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Receptive �elds (RF) in the visual cortex can change their size depending
on the state of the individual. This re�ects a changing visual resolution
according to different demands on information processing during drowsi-
ness. So far, however, the possible mechanisms that underlie these size
changes have not been tested rigorously. Only qualitatively has it been
suggested that state-dependent lateral geniculate nucleus (LGN) �ring
patterns (burst versus tonic �ring) are mainly responsible for the ob-
served cortical receptive �eld restructuring. Here, we employ a neural
�eld approach to describe the changes of cortical RF properties analyti-
cally. Expressions to describe the spatiotemporal receptive �elds are given
for pure feedforward networks. The model predicts that visual latencies
increase nonlinearly with the distance of the stimulus location from the
RF center. RF restructuring effects are faithfully reproduced. Despite the
changing RF sizes, the model demonstrates that the width of the spatial
membrane potential pro�le (as measured by the variance s of a gaussian)
remains constant in cortex. In contrast, it is shown for recurrent networks
that both the RF width and the width of the membrane potential pro-
�le generically depend on time and can even increase if lateral cortical
excitatory connections extend further than �bers from LGN to cortex. In
order to differentiate between a feedforward and a recurrent mechanism
causing the experimental RF changes, we �tted the data to the analyti-
cally derived point-spread functions. Results of the �ts provide estimates
for model parameters consistent with the literature data and support the
hypothesis that the observed RF sharpening is indeed mainly driven by
input from LGN, not by recurrent intracortical connections.

1 Introduction

Receptive �elds (RFs), de�ned as the retinal area where a stimulation of
receptors causes a recorded neuron to respond, play a key role in identi-
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Figure 1: (A,B) Peristimulus-time histograms of an LGN relay cell during differ-
ent EEG states in an anesthetized cat. Insets show EEG traces (5 s). (C) Shrinking
of RF width of a cortical cell during a nonsynchronized EEG state. The cell starts
�ring roughly 50 ms after stimulus onset. The RF covers approximately 6 de-
grees at maximum and drops to less than 4 degrees afterward. Firing rates are
gray-scale coded (0-40 I/s).

fying the functional mechanisms of visual neural circuits (Hubel & Wiesel,
1962; Levine & Shefner, 1991). For a long time, RFs have been envisaged as
pure spatial phenomena with temporally �xed properties. In recent years,
though, sophisticated reverse correlation techniques have been developed
to study spatial and temporal properties of RFs (DeAngelis, Ohzawa, &
Freeman, 1993, 1995; Eckhorn, Krause, & Nelson, 1993). Elaborated physio-
logical experiments now support the viewpoint that RFs are highly dynamic
entities that can change due to cortex-intrinsic dynamical processes, context
effects, attention, or synaptic plasticity (DeAngelis et al., 1993; Eckhorn et
al., 1993; Gilbert, 1998; Shevelev, Volgulshev, & Sharaev, 1992).

Recently, Wörgötter et al. (1998) demonstrated that spatial and temporal
characteristics of RFs can, in addition, be modulated by the global state of the
brain as, for instance, characterized by the electroencephalogram (EEG). It
has been shown that cortical RFs in V1 are wider during synchronized EEG
(dominated by a- andd-waves) than during less or nonsynchronized b-EEG.
Moreover, the RF width can shrink considerably over time in response to a
�ashed stimulus in nonsynchronized states (see Figure 1C and Wörgötter
et al., 1998).

It is believed that a- and d-waves are more common during drowsi-
ness and weak sleep and that less synchronized fast rhythms are associated
with alert states. Therefore, the experimental results suggest that informa-
tion processing is adapted to different behavioral states by qualitative RF
changes and that the spatial resolution of visual processing is particularly
high in alert states.

Different �ring patterns of cells in the lateral geniculate nucleus (LGN)
during the different EEG states have been suggested as the main mechanism
for this restructuring. Figure 1A shows that during synchronized EEG, a
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strong contrast independent burst component dominates the response to
a �ashed light spot. After that, only a small, persistent response remains,
although the stimulus is still on. In contrast, during nonsynchronized EEG,
LGN cells respond with a long-lasting tonic �ring pattern at intermediate
(contrast dependent) rates, whereas the burst component is often dimin-
ished (see Figure 1B).

Wörgötter et al. (1998) hypothesized that these state-dependent LGN
�ring patterns essentially drive the cortical �eld changes. Basically, it is
assumed that the LGN cells excited by the �ash stimulus innervate a local
region in the visual cortex with decreasing (e.g., gaussian) effective strength
from the projection center. Taking �ring thresholds of cortical cells into
account, it is thenobvious thathigher LGN �ring rates are able to elicit spikes
ina larger part of the cortical projection region than lower rates. Accordingly,
the cortical point spread function—and the cortical RF, respectively—will
be broad during the initial burst component and will sharpen afterward,
when LGN �ring rates decline. During synchronized EEG, the late cortical
response component can also be missing if LGN cells �re too seldom to raise
cortical cells above threshold at all.

We tested this hypothesis in a detailed biophysical model of the visual
pathway (Wörgötter et al., 1998) comprising regular �ring cells in area
V1, two-state neurons in the LGN (burst and regular �ring mode), and
a modulatory in�uence of the perigeniculate nucleus (PGN), which is sup-
posed to be involved in the control of the different excitability of LGN cells
during drowsy and alert states (Ahls Âen & Lo, 1982; Funke & Eysel, 1998;
McCormick, 1992). Although in this model particularly lateral connections
in V1 and feedback from V1 to LGN were considered, the simulations in-
dicated that the experimentally observed cortical state dependencies are
mainly due to a feedforward effect; feedback has only a weak modulatory
in�uence on late-response components or destabilizes the network if it is
too strong (see Wörgötter et al., 1998; Crick & Koch, 1998). In principle,
the recurrent loop between V1 and LGN can broaden RFs in V1 further.
However, this is in contrast to our experimental �ndings. Thus, recurrent
connections do not seem to contribute signi�cantly to the RF size effects
described above.

