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Abstract— The idea that connected convex surfaces, sepa-
rated by concave boundaries, play an important role for the per-
ception of objects and their decomposition into parts has been
discussed for a long time. Based on this idea, we present a new
bottom-up approach for the segmentation of 3D point clouds
into object parts. The algorithm approximates a scene using an
adjacency-graph of spatially connected surface patches. Edges
in the graph are then classified as either convex or concave using
a novel, strictly local criterion. Region growing is employed to
identify locally convex connected subgraphs, which represent
the object parts. We show quantitatively that our algorithm,
although conceptually easy to graph and fast to compute,
produces results that are comparable to far more complex state-
of-the-art methods which use classification, learning and model
fitting. This suggests that convexity/concavity is a powerful
feature for object partitioning using 3D data. Furthermore we
demonstrate that for many objects a natural decomposition into
“handle and body” emerges when employing our method. We
exploit this property in a robotic application enabling a robot
to automatically grasp objects by their handles.

I. INTRODUCTION

Robots must be able to interact with and manipulate
objects. However, what is an object? As early as 1000 AD
the first notions arose that shape/object perception relies
on convexity and concavity information. In the first known
book on visual science, written by the Arab scholar Alhazen
(Ibn al-Haytham), 965 - ca. 1040 AD [1] he stated that
connected convex surfaces lead to the perception of a solid
object (“if the body has a convex surface that bulges towards
the eye [...] then if sight perceives the convexity of the
surface it will perceive the body’s solidity”; [2], p. 169). A
substantial body of psychophysical and theoretical literature
exists that has tried to substantiate this claim for human
perception, but almost exclusively dealing with 2D shapes
[3]–[8]. In addition a few early studies in computer vision
have used this concept to distinguish objects from each other
also in 3D [9]–[11]. These older studies, however, suffered
from a lack of good 3D-data, which only now has become
readily available through the use of RGB-D sensors (like the
“Kinect”). Thus, only recently the aspect of shape perception
relying on convexity and concavity has become used in
technical systems [12]–[14], with variable success. Why is
object segmentation so difficult? One reason for this is that
most objects are composed of parts, which can have their
own functional semantics (very often: body and handle).
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Thus, data driven, bottom up whole-object segmentation is
an ill-posed problem if not considering parts (and their
combinations) early on.

In this study we address this problem by the use of a well-
designed concave-convex criterion on point cloud data and
show that this is exceedingly powerful for the data-driven
finding of parts of objects. The main novelty of our approach
lies in the definition of this strictly local 3D-partitioning cri-
terion and its combination with a region-growing algorithm
working on surface patches. This largely mirrors human
perception and thereby creates object parts from the point
cloud data in a natural, human-like way. Specifically, from
such a partitioning we can demonstrate that the notion of
“handle versus body” genuinely emerges for many objects,
which is very useful for robotic grasping. This paper is
organized as follow: First, in Section II we present our
segmentation algorithm, for which technical details are given
in the Appendix. In Section III we evaluate our method and
benchmark it against other approaches. After that, we show
one demonstrative example of a robotic application: Grasping
objects by their handles. Finally in Section IV we discuss the
results and compare them to the state of the art. The method
source code is freely distributed as part of the Point Cloud
Library (PCL)1.

II. METHODS

A. Method overview and basic definitions

The basic assumption of our segmentation is that object
parts are usually separated from each other by concave
boundaries. Early on we note that single-part objects are just
a special case of this. Based on this hypothesis, the goal
of the algorithm is to segment scenes by merging convex
areas enclosed by concave boundaries. Convex is defined
here in the usual way (Fig. 1 C, left): Two touching surfaces
of an object form a convex configuration if a straight line,
which connects one point on one surface with another point
on the other surface, cuts through (the solid part of) the
object. Accordingly, a concave configuration is given when
the connecting line travels through “free space” (Fig. 1 C,
right). However, there exist configurations where the ob-
served surface is locally discontinuous and the classification
into convex and concave does not make sense (Fig. 1 D ).
Hence, just applying the concave-convex criterion as such
can lead to wrong decisions and thus a wrong segmentation.
A main contribution of this study is to address this problem
using some simple geometric criteria.

