortico-fugal feedback connec-
tions, which can not only provide top-down
influences but which could also be important to
implement shifts between different attentional
loecations.

As a mechanism, we suggest that thalamic and
corfical spatio-temporal receptive field properties
change to control the information flow and that

these properties are, therefore, an expression of

different attentional states. This hypothesis is based
on experimental data which show that thalamic
neurons change their temporal firing pattern and
that cortical receptive fields change their size as a
function of changing EEG states which - in a non-
anesthetized animal - correspond to changing levels
of alertness (Fig. 4). Extending the experimental
observations, we suggest that attention can be
regarded as a locally enhanced level of alertness
around the focus of interest (Fig. 5). Therefore.
cortical receptive fields should alse change their
size in an attention-dependent way. The mechanism
which changes the receptive field size. functions as
an adjustment of spatial resolution to the demands
of the situation and the task. Resolution should be
fine in interesting parts of the visual scene and
coarser everywhere else, thereby computational
resources can be used efficiently (for a discussion
of spatial resolution and attention see also /79/).
With the help of a computational model we showed
how receptive field changes can be implemented
physiologically and how they could work as a data-
driven pre-attentive process (Figs. 6, 7).

Reviewing the existing literature of comput-
ational models we have differentiated between

routing and tagging models. The former - 1o which
our model belongs - provide mechanisms to select
and route information of a specific region through
the processing network, while the latter propose
solutions to the question of how the information
from one region differs in its firing pattern from
other regions. Most existent models focus on one of
these two questions, However, both problems are of
equal importance and have to be solved simultan-
eously. One hypothesis is that first the most salient
region is selected in the low-level structures of the
dorsal siream - mainly, but not exclusively
determined by a bottom-up mechanism - and that
the contents of this spatial region are then routed to
the ventral stream, where object recognition takes
place and where objects in the focus of attention
might be tagged /79/.

Apart from the interplay between the different
classes of model. there is also no final answer to the
question of which level of description should be
chesen (for an extremely interesting discussion of
computational models in the context of search
experiments and attention see /72/). Phenomenol-
ogical and mechanistic models coexist and both
have provided important insights into understand-
ing attentional processing. However, due to the lack
of experimental results, it cannot be decided which
model approach is most adequate or which best
describes the experimental data. Part of the prob-
lem is that the mapping between psychophysical
and physiclogical findings has still not been solved
in a satisfactory way. The physiological substrate
and even the level on which attentive processing
takes place is still controversial. Nevertheless,
computational models have provided fruitful
insights into how attentional processing can work
and how attention could be implemented in the
brain,
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