The relative in�uence of afferent versus cortex-intrinsic signals to ori-
entation tuning of cortical simple cells has been studied previously by
several authors in experiments (Ferster, Chung, & Wheat, 1996; Henry,
Michalski, Wimbourne, & McCart, 1994; Sato, Katsuyama, Tamura, Hata,
& Tsumoto, 1996) as well as in simulations (Adorjan, Levitt, Lund, & Ober-
mayer, 1999;Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Carandini & Ringach,
1997;Somers, Nelson, & Sur, 1995). It still remains controversial whether ori-
entation tuning arises from already sharply tuned input to cortical cells, as
originally suggested by Hubel and Wiesel (1962) or whether LGN input
is only weakly tuned but ampli�ed and sharpened by recurrent excitatory
and inhibitory connections. Experimental evidence for both viewpoints ex-
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ists (reviews in Sompolinsky & Shapley, 1997; Vidyasagar, Pei, & Vogulshev,
1996).

In contrast, our experimental data and detailed simulations indicate ev-
idence for some purely input-driven RF properties. To validate their feed-
forward nature more thoroughly, a phenomenological neural �eld model
of the LGN-V1-projection is developed in this article (section 2). The ad-
vantage of this model as compared to biologically detailed ones is that it
can be solved exactly. This way, explicit equations for cortical point-spread
functions, latencies, and RF-width pro�les become available (section 3).
They can be compared with simulated pro�les appearing in recurrent mod-
els (section 4) and, most important, can be �tted to the experimental data
(section 5). The results of the �t in comparison with the two different model
approaches (feedforward versus feedback) validate the feedforward ansatz.

2 Feedforward Neural Field Model

In this section we develop a neural �eld approach to study the LGN-V1-
projection. The simple structure of the resulting equations allows us to com-
pute cortical response functions analytically for input-driven activity in V1.
Neural �elds have been used for similar purposes, although usually in sim-
ulation studies (Giese, 1999; Krone, Mallot, Palm, & Schüz, 1986; Mineiro
& Zipser, 1998; Sabatini & Solari, 1999; Wilson & Cowan, 1973; Wörgötter,
Niebur, & Koch, 1991).

The purpose of this section is to study the input-driven dynamics of V1.
Therefore, we consider just one �eld V(x, t) for V1 and neglect recurrent
connections inside it (the latter are included in section 4). For convenience,
we further idealize V1 as a one-dimensional �eld, x 2 R, and assume that the
activity in the LGN and V1 is spatiotemporally separable, V(x, t) D X(x)T(t)
(see DeAngelis et al., 1995; Mineiro & Zipser, 1998)). Including a leakage
term, the temporal development of the membrane potential V is given by

t
dV(x, t)

dt
D ¡V(x, t) C

1

¡1
K(x ¡ x0 )Isyn(x0 , t)dx0 , (2.1)

where t is a phenomenological time constant. The kernel K(x) describes the
synaptic feedforward projection from the LGN input I to cortex. We choose
a gaussian connectivity pro�le,

K(x) D
K0p
2p

e
¡ x2

2s2
0 , (2.2)

with effective synaptic strength K0/
p

2p and width s0. This represents a
single on- or off-sub�eld. Simple cell RFs consisting of several sub�elds can
be represented by superposition of responses of the form equation 2.1 with
appropriate kernels.
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Figure 2: (A) Temporal input function Inst (t) used to simulate LGN �ring during
nonsynchronized EEG. Observe the two idealized components representing the
burst and tonic phase (see equation 2.5). (B) Simulation of the cortical membrane
potential V(x, t) in the nonsynchronized state. Simulation parameters are s0 D
1.7±, s1 D 0.5±, t D 10.0 ms, t0 D 0 ms, t1 D 40 ms, t2 D 300 ms, c1 D 80 I/s,
c2 D 40 I/s.

The synaptic input currents Isyn in V1 are fully described by the activity
of the LGN cells I(x, t), which is gaussian in space and square wave in time
(see below). Detailed dynamical processes in the LGN are not explicitly
modeled but considered in the form of phenomenological spatiotemporally
separable input functions I(x, t) D Ix(x)It(t). According to the experimental
input in the form of small, light spots, the spatial input Ix has a gaussian
shape in our model, which represents a localized activity pro�le in the LGN.
The temporal input component It contains the EEG-state dependence and
approximates the experimentally observed temporal �ring patterns of LGN
cells (see Figures 1A and 1B):

Ix(x) D e
¡ x2

2s2
1 (2.3)

Ist(t) D c1H(t ¡ t0)H (t1 ¡ t) (2.4)

Inst(t) D Ist(t) C c2H (t ¡ t1)H(t2 ¡ t). (2.5)

Here, H (t) is the Heaviside function. The function Ist(t) describes the high-
frequency burst of spikes in the synchronized EEG in the form of a rect-
angular pulse of strength c1 lasting from t D t0 to t1. Inst(t) describes the
nonsynchronized caseandcontains, in addition, a tonic component of height
c2 (< c1) lasting from t1 to t2 (see Figure 2A).