1http://www.pointclouds.org



Fig. 1. Flow diagram of the segmentation algorithm. Two example cases are shown: single-object case (upper panels) and two-objects case (lower panels).
Illustration of A) RGB images corresponding to the point clouds (not shown) of the scenes, which serve as an input to the segmentation algorithm. B)
Graph of connected supervoxels (linear patches). For clarity, the displayed patches are bigger than the ones used for segmentation. C) Convexity criterion
and D) sanity criterion for the classification of graph edges. E) Model depicting the classified graph. Black lines denote convex connections, red lines
concave/invalid ones. F) Resulting Segmentation; object labels are shown by different colors. G) Magnification of noisy region in the segmented image
which is due to over-smoothed normals. H) The final segmentation result after noise filtering.

B. Method flow-diagram

The flow diagram of the Locally Convex Connected
Patches (LCCP) segmentation algorithm is presented in
Fig. 1. To explain our algorithm we have designed two simple
objects using wooden cubes: an object that a human observer
would consider as consisting of a single-part (upper row) and
another one from two parts (bottom row). In the following
we will give a general overview of the implementation of
our algorithm. Details are given in the Appendix.

Our method is based on the segmentation of 3D point
clouds recorded with a Kinect sensor, which serves as input
to our algorithm (RGB images shown in Fig. 1 A). As we
concentrate on geometric criteria, we omit the RGB data and
use the depth data alone.

First, we build a graph of connected linear patches (Step
1, panel B) as an approximation of the observed surfaces in
the point cloud. This is done using the Supervoxel algorithm
of [15], which is an edge preserving oversegmentation, where
each supervoxel in an adjacency graph is taken as a linear
patch (e.g. a patch with zero curvature) and its normal
vector is calculated. The main advantage of this step is that
it reduces noise and thereby increases the stability of the
convexity decision. Additionally a substantial data-reduction
is achieved, making the algorithm faster.

Afterwards, we create a convexity graph (Step 2, panel
E) by classifying edges of the linear patch graph. To decide
whether a connection between patches is convex or concave
we use two criteria, convexity and sanity (Fig. 1 C, D).
Convexity is defined as described above, but connections
between patches whose normals differ less than a small angle

threshold βThresh are always treated as convex. This thresh-
old compensates for inaccuracies in the normal estimation
and allows merging of small, spurious concavities. The sanity
criterion is used to identify and invalidate connections where
patches are only connected in a singular point making the
convexity decision ambiguous.

Finally, in Step 3, we segment the obtained convexity
graph in order to find all components connected by convex
edges (Fig. 1 F). We achieve this by a region growing
process. Starting from any seed-patch, region growing prop-
agates the seed-label over those patches that have convex
edges until a concavity is reached, for which the region
cannot “grow around” and the process starts with a new
seed (see Appendix for details). This can best be understood
comparing panels F. In the upper panel only one object is
labeled. The corresponding convexity graph (panel E) shows
why this happens. Although a concave boundary exists for
this object, region growing finds enough convex-connected
patches such that the label can grow around the concave
edge. A different arrangement is presented in the bottom
panels. In this case the object splits into two separate parts
(panel F). This is due to the fact that the front part of the
structure is not a single plane anymore but shows a step-like
structure. This discontinuity leads to an enclosing concave
boundary which cuts the convexity graph (panel E) into two
parts that cannot be bridged by region growing. As a result,
the algorithm interprets this scene as two touching objects.

In the resulting segmented images (panels F) one can see
small segments at the edge. This happens due to the gradual
transition of the normals at the edge (Fig. 1 G), because



Fig. 2. Examples of segmentation: A) images from OSD dataset and B) images from our data set. Top and bottom panels show original and segmented
images, respectively. Points beyond a distance of 1.3 m were cropped for visualization.

normals are estimated using a local neighborhood. Because
of this, a group of normals may seem to have a concave
connection to both surfaces leading to unwanted segments.
As these patches are usually very small, they can be removed
with filters in a post-processing step (Step 4, Fig. 1 H).

C. Benchmarking and Measures

This section provides a short overview of the benchmarks
and measures that were used for quantitative evaluation. In
addition to publicly available benchmarks we also use a set of
self recorded scenes for examples and qualitative evaluation.

