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Using Haptics to Extract Object Shape from Rotational Manipulations
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Abstract— Increasingly widespread available haptic sensors
mounted on articulated hands offer new sensory channels that
can complement shape extraction from vision to enable a more
robust handling of objects in cases when vision is restricted or
even unavailable. However, to estimate object shape from haptic
interaction data is a difficult challenge due to the complexity
of the contact interaction between the movable object and
sensor surfaces, leading to a coupled estimation problem of
shape and object pose. While for vision efficient solutions
to the underlying SLAM problem are known, the available
information is much sparser in the tactile case, posing great
difficulties for a straightforward adoption of standard SLAM
algorithms. In the present paper, we thus explore whether a
biologically inspired model based on dynamic neural fields
can offer a route towards a practical algorithm for tactile
SLAM. Our study is focused on a restricted scenario where
a two-fingered robot hand manipulates an n-gon with a fixed
rotational axis. We demonstrate that our model can accumulate
shape information from reasonably short interaction sequences
and autonomously build a representation despite significant
ambiguity of the tactile data due to the rotational periodicity of
the object. We conclude that the presented framework may be
a suitable basis to solve the tactile SLAM problem also in more
general settings which will be the focus of subsequent work.

[. INTRODUCTION

Grasping and object manipulation are the core capabilities
of robots in assistance and production scenarios. Especially
in the assistance scenario, the ability to learn to manipulate
unknown objects is desirable, since the system cannot rely on
a database of shape parameters of all objects which the robot
may encounter. In such setting, the knowledge about the
object shape has to be obtained using the on-board sensors
of the robot. Typically, computer vision is used to estimate
the object boundaries for grasping and object manipulation.
Depending on the visual appearance of the object, its shape
estimation with vision may be poor or unavailable. Since
haptic sensors are available nowadays on most robotic hands,
haptics could be used as a complementary mechanism to
access object shape. Haptic sensors are directly coupled to
the effector and thus provide information, which is directly
relevant for manual manipulations of objects.

Despite its potential for shape estimation, the tactile
feedback is mostly considered to determine whether the
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manipulator has contact to the object and to control the
force of the grasp [24], [25]. To the contrary, humans and
other primates use haptics in a much richer way, e.g. to
determine pose, shape, texture, or weight of the object, even
in the absence of visual feedback [15], [32]. This raises
the question, whether haptic information may be used more
extensively to access object shape.

In this paper, we explore haptic learning in a simple
setting, which allows to access some principled problems
with this approach and suggest a model, which allows to
cope with these challenges. Understanding the mechanisms,
underlying haptic learning, would lead to a modality specific
information which could be fused and complemented with
those of other modalities, e.g. vision.

One constraint, which we set in our work is that the
system has to incrementally build an object representation
in its interaction with this object. We would like to contrast
such incremental, online learning to batch learning, where
all the past experiences are stored in a raw form and are
used to build the model later. In an online learning scenario,
the system starts with a simple uncalibrated manipulation
behavior, permitting controlled periodic contacts with the
object and improves this behavior over time by building an
object representation. The latter improves behavior by en-
abling the agent to predict action outcomes and thus to make
goal directed modifications. In this case, the data acquisition,
training, and exploitation phases are highly interwoven.

Moreover, we are interested in a learning mechanism,
which is not dependent on a specific behavior, e.g. a pre-
defined series of specific gasps of a rigidly mounted object.
Indeed, most state of the art approaches to haptic learning
use one of two simplifications in the haptic learning process:
the first class of systems uses rigidly mounted objects for
learning their shape and geometry, e.g. [20], [18], [7], the
second class of systems uses haptics to localize objects, the
shape of which is assumed to be known [10], [23], [5].
If the geometry is initially unknown and the pose of the
object changes during the learning phase, the haptic learning
problem becomes equivalent to the well-known simultaneous
localization and mapping (SLAM) problem in navigation.

Instead of localizing the robot with respect to the environ-
ment, the task here is to localize an object with respect to the
robot. In this case, the pose of the object has to be estimated
and continuously tracked during online manipulations based
on the perceived features at contact points. Small errors in
this pose estimate accumulate over time and lead to a drift
in the mapping of the object geometry, which calls for an
error correction mechanism to prevent drift in the estimate. In
the field of robotic mobile navigation, multiple approaches
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are known to solve the SLAM problem, for a review see
[8], [2]. There have also been several biologically motivated
approaches to the problem, e.g. [19], [21], [6].