Firing rates R are derived from the membrane potential V by means of a
rectifying function,

R D [bV ¡ #]C , (2.6)

where b is the neuronal gain (in spikes/mV/s) and # the �ring threshold.
The function [x]C is zero for x · 0 and equal to x above zero.
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Figure 2B shows a simulation of the model. The cortical membrane po-
tential V is plotted as a function of space and time for the nonsynchronized
state. In accordance with the experimental data (see Figure 1C) a phasic peak
is followed by a tonic component with a reduced amplitude. Furthermore,
a restructuring of the potential takes place between 50 and 70 ms.

3 Response Function and Equipotential Lines

We now derive analytical expressions for the cortical membrane response.
Because we assume stimulation by small, light spots, V(x, t) can be inter-
preted as the cortical point-spread function or, in the light of the linearity
of the membrane and the spatial homogeneity of the model, as the spa-
tiotemporal RF of the model cells. Inserting the assumptions 2.2 and 2.3–
2.5 into equation 2.1 and integrating, one obtains the spatial and temporal
components X(x) and T(t). Thereby, we set V(x, t0) D 0, which means that
potentials are measured relative to a resting potential of zero. X(x) is a con-
volution of two gaussians: the input distribution Ix(x) and the feedforward
kernel K(x). Thus,

X(x) D
K0s0s1

s2
0 C s2

1

e
¡ x2

2(s2
0

Cs2
1

) D
K0s0s1

sr
e
¡ x2

2s2
r ¼ K0s1 e

¡ x2

2s2
0 , (3.1)

where s2
r :D s2

0 C s2
1 is the resulting width of the cortical membrane poten-

tial. The approximation holds for small stimuli, s1 ¿ s0, that is, for point
stimulation. Within this limit, larger stimuli, s1, increase potential values
approximately linearly, but the width of the cortical response is determined
only by the width of the projection from LGN to cortex, s0.

The temporal amplitude factor T(t) represents the response of a low-pass
�lter to the input It(t). In the nonsynchronized state, It(t) D Inst(t), one gets

T(t) D

0 : t < t0

c1(1 ¡ e¡ t¡t0
t ) : t0 · t < t1

c2 ¡ c1e¡ t¡t0
t C (c1 ¡ c2)e¡ t¡t1

t : t1 · t < t2

c2e¡ t¡t2
t ¡ c1e¡ t¡t0

t C (c1 ¡ c2)e¡ t¡t1
t : t2 · t.

(3.2)

The synchronized response T(t) is obtained from equation 3.2 by setting the
tonic component to zero, that is, c2 D 0. The time course of T is determined
by the height (c1) and duration (t0 – t1) of the burst and the tonic component
(c2, t1 – t2), and by the time constant t .

Until now, potentials and not �ring rates, as typically observed in exper-
imental recordings, were considered. To obtain rates from the membrane
potential, a threshold function has to be introduced (cf. equation 2.6). A
useful concept in this context are lines of equal potential de�ned by

V(x, t) D X(x)T(t) D k D constant. (3.3)
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Relation 3.3 can be solved for either x D x(tIk) or t D t(xIk), giving the
equipotential lines in parameterized form. Of particular interest is the case
where k equals the �ring threshold # of cortical cells (which is assumed
to be the same for all cells; the exact form of the output function above
threshold does not matter at this point). Then, w(t) :D x(tIk D #) describes
the time course of the boundary between silent (subthreshold) and �ring
(superthreshold) cells. This is equivalent to the width of spatiotemporal RFs
as observed experimentally by extracellular recordings of �ring rates (see
also Figure 3A). Inserting the spatial pro�le X(x) from equation 3.1 into
equation 3.3 and isolating x, we get

x2(tIk) D 2s2
r ln

K0s0s1

ksr
T(t)

s1¿s0¼ 2s2
0 ln

K0s1

k
T(t) . (3.4)

The time dependence enters into equation 3.4 via the amplitude function
T(t). Using equation 3.2 for T(t), we obtain the RF width for �ashed stimuli.
Examples, shown in Figure 3B, reveal that the width of the (superthreshold)
RF, w(t), indeed changes with time as in the experiments, although the width
sr of the (subthreshold) potential pro�le is constant (see equation 3.1). The
reason for this difference is that the spatial pro�le X(x) is simply modulated
by the multiplicative amplitude function T(t). Then, as long as the �ring
threshold of cortical cells, #, is constant, the width of the region of cells
above threshold naturally varies, but the width of X(x), of course, does not
(see Figure 3A). w(t) D x(tIk ) from equation 3.4 predicts the time course of
the RF modulation.

Equation 3.4 gives a predictable dependence of the RF boundary on the
stimulus size, s1, which could be tested experimentally. On the other hand,
variation of K0, k or s0 is certainly more complicated, if possible at all. The
amplitude function, T(t), however, could be systematically modi�ed by
the temporal input It(t). This may yield further information about network
parameters.

Solving equation 3.3 for t(x), we get the times when the cortical cells cross
a threshold level k:

t(xIk ) D

t0 ¡ t ln 1 ¡ k
c1X(x) : t0 < t · t1

:
¡t ln

k
X(x) ¡c2

¡c1e
t0
t C(c1¡c2 )e

t1
t

: t1 < t · t2

:
¡t ln k

X(x)(c2e
t2
t ¡c1e

t0
t C(c1 ¡c2 )e

t1
t )

: t2 < t.

(3.5)

Times t(xIk ) in the range t0 < t · t1 describe cortical latencies (i.e., the
threshold is crossed from below), times in the range t1 < t · t2 are off-times
due to decreasing potentials when the LGN �ring rates switch from high
(c1, bursts) to low (c2, tonic �ring), and the last regime, t2 < t, characterizes
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Figure 3: (A) Illustration of the mechanism leading to a sharpening of the RF.
The width of the cortical membrane potential, sr, is the same during the burst
and tonic phase, but the width of the �ring-rate pro�le w varies due to the
LGN-driven amplitude modulation of the region of cells above threshold, #.
(B, C) Simulation of equipotential lines x(t, k ) and t(x, k ) for different threshold
levels k . Fork D # such borders between subthreshold and superthreshold cells
de�ne the dynamic RF width w(t) D x(tIk D #) and the �ring latencies t(x, #).
Note that x(t, k ) shrinks with the transition from burst to tonic phase around
50 ms. Simulation parameters are the same as for Figure 2.

off-times when the LGN activity is over. Some curves for cortical latencies
are depicted in Figure 3C. Inserting equation 3.1 for the spatial pro�le X(x),
a useful approximation for these cortical onset times can be given:

t(x) ¡ t0 ¼
kt

c1X(x)
¼

kt

K0c1s1
1 C

x2

2s2
0

. (3.6)
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This means that as long as x ¿ s0, the latencies increase quadratically
with distance x. A correlation between �ring times and distance from RF
center has indeed been observed, but the details of its dependence are still
under examination (Bringuier,Chavane, Glaeser, & Fr Âegnac, 1999;Celebrini,
Thorpe, Trotter, & Imbert, 1993; Dinse & Krüger, 1994; Ikeda & Wright, 1975;
Wörgötter, Opara, Funke, & Eysel, 1996). Equation 3.6 further shows that
the latencies are shorter for stronger cortical inputs (K0c1) or larger stimuli
(s1), and that they increase with �ring thresholds, or with membrane time
constant t , respectively.

4 Recurrent Neural Field Model

In this section we qualitatively explore the in�uence of recurrent intracor-
tical connections on the cortical potential by adding a feedback loop to the
simple feedforward model:

t
@V(x, t)

@t
D ¡V(x, t) C X(x)It(t) C

1

¡1
KDOG (x ¡ x0 )R(V(x0, t)) dx0 . (4.1)

The cortical connection kernel KDOG is chosen as a difference of gaussians
to include excitatory and inhibitory feedback:

KDOG (x) D
Kexcp

2p
e
¡ x2

2s2
exc ¡

Kinhp
2p

e
¡ x2

2s2
inh . (4.2)

Parameters are such that KDOG has a Mexican hat pro�le (see below). The
rate function R(V) in equation 4.1 is zero for V · 0 and equal to bV for
V > 0 (cf. equation 1.6). b is the neuronal gain (in spikes/s/mV). Input
from LGN is the same as in the feedforward model. Note, however, that
in equation 4.1, we have already inserted the total spatial input X(x) into
cortex, that is, the spatial convolution of the LGN activity Ix(x), equation 1.3,
and the feedforward kernel, equation 1.2, from LGN to cortex. The temporal
input component It in equation 4.1 is again given by equation 1.5. Similar
models have been investigated recently in the context of orientation tuning
in V1 (Adorjan et al., 1999; Ben-Yishai et al., 1995; Carandini & Ringach,
1997).

Due to the nonlinearity, analytical solutions of equation 4.1 cannot be
given. Therefore, we simulate equation 4.1 and discuss the qualitative dif-
ferences that appear in contrast to the simple feedforward model. As pa-
rameters, we choose t D 10 ms, t0 D 0 ms, t1 D 50 ms, t2 D 300 ms and
(somewhat arbitrarily) sr D 3±, sexc D 0.7±, sinh D 3.0±, Kexcb D 2.0 mV/deg,
and Kinhb D 0.5 mV/deg. Furthermore, we de�ne k :D K0s0s1 /sr, C1 D kc1,
C2 D kc2 and choose the effective cortical inputs C1 D 10 mV and C2 D 2.5
mV for the burst and the tonic phase. With these parameters, the network
operates in a regime of cortical ampli�cation, as it has been proposed for
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Figure 4: (A) Simulation of the recurrent neural �eld model. (B) Time course of
the width of the potential V(x, t) for the data shown in A.

recurrent orientation tuning models (Adorjan et al., 1999; Ben-Yishi et al.,
1995; Carandini & Ringach, 1997; Somers et al., 1995).

Figure 4A shows that the simulated membrane potential looks quite sim-
ilar to the response of the simple feedforward model (see Figure 2B) and
also to the experimental data (see Figure 1C). Again, a strong and wide
component dominates during the �rst 50 ms and is followed by a weaker
and smaller tonic component. This behavior is typical for large parameter
regimes as long as the cortical gain is not too high, recurrent net excitation
and inhibition are of roughly the same order, and LGN �ring rates in the
burst phase are signi�cantly larger than in the tonic phase.

Although at �rst glance the potential V(x, t) looks similar in the feedfor-
ward and the recurrent models, there is nonetheless a subtle but important
difference. This becomes visible if we look at the width of the simulated
potential pro�le. As emphasized earlier, the width is constant in time and
equal to sr in the feedforward model. Strictly speaking, the width is not well
de�ned in the recurrent model, because the potential pro�le is no longer
gaussian. We can, however, �t the central peak of the pro�le to a gaussian
function to obtain an effective width, s (t). Figure 4B shows s(t) obtained
this way for the data in Figure 4A. Obviously the width now depends on
time, in strong contrast to the feedforward case.