Tactile SLAM has several differences compared to its
navigation analogous, however. In tactile SLAM, the sensor
information is only present during periods of object contact
in contrast to the typical continuously available information
of distance sensors (e.g. sonar, infra-red, or laser). This
leads to only very sparsely distributed information in space,
comparable to solving SLAM in navigation by only using
the bumpers of a robot. Furthermore, the resulting sensor
data typically does not have spatially distinct features, as
surface curvature, edges, and texture are often ambiguous
in space. Hence, the capabilities of computing, tracking,
detecting and matching unique or salient features, which
serve as landmarks, are very restricted. This renders most
traditional solutions to the SLAM problem unsuitable for
a purely haptics based setup, although modifications for
particle filters have recently been proposed in order to cope
with spatial sparsity of contact informations [16]. In [9]
the tactile SLAM problem is approached by rasterizing
the environment into a binary grid-map encoding ‘empty’
or ‘taken’ and then including this map into the particle
filter. Tactile measurements are then incorporated by using
assumptions with respect to the environment. However, this
approach lacks the necessary precision for predicting tactile
input patterns and is additionally computationally intractable
for a reasonable map resolution. In [35] a Bayesian approach
to the tactile SLAM problem is suggested, although sub-
stantial pre-knowledge is needed even for simple simulation
experiments (e.g. a “localization sensor”, known dimensions
and mass of the object).

The model, which we propose here is inspired by biolog-
ical processing of haptic pathways, in that the preprocessing
of information leads to biologically plausible features and the
performed computational methods respect neural processing
mechanisms. This allows us to potentially use and refine the
same model in accounting for human behavioral data on hap-
tic learning, if these become available. One principle which
we take from biology is separation of shape representation
from the representation of the object pose, i.e. an explicit
object representation. In humans there is evidence for this
from developmental psychology studies, e.g. [31], [33]. Neu-
robiological work also indicates that object representations
are invariant to the pose, which holds for vision [13] as well
as for haptics [11]. This motivates learning of the explicit
object shape representation in our model. Insights into the
processing of haptic information show similar mechanisms
to those known from the visual pathway [4], [11], [32].
Additionally, vision and haptic pathways for constructing an
object representation are highly interleaved, multi sensory
processing and integration takes place at a variety of stages
[14], [12], [32], [22]. This legitimates the application of
algorithms form the field of biologically inspired computer
vision research [17] to tactile sensor data.

As a first step towards solving the fully-fledged haptic
SLAM problem, a simple setup containing objects with one

degree of freedom in the orientation, is investigated. In
this experimental setting, we use two fingers of a robotic
hand to rotate different objects and incrementally build the
representation of the object shape during the manipulation. In
particular, the available features from haptic data are locally
matched in the rotational dimension in order to retain a
consistent representation of the object shape; errors in this
representation are detected and corrected. This demonstrates
the principled ability of the model to build these representa-
tions in an online haptic learning process.

II. OVERVIEW OF THE SETUP

This section gives an overview of the developed architec-
ture for using haptics to build object shape representation. A
scheme of the architecture is shown in Fig. 1. The neural-
dynamic model, which implements the central parts of this
architecture is further explained in Section III, and the setup
used for evaluation of the model is described in Section IV.

A. The Manipulation Behavior

In the upper part of Fig. 1, the behavioral loop is depicted,
which amounts to a reactive behavior controlling a robot
manipulator, providing tactile and proprioceptive sensory
feedback.

In particular, the forward kinematics of the fingers was
solved analytically and the desired rotation behavior was
learned on a set of kinesthetic teaching examples: objects
of different sizes were manually rotated with the robot hand
while recording the joint angles. The computation of the
desired mapping was done via Principle Component Analysis
(PCA) on the recorded training data in joint angle space.
Only the first two PCs were used as parameters for the
rotation behavior: the first PC corresponds to the rotation
angle of the fingers and the second PC corresponds to the
grasp diameter.