These temporal changes are, of course, due to the feedback connections.
At any instance of time, the potential can be roughly envisaged as a superpo-
sition of components resulting from theLGN input and the excitatory as well
as the inhibitory feedback. The relative contribution of these components
changes with time. Initially, cortical cells are silent. Accordingly, the feed-
back is zero, and only the input determines the width of the potential distri-
bution at the very early response. Thus, s(t D 0) D sr. As the �ring activity
rises, the width s declines, because the excitatory recurrent connections are
relatively strong and sharply tuned (sexc D 0.7 degree), while input and in-
hibition are not (sr D sinh D 3.0 degrees). This way, the intracortical ampli�-
cation leads to a gradual change from wide to sharply tuned spatial pro�les.
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The parameter dependence of the time course of s is complex and can-
not be given in a closed form. It is important that a time dependence occurs
generically in feedback models for almost all parameter values. This is true
whether the model is built of two mutually connected �elds that represent
excitatory and inhibitory cortical cells separately or of just a single layer like
the feedback model in equation 4.1. The time dependence does not have to
be in the form of a shrinkage of the width; it is also possible to obtain
an increasing s(t) if sexc is considerably larger than sr and sinh. Anatomi-
cal results, however, indicate that the Mexican hat pro�le with sinh > sexc
is the biologically most realistic one (Salin & Bullier, 1995). In that case a
time-varying width must appear in feedback models in response to �ashed
stimuli. This means that a constant width of the potentials, as found in the
feedforward model, can be expected only for very special, unrealistic, and
nongeneric conditions in a feedback model. Therefore, a constant s(t) in
the experimental data would be a strong indicator for a pure feedforward
mechanism of the observed RF restructuring.

5 Fit to Experimental Data

We now �t the feedforward model to the experimental data to test whether
it can accurately describe the data and to estimate the model parameters.
Firing rates º(x, t) of on- and corresponding off-sub�elds of 16 V1 cells
recorded during both states of the EEG were analyzed. Each �eld was sam-
pled at 20 positions with 0.5 degree resolution and for 30 time slices of 10 ms
bin size.

For the �t, the potentials V(x, t) are supposed to transform into �ringrates
R by means of a rectilinear function according to equation 2.6: R D f (V) D
[bV¡#]C Cb, where b accounts for spontaneous background �ring. Then the
experimentally derived �ring-rate data can be �tted to obtain parameters
of the underlying potential distribution. Note, however, that the analytical
solution for the potential V(x, t) contains products of model parameters
(see equations 3.1 and 3.2). This implies that we cannot determine all model
parameters independently. We proceed in two steps: for every time slice ti,
we �rst determine the parameters of the spatial pro�le X(x) by nonlinear
least-square �ts:

º(x, ti)
f it
D q(ti)e

¡ (x¡a)2

2s2
r ¡ #

C

C b, i D 1, 2, . . . , 30. (5.1)

Here, a is an (arbitrary) offset of the RF center, and the q(ti) are treated as
�t parameters. They are proportional to the amplitude factor T(ti), that is,
q(ti) D K0s0s1b /sr ¢T(ti). Therefore, they can be �tted in a second step to the
function T(t) (see equation 3.2) to obtain the temporal model parameters.
In addition, the procedure provides a sequence of �tted widths sr(ti), i D
1, 2, . . . , which can be checked for constancy.All �ts are performed using the
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Figure 5: (A) Original data and �t of a cortical simple cell (on-�eld) to the spatial
activity q(ti)X(x) for selected time slices ti recorded during nonsynchronized
EEG. (B) Temporal �t, q(t). (C, D) Spatial and temporal �t for another example
(off-�eld during nonsynchronized EEG). In A and C, the �ts correspond to the
smooth curves.

Levenberg-Marquardt algorithm (Press, Teukolsky, Vetterling, & Flannery,
1993).

On the left side of Figure 5 spatial �ts are shown for different time steps of
an on-response; the right part shows the temporal �t of q(t). Observe that the
LGN activity does not reach V1 before t0 ¸ 30 ms. Before that, background
noise is �tted. Thus, the resulting �t parameters are meaningless for t <
t0. The latency t0 varies between 30 and 60 ms for different sub�elds (cf.
Figure 5B versus 5D). Off-sub�elds exhibit a longer delay than on-sub�elds
(Schiller, 1992). Apparently the experimental data can be described very
well by the simple feedforward model, although the cells differ signi�cantly
in their spatiotemporal receptive �eld pro�les (see Figure 5, top versus
bottom). Some of the measured cells were too noisy, though. The data of two
off-�elds during nonsynchronized EEG and of two on- and four off-�elds
during synchronized EEG had to be excluded because no receptive �eld was
detectable. In the following, only the remaining 24 sub�elds were analyzed.

To quantify the quality of the �t, we determined the percentage of �uc-
tuations in the data that remained after the model �t; we calculated

P D
1

N ¡ 1

N

iD1

( f (xi) ¡ y(xi))2

y(xi)2 , (5.2)
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separately, for the �t in space and in time. Averaged over all 720 spatial �ts
(each of the 24 sub�elds was sampled at 30 different time steps) we deter-
mined that P D 0.092 § 0.059, which means that only 10% of the variation
in the data cannot be explained by the �t.

P is of the same magnitude as the noise contained in the data. The lat-
ter can be quanti�ed by the standard deviation of the background activity
(roughly 10%) during the �rst 30 ms of the response, where the LGN �ring
does not yet in�uence cortical �ring. Comparability of both measures—
background noise and �t error—implies that the model consistently de-
scribes the deterministic variation in the data (Press et al., 1993).

Comparing the �t for the two EEG states, it was slightly better for the
nonsynchronized state (P D 0.083 compared to P D 0.100). The temporal �t
is as good as the spatial. Averaged over all 24 �ts, we �nd P D 0.107 § 0.144.
Again, the �t during synchronized EEG (P D 0.151) was not as good as
the one during nonsynchronized EEG (P D 0.063). In general, the data
are noisier in the synchronized EEG than in the nonsynchronized EEG. A
major reason for this is probably that twice as many stimulus repetitions
were recorded during nonsynchronized than during synchronized EEG.

Interestingly, it turns out that the parameters sr(ti), a(ti ), #(ti), b(ti) are
almost constant over time after the LGN activity has reached the cortical
layer (see Figure 6). To quantify their temporal variation, we calculated
standard deviations over all time bins ti and took the mean over all sampled
sub�elds. Values found are a: 5%, sr: 20%, b: 18%, and #: 16%.

The most important result of the �t is shown in Figures 6B–6D, where
sr, the width of the cortical membrane potential, is plotted as a function of
time. After the activity has reached V1 (around t0 D 40 ms in B), sr turns out
to be constant over time. This was the case in almost all sampled sub�elds.
Only two sub�elds revealed slight and insigni�cant trends toward larger
values with increasing time. As outlined in section 4, this strongly supports
the hypothesis that the RF restructuring is mainly input driven.

RFs in experiments are most commonly derived from �ring rates, not
intracellular potentials. As a measure for the width of the �ring-rate distri-
bution, we can choose its half-width at baseline, w. This can be compared
to the width sr of the (subthreshold) membrane potential (see Figure 6B),
and it is computable from the �tted model parameters using equation 3.4
with k D #, that is, w2(ti) :D x2(tiI #i) D 2s2

r (ti) ln[q(ti)/#(ti)]. Clearly, w
depends on the EEG state, and it is also time dependent although sr is not
(see Figure 6B). Table 1 shows mean values for sr (averaged over all time
bins and sub�elds), as well as maximal �eld widths wp and mean values
for ws :D w(200 ms) during the late response component. Values for wp and
ws are averaged over all sampled sub�elds. ws roughly corresponds to the
half-width of “classical” RF sizes.

Both measures, w and sr, and their relation are in agreement with liter-
ature data: RFs are consistently smaller when obtained from extracellular
rates (compare, e.g., Alonso & Reid, 1995). Hirsch and colleagues mapped
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Figure 6: (A, B) Time course of �ve model parameters for the �t to an on-�eld
of a simple cell during the nonsynchronized state. (A) Background activity b
and �ring threshold #. (B) Offset a of the center of the gaussian X(x), width of
the spatial membrane pro�le sr and half-width of the extracellular �ring rate
pro�le w. Note that the LGN activity does not reach V1 before approximately
40 ms (vertical line in A to D); up to that time background noise is �tted. (C,
D) Time course of sr for two other examples. (C) Same on-sub�eld as in A
and B but during synchronized EEG. sr shows a similar time course as for the
nonsynchronized EEG but it is noisier. (D) Off-sub�eld during nonsynchronized
EEG also showing a constant sr. In C and D the vertical lines again indicate the
latency of the onset response, which is larger for the off-sub�eld in D.

Table 1: State and Time Dependence of RF Widths.

Extracellular Rates
Intracellular
Potential, sr Peak Width, wp Width at ti D 200 ms, ws

Synchronized 2.2± 2.0± 1.0±

Nonsynchronized 1.8± 1.75± 1.25±

Notes: Intracellular widths, sr , measured from membrane potentials are consistently
larger than classical RFs determined from �ring rates (ws) and also as the maximal
extracellular peak responses wp of w(t). During synchronized EEG, the classical RF
shrinks roughly 50% on average, and somewhat less during the nonsynchronized EEG.
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RFs from intracellularly recorded potentials of striate cortical simple cells
(Hirsch, Alonso, Reid, & Martinez, 1998). They found �elds with diameters
up to 4 degrees, consistent with a sr » 2 degrees from our data. Intracellular
RFs of this size are also compatible with anatomical data (Antonini, Gille-
spie, Crair, & Stryker, 1998; Chapman, Zahs, & Stryker, 1991; Humphrey,
Sur, Uhlrich, & Sherman, 1985).

In a second step, we �tted q(ti), i D 1, 2, . . . , 30 (see equation 5.1) to kb ¢T(t)
with k :D K0s0s1 /sr to determine the parameters QC1 :D kbc1, QC2 :D kbc2, t0,
t1, t2, and t . Note that only products kbci, i D 1, 2 can be obtained from the
�t. t0 accounts for latencies between stimulus onset and cortical response
and t1 ¡ t0 for the duration of the phasic burst component. t2 was �xed at
300 ms because data were sampled only during stimulus presentation. For
most sub�elds, excellent �ts were obtained (see Figure 5). Some on-sub�elds
in the nonsynchronized case exhibited a signi�cant adaptation during the
tonic phase (e.g., Figure 1B, 100–300 ms). In these cases, an adaptation term
was added in the �t function, that is, c2 was replaced by c2 exp(¡(t ¡ t1)/ta).

A comparison of the �tted parameters for both EEG states and for on-
and off-sub�elds of the same neuron reveals only a few systematic relations.
The main difference between on- and off-sub�elds is a delayed response for
the off-�elds of approximately 20 ms (t0 D 56 ms) compared to the on-�elds
(t0 D 35 ms), which is in accordance with the literature (Schiller, 1992). The
main EEG state dependence turns out to be the difference between QC1 and
QC2, which is proportional to the difference between LGN activity during
the burst and tonic phase. The difference is about three times as high in the
synchronized (29 I/s) as in the nonsynchronized state (9 I/s). Moreover,
we �nd that bursts are more pronounced (40 § 8 versus 23 § 6 I/s) and
that the tonic component is slightly smaller (11 § 5 versus 14 § 7 I/s) during
synchronized EEG. This may account for the somewhat larger average peak
width (wp) and the lower stationary width (ws) in the synchronized state, as
revealed by Table 1. Individual cells can show this trend much more clearly
than the mean values given in the table. Only in one out of all cells were
bursts less pronounced during the synchronized EEG. The tonic compo-
nent was almost completely missing in about one-third of the cells during
synchronized EEG.