The rotation parameter was constantly increased until one
of the tactile sensor activation blobs reached the spatial
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boundary of the sensor surface. When the border of the
sensor surface is reached, the grasp is released via the grasp
diameter parameter and the rotation parameter is reset to
a point-symmetric position (see Fig. 3, left). Finally, the
grasp is closed and the rotation movement begins all over
again. While the rotation is performed, the grasp diameter
is continuously controlled for, such that the tactile sensors
report a desired pressure level and do not loose contact
with the object. This behavior was implemented outside the
neural-dynamic framework, but may be generated using the
neural dynamics approach, as described in [26]. The object
was supported by the planar table-surface all the time, hence
no force closure or other stability criteria had to be taken
into account.

The remainder of Fig. 1 shows the steps necessary to learn
a model of the object shape based on the acquired haptic data.

B. The Problem of Predicting the Object Pose

We assume that the kinematics of the hand are known,
thus a forward model is able to give a prediction of the
manipulated object pose, based on proprioception and tac-
tile contacts. The difference between the positions of two
consecutive tactile contact measurements in time allows to
predict the change in rotation, and if there is a pose estimate,
also the translational change of the object.

Due to only having two joints per finger, there are not only
forces orthogonal to the object surface, but also tangential
components. These lead to an uncontrolled movement when
the object is released, which cannot be detected nor prevented
in the proposed setup. Together with the unintended slight
shift and rotation of the object when the grasp is closed
again, these are the main sources of noise in the orientation
estimate. In general, these should be systematic and indeed
there is a strong tendency of systematically underestimating
the object rotation. In contrast, slippage was nearly negligi-
ble, due to a very “grippy” texture on the object surface. In
Section V, we demonstrate how the model compensates for
these errors.

C. Computing Haptic Features

For mapping the object shape, features are extracted
from the tactile sensors and transformed to external three
dimensional coordinate system, combining the tactile sensor
information with joint angles, based on the known kinemat-
ics. The proposed model is inspired by neural processing of
haptic pathways and therefore operates on tactile features
which are similar to features known to play a role in
visual pathways. These features include: zero-, 1st, and 2nd
order moments, which correspond to position, orientation and
curvature of the tactile contact, respectively.

In order to compute these features during manipulation,
the joint angles, centroids and covariances of the tactile
pressure patterns (via OpenCV CvBlob detection) are stored
in tactile coordinates. Then the three-dimensional position
of the contact points and the corresponding normal vector
of the tactile sensor surface is computed using the forward
kinematics. In this particular state of the project, the object

motion is restricted to one degree of freedom: rotation along
it’s z-axis. Therefore, the third dimension of the features (i.e.
height / z-axis) is currently irrelevant and thus omitted.

The orientation of the contact normals in the two-
dimensional planar space revealed itself as the most informa-
tive feature in our experiments and is used as input feature
in the current implementation of our model. Note, that the
normal of the object surface does not necessarily coincide
with the normal of the sensor surface, due to the rigid fingers.

Positional information of the object is not utilized by
the model yet, as only rotational estimates and corrections
need to be performed. These positional information will
be important for translational estimates, subject of future
research.

Curvature is modeled by the eigenvalue ratio of the
covariance of the tactile pressure “blobs”, along with the
angle of the first eigenvector. The information about the
curvature of the contact area is very noisy and suffers from
tangential stress (i.e. shear forces) along the sensor-surface
which lead to strong distortions of the perceived pressure
patterns. Thus, information extracted from the covariance
of the pressure blobs did not lead to any improvements in
the results, but may by used in the model with a different
hardware, in which curvature measurement is less effected
by the tangential stress.

D. The Problem of Mapping and Tracking

The extracted haptic features are transformed into the
object coordinate system, based on the current estimate of
the object pose. For mapping the object shape in a pose
invariant representation, the tactile information is temporally
integrated by the proposed neural-dynamic model, as shown
in Fig. 1.

The central part of this architecture is the matching module
for detecting and correcting errors in the orientation estimate
according to the current tactile inputs and the object model.
This requires to split the error into suitable proportions of
shape model and pose model adaptation - which is the core
problem to be addressed by SLAM.

This problem, when to adapt the object representation
and when to correct the pose estimate, can only be solved
to the degree of object ambiguity. The objects we used
in our experiments, as well as many everyday objects, are
symmetric and repetitive in their appearance, which makes
localization of the object necessarily ambiguous, i.e. the
same features may be detected for multiple object poses. The
correction of the object pose estimate based on the tactile
inputs corresponds to a tactile tracking of the object and is
visualized by the “Tracking” path in Fig. 1.