The other model parameters do not exhibit dependences on EEG state
or sub�eld type. Especially the parameters of the spatial gaussian pro�le,
a and sr, do not show a signi�cant variation. Interestingly, the threshold #
also seems to be constant, not only over time but also for different states and
RF types of the same cell. Somewhat surprisingly, even the empirical time
constant t shows no signi�cantdependence on theEEG state. Since neuronal
membranes tend to have faster response times in depolarized states, one
may have expected differences in t . However, all experiments in Wörgötter
et al. (1998) were performed under weakanesthesia, where LGN cells are not
as strongly hyperpolarized as in deep sleep. In that range, t may onlyweakly



154 K. Suder, F. Wörgötter, and T. Wennekers

depend on the level of depolarization (Bernander, Douglas, Martin, & Koch,
1991). In addition, synchronized and nonsynchronized states were classi�ed
from the spectral content of the EEG during a recording session, that is,
the transition between the two states was not induced by other, externally
controlled means. Under these conditions, the range of modulation of the
resting potentials of LGN cells might have been relatively small, such that
t can be expected to be constant.

Quantitatively analyzing the temporal parameters, we �nd that they are
in agreement with the literature (DeAngelis et al., 1995; Hirsch et al., 1998;
Somers et al., 1995; Wörgötter and Koch, 1991): t D 13 § 7 ms, t1 ¡ t0 D
38 § 17 ms, ta D 320 § 50 ms, and that only the duration of the bursts,
t1 ¡ t0, exhibits a small state dependence: bursts are about 20% longer in the
synchronized than in the nonsynchronized EEG.

In addition to the �ring ratesº(x, t) and the RF widths w(t), cortical �ring
latencies tlat(x) can be analyzed. In particular, it is interesting to see if their
spatial distribution is in agreement with the distribution predicted by the
model. In the model, t(x, k) describes the equipotential lines of the cortical
membrane potential, V(x, t) D k, in parameterized form. If the membrane
potential equals the �ring threshold, k D #, these times are equal to the
cortical onset times when the cells start �ring, that is, tlat(x) D t(x, k D #).
The model predicts a quadratic dependence tlat / x2 of the latencies on the
distance x from the RF center as long as x is relatively small in comparison
with the projection range of cortical input connections (see equation 3.6). In
experiments, these times are measured as �ring latencies. They describe the
time from the onset of the stimulus to the �rst response of the recorded cell.
As the latencies were not directly recorded in our experiments, cortical onset
times were obtained with the following procedure. For each location x, the
time step ti, at which the �ring rate �rst exceeds the background �ring rate
plus twice the standard deviation of the background �ring, was taken as
tlat. The binning was changed from 10 ms to 2 ms to obtain a better temporal
resolution.

Eleven curves tlat(x) could be obtained from the experimental data and
used for further analysis. In general, all curves exhibit a similar course. The
latencies increase for locations farther away from the RF center. To check
whether the spatial dependence can be described by a quadratic relation as
predicted by the model, the data were �tted to the function a C bx C cx2,
and regression coef�cients were calculated. Six out of the 11 curves had
a regression coef�cient higher than 0.85. The remaining curves exhibited
regression coef�cients between 0.62 and 0.74.

Intracortical models predict a linear dependence of the �ring latencies on
the distance of the receptive �eld center (Bringuier et al., 1999). Therefore,
we also �tted the data with a linear model a C bx. To this end, the data were
split into two halves consisting of data points lying to the left and right sides
of the shortest latency, respectively. One data set was vertically mirrored,
and the linear �t was carried out on the resulting data, including all points.
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Only in 2 of the 11 cases were regression coef�cients higher than 0.85. Four
cells had a coef�cient between 0.62 and 0.74, and the remaining �ve data
sets one less than 0.62.

Thus, a quadratic �t describes the experimental latency distribution bet-
ter than a linear �t. This is an additional support of our hypothesis that
the observed RF restructuring is caused by a thalamocortical feedforward
mechanism.

Due to the nonlinear, approximately quadratic relation between x and
tlat, a constant speed at which the activity spreads in the cortical layer
cannot be determined. Around the location of the strongest response, the
instantaneous speed is higher (¼ 0.2 deg/ms) than toward the periphery
(¼ 0.06 deg/ms). Averaging over the whole response area and over all sub-
�elds, an average speed of 0.1 degree per ms is obtained—for example, on
average the activity travels 1 degree in 10 ms. This is comparable to literature
data (Bringuier et al., 1999).

In conclusion, the results of the �t, especially the observed constant width
of the potential distribution, validate the hypothesis that the restructuring
from wide to small RFs can be well described by the proposed simple feed-
forward model and that intracortical restructuring is of only minor rele-
vance. As explained before, a constant sr—a characteristic of the feedfor-
ward model—occurs only in arti�cial situations in feedback models.

6 Discussion

We investigated a neural �eld model of LGN and V1 to describe EEG-
dependent RF changes in V1 (Wörgötter et al., 1998). The analytic expres-
sions for the cortical spatiotemporal activity, equations 3.1 and 3.2, show
that the restructuring can be explained by EEG-state-dependent thalamic
�ring patterns (burst versus tonic mode) and a pure feedforward mecha-
nism. The restructuring is due to an “iceberg effect,” with temporally �xed
threshold and spatial activity pro�le X of constant width sr but a time-
and state-dependent temporal pro�le T. This way, the region of cells above
threshold, that is, the RF, varies with EEG state and over time. To test this
hypothesis, the model was �tted to experimental data. Here, it is most im-
portant that the width sr of the spatial pro�les of the estimated membrane
potentials V and the �ring thresholds # indeed remain constant over time
during a response period of 300 ms, although a strong modulation of the
RF size, w, is present (as measured from spike rates). For that reason, the �t
supports the hypothesis that the experimentally observed RF changes are
mainly due to input from LGN and not due to recurrent synaptic interac-
tions in V1. Models with feedback interactions lead in almost all cases to
a time-dependent width sr. Recurrent intracortical circuits have been sug-
gested as being responsible for the sharpening of orientation tuning curves
(Ben-Yishai et al., 1995; Somers et al., 1995) but do not seem to be involved
in the sharpening of spatial RF tuning.