A neural-dynamic implementation of the computations in
the central modules of the architecture (“Object Representa-
tion” and “Matching Module” in Fig. 1) will be presented in
the next Section.

ITII. THE MODEL

In this Section we describe the neural-dynamic model,
which implements the object shape mapping and tracking

2181



of its orientation, whereas Section IV describes the robotic
experiments in which the model was evaluated.

A. Dynamic Neural Fields (DNFs)

In our architecture, DNFs are used to represent the current
tactile features, to match these to an accumulated long-term
memory of the object shape features, and to compute errors
in the orientation estimation, thus stabilizing the object-
centered shape representation.

Dynamic Neural Fields (DNFs) are activation functions,
which first were introduced to describe activity of neuronal
populations [1], [34] and have been used in cognitive science
to model dynamics and development of cognitive processes,
such as, e.g., memory formation, decision making, or cate-
gorization [30]. DNFs were first applied in a robotic context
in the attractor dynamics approach to navigation, where they
were used to stabilize target representation during occlusions
[3]. Today, DNFs are one of the main tools in the dynamical
systems approach to cognitive robotics and enable integra-
tion of low-level sensory inputs and motor dynamics into
cognitive architectures, e.g., scene representation, sequence
generation, and grounded language [28].

The DNFs used in our model follow Eq. (1), which defines
the rate of change in activation u(z,t) of the field:

Tu(z,t) = —ul(z,t)+h+S(z,t)+

/f u(a’,t))w(|z — 2'|)da’. (1)

In Eq. (1), u(x,t) is the activation of the DNF at time
step ¢ and position z. The position in a DNF describes a
behavioral variable, such as a perceptual feature, location in
space, or motor control variable (it is the orientation of the
detected feature in our implementation here). The activation
u(x,t) can be interpreted as the confidence of value x for
this behavioral variable in the current state.

The term —u(z,t) stabilizes an attractor for the activation
function at values, defined by the last three terms in the
equation. The time constant 7 determines how fast activation
u(x,t) relaxes to the attractor. The negative resting level h
ensures that the DNF produces no output in a deactivated
state and S(x,t) is an external input, driving the DNF.
The convolution term models lateral interactions between
sites of an active DNF, shaped by the interaction kernel,

2 2

w(|x - $/|) = Cegc €XP |:7 (:12;(721 ) f Cinh €XP {7(2;#}7
with a short-range excitatlonw(cstrength Cege, Width 'lghwc)
and a long-range inhibition (strength c¢;p,n, width o;,5). A
sigmoidal non-linearity, f (u(z,t)) = m defines
the output of the DNF with which the DNF impacts on other
dynamics in the model, as well as on its own dynamics
through the lateral interactions.

The lateral interactions of DNFs stabilize a localized peak-
attractor for the activation function, i.e. even for a noisy and
varying input, the DNF “stabilizes a decision” for the most
active peak position, leading to discretization of continuous
sensory and motor spaces.

In the proposed model, a series of one-dimensional DNFs
are used, encoding the orientation angle in the behavioral
variable z in Eq. 1. A two-dimensional DNF is used to
estimate the deviation of an activity peak position in two
fields. This comparison mechanism has been previously used
in a neurally-inspired model for coordinate frame transforma-
tions [29]. Hereby, both one-dimensional fields are expanded
(i.e. projected) along a second dimension, one of them is
transposed (i.e. rotated by 90°) and then they are added
up. This two-dimensional combined field activation serves as
input for a two-dimensional field, defined by Eq.1 with  now
¥ € R?. Finally, the two-dimensional field is projected along
its diagonal onto a one-dimensional field, hence resulting in
an encoding of one of the two fields relative to the other.

To build a long-term memory of the object’s shape, we
use memory trace dynamics, Eq. (2), [27]:

nP(x,t) = Nowitd (— P, t) + f(u(z, 1)) f(u(z,t) —
Adecayp('x?t)(l - f(u(x7t))) (2)

Here, P(x,t) is the strength of the memory trace at site
x of the DNF with activity u(z,t) and output f(u(z,t)),
Abuitd and Agecay are the rates of build-up and decay of the
memory trace. The build-up of the memory trace is active
on sites with a high positive output f(u(z,t)), the decay is
active on the sites with a low output.

B. Mapping and Tracking the Object

The distribution of the tactile features (in particular, the
normals’ orientations, see Section II) within a short time
window is given as input to two pathways of the model,
implementing the mapping and tracking of the object. For
this, a filter bank of orientation selective neurons implements
a population encoding via a scalar product of the fixed neuron
weight vectors and the contact normal. This encoding is then
used as input for the subsequent DNFs. The first pathway is
fast (i.e. has a small 7) and holds the current information
of perceived tactile features, while the second pathway is
operating at a slower speed and accumulates a long-term
memory of past inputs. The latter serves as the object shape
representation (i.e. mapping) and is used for matching with
the current estimate of the fast pathway, in order to correct
for errors in the orientation estimate (i.e. tracking). The
neural-dynamic model, which implements both pathways is
shown in Fig. 2.

a) Surface Detection: The fist step in both pathways
is to classify, whether the current input comes from a flat
surface by generating an activation peak at the location
of the DNF, which corresponds to the orientation of the
detected surface. As the finger surface is curved, flat object
surfaces lead to more normals with the same orientation,
while object edges lead to a continuous change in the
orientation of the normals. Therefore, the distribution of
contact normal orientations is broad and weak for contacts
with an object edge, while it is sharp and strong for contacts
with flat surfaces. The dynamics of the neural fields can
easily be tuned to only give rise to a stable peak when a
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outputs a correction term for the estimated object orientation.

sufficient number of measurements with the same orientation
is reached.

b) Memory and Matching: In the mapping pathway,
the activation peak, which represents a detected surface, is
transferred into memory (Fig. 2), through the memory trace
dynamics specified in Eq. (2). The memory is exponentially
fading and is tuned to have very slow fading time constant
in order to hold sufficient information of past orientations of
the detected surfaces.

In the tracking pathway, the orientation of a detected
surface is transferred to a match DNF (Fig. 2). The lateral
interactions in this DNF shift the representation of the
currently perceived surface towards the position of a neigh-
boring peak in the memory. This happens if the activation
peak of the currently detected surface has a similar position
(i.e. orientation) in the match DNF as a previously detected
surface, stored in the memory.

c) Error Estimation and Correction: The matched acti-
vation peak represents the corrected orientation and is com-
pared to the original activation peak in a two-dimensional
DNF (labeled “Comparison” in Fig. 2) in order to determine
if the matching process altered the peak position, as de-
scribed in the previous paragraph. A diagonal readout of the
two-dimensional DNF, i.e. projection to a one-dimensional
Error DNF (Fig. 2), provides information of the peak shift
due to the matching.

The deviation of the peak position from the center of
the Error DNF is subsequently used to correct the current
estimate of the object’s orientation (encoded in a scalar
value). Subsequently, the corrected estimate of the orientation
is then used to transform the next perceived feature into the
corrected object-centered reference frame.

Together, the two pathways lead to a fast matching of
current with memorized features and a correction in the
orientation estimate.

IV. EXPERIMENTS

In our experimental setup a Shunk Dexterous Hand 2
(SDH-2) is used and configured such that only two of the

Fig. 3. Left: sketch of the rotation behaviour; Right: picture of our
experimental setup

three fingers are used, each having two degrees of freedom
(i.e. controlled joints). The two phalanges of the fingers are
each equipped with a tactile sensor. The tactile sensors, used
in our experiments, consist of an array of 6 x 13 tactile
elements (texels) on the distal phalanges, although the width
decreases to 4 texels at the fingertips. Figure 3 shows the
robotic setup, used for evaluation of the model, as well as
the manipulation behavior used in our experiments.

Rotation experiments were performed with three different
aluminum objects (n-gons): a round cylinder, an 8-sided and
a 6-sided cylinder which had the same medium diameter
(4.0cm) and object height (7.0cm). The objects had a hole
in the bottom, by which they were attached to a steel axis
to prevent translations of the object. This leaves one degree
of freedom to study errors accumulated during the object
manipulation: a rotation along the fixed axis.

A. Generated Datasets

With each of the objects, five datasets were recorded, each
consisting of an estimated rotation of four times 360 degrees.
Hence, 15 datasets were collected, in which the tactile
patterns and joint angles were sampled with approximately
2-3 Hz and the according features were computed and stored.

An exemplary subset of two rotations is visualized in
Fig. 4 from the first dataset of the six-sided object, where
finger one corresponds to the upper finger of the sketch in
Fig. 3. Shown are the positions and surface normals of the
tactile contacts during two rotations of the object for each
finger, respectively.