156 K. Suder, F. Wörgötter, and T. Wennekers

The only parameter that showed a small systematic trend in its time
course was the background activity b, which was slightly larger during
the initial burst-driven part of the response (see Figure 6A). One possible
reason might be that some weak excitatory connections from the LGN to
a neighboring sub�eld exist, which are able to activate cortical cells only
transiently during the strong burst component of the initial LGN response.
Tanaka (1983) and Alonso and Reid (1995) investigated connections from
on- or off-cells in the LGN to cortical simple cell sub�elds of the opposite
polarity. Using cross-correlation techniques, they found that such connec-
tions are present but sparse. If the transient increase in background rates
in our data is indeed due to such connections, the data indicate that those
connections are not functional during the late parts of the cortical response.
Consequently, their amount may be underestimated in cross-correlation
studies using long-lasting stimuli.

Field models comparable to those in this article have been used to study
orientation tuning of simple cells in V1 (Ben-Yishai et al., 1995; Carandini
& Ringach, 1997; Somers et al., 1995). In these models the variable x just
represents orientation preference of cells in a cortical column and not spa-
tial location, as in our framework. It is a matter of discussion as to whether
orientation tuning is mediated by recurrent connections inside V1 or by
feedforward input from the LGN. The method presented here may help to
decide that question by considering tuning widths determined from intra-
cellular membrane potentials. Those can be measured in anesthetized cats,
or—assuming a feedforward model as the null hypothesis—they can be
estimated from �ts of �ring-rate data as in our work here. Supposing the in-
tracellular tuning width appears to be constant in time in such experiments,
the orientation tuning would likely be input driven.

Acknowledgments

K. S. and F. W. acknowledge the support of the Deutsche Forschungsge-
meinschaft (SFB-509) and the HFSP. T. W. was supported in part by DFG
grant Pa 268/8-1. We thank K. Funke and N. Kerscher for valuable com-
ments and discussions and K. Funke, N. Kerscher, and Y. Zhao for help
with the experimental data.

References

Adorjan, P., Levitt, J., Lund, J., & Obermayer, K. (1999). A model for the intra-
cortical origin of orientation preference and tuning in macaque striate cortex.
Vis. Neurosci, 16(2), 303–318.

Ahls Âen, G., & Lo, F.-S. (1981). Projection of brainstem neurons to the perigenic-
ulate nucleus and the lateral geniculate nucleus in the cat. Brain Res., 238,
433–438.

http://gottardo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0952-5238^28^2916:2L.303[aid=875656,csa=0952-5238^26vol=16^26iss=2^26firstpage=303,nlm=10367965]
http://gottardo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8993^28^29238L.433[aid=875657,nlm=7093664]
http://gottardo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-8993^28^29238L.433[aid=875657,nlm=7093664]


Receptive Field Restructuring in Primary Visual Cortex 157

Alonso, R., & Reid, J.-M. (1995). Speci�city of monosynaptic connections from
thalamus to visual cortex. Nature, 378, 281–284.

Antonini, A., Gillespie, D., Crair, M., & Stryker, M. (1998). Morphology of
single geniculocortical afferents and functional recovery of the visual cor-
tex after reverse monocular deprivation in the kitten. J. Neurosci., 18, 9896–
9909.

Ben-Yishai, R., Bar-Or, R., & Sompolinsky, H. (1995). Theory of orientation tuning
in visual cortex. Proc. Natl. Acad. Sci. USA, 92, 3844–3848.

Bernander, Ö., Douglas, J., Martin, K., & Koch, C. (1991). Synaptic background
activity in�uences spatiotemporal integration in single pyramidal cells. Proc.
Natl. Acad. Sci. USA, 88, 11569–11573.

Bringuier, V., Chavane, F., Glaeser, L., & Fr Âegnac, V. (1999). Horizontal propa-
gation of visual activity in the synaptic integration �eld of area 17 neurons.
Science, 283, 695–699.

Carandini, M., & Ringach, D. (1997). Predictions of a recurrent model of orien-
tation selectivity. Vis. Res., 37, 3061–3071.

Celebrini, S., Thorpe, S., Trotter, Y., & Imbert, M. (1993). Dynamics of orientation
coding in area V1 of the awake primate. Vis. Neurosci., 10, 811–825.

Chapman, B., Zahs, K., & Stryker, M. (1991). Relation of cortical cell orientation
selectivity to alignment of receptive �elds of geniculocortical afferents that
arborize within a single orientation column in ferret visual cortex. J. Neurosci,
11, 1347–1358.

Crick, F., & Koch, C. (1998). Constraints on cortical and thalamic projections:
The no-strong-loop hypothesis. Nature, 391, 245–250.

DeAngelis, G., Ohzawa, I., & Freeman, R. (1993). Spatiotemporal organization of
simple-cell receptive �elds in the cat’sstriate cortex. 1. General characteristics
and postnatal development. J. Neurophysiol., 69, 1091–1117.

DeAngelis, G., Ohzawa, I., & Freeman, R. (1995). Receptive-�eld dynamics in
the central visual pathway. Trends Neurosci., 18, 451–458.
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