It is clearly visible, that there is a drift in the object rotation
estimate as the data points do not align for consecutive
full rotations of the object. The disparity in the noise level
of computed contact curvatures of the fingers (not shown)
indicated that noise is affected by the direction of tangential
forces, induced by the movement direction of the fingers.

Using these noisy measurements directly to build an
object’s shape representation would lead to large errors in
this representation accumulated over time, which motivates
application of our neurally-inspired model to correct the
measurements in an online learning process.
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Fig. 4. Raw, uncorrected data for a six-sided object. The position and
orientation of the contact normals in the object coordinate system (used
as input to the model). The columns show the data for finger one and two,
respectively. Note how errors in position estimates lead to a drift of features
over time of manipulation (two full rotations of the object are shown here).

V. RESULTS

To evaluate the benefit of the neural-dynamic model
presented in this paper, three different estimators of object
shape, i.e. the number of detected surfaces during manipu-
lation, were used, each operating on the tactile input to the
model:

First, the accumulated histogram of all past contact normal
orientations is computed. This is the most simple approach
to classify the number of surfaces based on orientations,
which does not use the memory trace and the error correction
mechanism of our model.

Second, the memory trace of the proposed model is used
for evaluation, however without any correction in the pose
estimates. In this case, the memory performs a suppression
of weak (i.e. small) surfaces and additionally implements a
fading memory.

Third, the memory trace of the model with error correc-
tion. Here the full model of Fig. 2 is used and continuously
matches the current orientation of a detected surface with
the memory and outputs a correction term for the pose
estimation.

In Fig. 5, the time-courses of the histogram, the uncor-
rected memory trace, and the corrected memory trace are
shown as the rotation behavior is performed for the six-
sided object. In the histogram approach, each row (i.e. every
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0 2pi 4pi 6pi 8pi 0
Object Rotation [rad] Object Rotation [rad]
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Object Rotation [rad]
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Fig. 5. The histogram, uncorrected memory trace and corrected memory
trace for dataset 5 of the six-sided object. Note that the y-axis is circular
and should have six equally spaced peaks aligned for all rotation steps.
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Fig. 6. The mean and standard deviation of the number of estimated

object surfaces, evolving over time (i.e. object rotations). For each of the
three objects (subplots) five datasets were used for computing the graphs
with three different methods, respectively. Blue: based on an accumulated
histogram. Green: based on the proposed model with deactivated error
feedback. Red: based on the proposed model with error correction.

rotation step) is normalized for an increased visibility. The
memory is intrinsically normalized, as given by Eq. 2. Note
the clear increase in alignment of the detected surfaces during
the rotation when the model performs corrections in the pose
estimate (“Corrected MT” in Fig. 5).

Each estimator was analyzed in order to determine the
number of detected surfaces for each dataset. First, the
activation of the estimator was smoothed with a Gaussian
filter in order to remove local optima due to small amounts
of noise. Second, the number of peaks above a predefined
threshold (0.4) are counted using Matlab Signal Processing
Toolbox. The results are not sensitive to the exact threshold
value, as peaks, which correspond to surfaces typically have
values from 0.6 to 0.8.

Figure 6 shows the mean and standard deviation of the
number of estimated surfaces using the three estimators. The
number of surfaces detected is shown for each measurement
step (object manipulation action) and is computed by aver-
aging the five datasets for each object.

In general, the simple accumulated histogram (first esti-
mator) and the uncorrected model (second estimator) are
incapable of building a consistent representation of the object
shape, as the errors in the pose estimate are integrated and
lead to a constant drift and the number of detected surfaces
strongly fluctuates over time (see Fig. 6, blue and green
lines). Note, how only memory trace with error correction
(full model) converges to a correct estimate of the number of
surfaces of the objects (red line on the three plots in Fig. 6).

As the Memory is empty in the beginning and only
incrementally builds up, the number of surfaces is typically
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Fig. 7. The mean and standard deviation of the number of detected surfaces
for the second half of each dataset, excluding the initial “build up phase”.

overestimated after the first 360 degrees of the rotation
(red curve in Fig. 6). This is because every new surface is
“corrected” into the direction of the previously seen surface
and has no counterpart on the other side jet. However,
during further exploration of the object the model shifts and
merges the orientations of surfaces in the Memory and finally
converges to a stable representation, as can be seen in Fig. 6,
red lines. Note, that this effect is not visible in the dataset
shown in Fig 5.

For the round object, the contact normals only lead to
a low activation in the surface detection DNF which in
turn leads to a memory formation which is sub-threshold.
Therefore, no surfaces are found by the proposed model in
any of the datasets with the round object, which is a clear
advantage over the histogram approach, which detects several
false surfaces.

Figure 7 shows the mean and standard deviation of the
detected number of surfaces for the second half of each
dataset of the recorded data. The first half is omitted in
order to give the model time for building up the represen-
tation. The corrected memory trace model shows improved
performance compared to other approaches, see red bars in
Fig. 7. The forth dataset of the six-sided object shows a
worse performance, due to the late convergence of the object
shape after approximately three full rotations (around 6pi in
Fig. 6). Nevertheless, even in this case, the correct number
of surfaces is detected and sustained by the full model after
three full rotations (Fig. 6).

Corresponding to finding the right number of surfaces, the
model also finds an appropriate correction for the orientation
estimate of the object. Fig. 8 shows an improvement in align-
ment of measurements, accumulated over time compared to
the raw data in Fig. 4. The shown data are the last two
full rotations of dataset one of the six-sided object, with the
corrected orientation estimate incorporated. Compared to the
uncorrected raw data (Fig. 4), the surfaces detected during
two full rotations are aligned much more precisely.

VI. DISCUSSION

Learning an object representation and tracking its pose
is crucial for improving and planing manipulations, as it
enables the prediction of the outcome of movements. In
this paper, we proposed an online, neurally inspired model
capable of learning an object model from purely haptic data.
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Fig. 8. The corrected feature measurements for a six-sided object. The
correction of the estimated location of features in the object-centered
reference frame by the neural-dynamic model for haptic learning aligns
feature measurements over several (here, two are shown) full rotations of
the object. See Fig. 4 for a comparison.

The object model amounts to a representation of features,
relevant for object manipulation in an object-centered space.
Evaluation showed that the full model clearly increases the
object shape precision, compared to directly integrating the
raw data.

Here, we discuss several limitations of the current imple-
mentation and the steps we planned to overcome those.

Going towards three-dimensional haptic SLAM, i.e. local-
izing the rotation and position in two-dimensional space, is a
necessary step for enabling the prediction of tactile sensor in-
puts from efferent motor signals. Thus, one of the next steps
in our work is to incorporate information about translational
movement into the model. Currently, the information of the
position in space of tactile contacts was not used and the
object position was neither estimated nor corrected by the
model. However, the position of tactile contacts is available
along with the orientation of the contacts, which was used in
this paper, and may be incorporated in order to independently
estimate the object position.

It is obvious that the sensitivity of the matching process
determines the spatial resolution of the features which can
be detected. Features in the present model are only distin-
guishable by their pose, which is exactly the variable in
need of correction. The matching process in the Match DNF
pulls an activity peak, which represents a surface, towards
the neighboring peak in the Memory DNF. If the matching
neighborhood is too broad, distinct features stemming from
different surfaces, may be matched and the pose estimate is
“corrected” in order to align those. On the other hand, if the
matching neighborhood is too narrow, revisiting the same
feature once again will lead to a new feature in the Memory,
due to perturbations in the true object position.

In order to overcome these limitations, higher order fea-
tures, which may consist of specific combinations of lower
level features, should be considered. More specifically, com-
binations of surfaces and edges as well as the angle of an
edge (distance between the surface-peaks in the histogram)
will be investigated in future research. Additionally, improv-
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ing the feature of the contact surface curvature by removing
“ghost contacts” is expected to further improve the results,
due to a richer representation of tactile inputs. We have used
this feature already in test runs, but it revealed itself to be
too noisy with the currently used hardware.

The final goal of our project is to close the loop and let the
accumulated representation of the object’s shape influence
the manipulation behavior, making grasps which follow a
given pattern, e.g. falling on flat surfaces only. To accomplish
this, the acquired object’s shape representation may be used
to generate predictions of the outcome of the robot’s actions.

The present work is a first, necessary step into the direction
of autonomous haptic learning of objects’ shapes. We hope
that future work will further increase our understanding of
tactile features and memory processes necessary to tackle
the main challenges in haptic SLAM, in artificial as well as
biological systems.
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