1) Object Segmentation Database (OSD): For quantitative
analysis we used the Object Segmentation Database (OSD-
v0.2) which was proposed by Richtsfeld et al. [12] in 2012.
It consists of 111 scenes showing objects placed on a table.
All scenes contain multiple objects, which have mostly
box-like or cylindrical shape and are recorded in various
positions. The data set includes scenes with partial and full
occlusions and also cluttered scenes (in 2D as well as 3D).
An important property of the data set is that most objects
are not composed of parts. This makes the ground-truth data
relatively non-ambiguous. Ground-truth images were created
from the points in the labeled point clouds available on the
OSD website2. Example scenes from the OSD dataset can
be found in Fig. 2 A.

2) Measures: The first measure that we used for evalua-
tion of our algorithm is Weighted Overlap (WOv) proposed
by [16] and [17], which is a simple region based measure
that is computed from the view of the ground-truth partition.
The other measures we used are false negative (fn) and false
positive (fp) scores from [13] and over- (Fos) and under-
segmentation (Fus) scores from [12]. Definitions for these
measures are given in the Appendix.

III. RESULTS

One strength of the LCCP algorithm is its robustness to
parameter variations. For all segmentation images shown in
this work, the parameters of the algorithm remained the same
(parameter set P1, see Appendix Tab. II, with βThresh = 10◦),
except for one aspect of the robot application (Fig. 5 B),
where object parts are intentionally merged.

2http://users.acin.tuwien.ac.at/arichtsfeld/?site=4

A. Segmentation Examples
Some examples of results of our segmentation algorithm

are presented in Fig. 2, where we show the segmentation of
images from the OSD as well as our data set (panels A,B;
resp.). In the OSD data set “single-part” objects dominate.
Therefore, we selected images from our data set (with
“multiple-parts”) in order to show that our algorithm is not
only able to perform object segmentation but also object
partitioning. One can see that in both cases our algorithm
performs very well and is able to segment objects as well
as objects’ parts. Hollow objects (bowls, etc.) will show
multiple segments inside as surface normals on this concave
surface change very strongly. This could be changed (to
getting a single segment) by a different parameter set but
this segment will always be different from the one that
represents the outside of the object, as they are not connected
in 3D space due to occlusion. Note that if point clouds
from multiple viewpoints are used, bowls turn into single
segments.

Fig. 3. Example segmentation of a point cloud combined from multiple
views showing a foam hand broom. The input point cloud and segmentation
result from different view points are shown in the top and bottom images
respectively (also see supplementary video).

We would also like to stress that our method allows
performing segmentation of point clouds taken from multiple
views. An example is shown in Fig 3, where eight views of
the same object were recorded using a turn table and their
point clouds merged. To get a correct surface orientation, the
normals are calculated for each cloud individually before
they are combined. Normals of points inside a voxel are



then averaged. Segmentation of clouds combining multiple
views requires a method rigorously working in 3D space
instead of the image plane, and is often not achievable in
other approaches.

B. Method Evaluation, Statistics and Run-time

We evaluated the performance of our algorithm on the
OSD data set and compared it to two state-of-the-art meth-
ods. Note that benchmarking 3D segmentation is in itself
non-trivial as the ground truth often contains inaccuracies
(see Appendix for ”Evaluation Problems”).

Performance of our algorithm is quantified in Fig. 4 giving
average scores on the OSD dataset for different βThresh and
two supervoxel sizes (P1=small and P2=large, see Appendix
Table II). For small βThresh (region R1), noise in the normal
estimation influences the segmentation, resulting in high
oversegmentation (high false negatives). When the merging
angle is increased, oversegmentation is reduced and a stable
plateau is visible (R2). For large merging thresholds (R3),
undersegmentation occurs (high false positives). Differences
between supervoxel sizes do not matter much for small
βThresh (regions R1, R2) but larger supervoxels improve
results for large βThresh (region R3).

A comparison to two other state-of-the-art methods using
model fitting together with machine learning [12] or prob-
abilistic reasoning [13] is presented in Table 1. It can be
seen that, although simpler, our method can compete with
the state-of-the-art methods. Oversegmentation (fn, Fos) is
slightly higher with our method. This is due to two factors:
we do not use model fitting (which helps against noise),
and we sometimes detect parts (e.g. handles of bowls and
cups) which is an oversegmentation according to the full-
object ground truth labeling. We should note that the latter
of which is not an error for our purposes. In terms of
undersegmentation (fp, Fus), we perform better than [12]
and slightly worse than [13].
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Fig. 4. Statistics obtained from segmentation of scenes from the OSD
dataset using our method. Average results are shown. LCCPP1 and
LCCPP2 stand for the different parameter sets with small (solid lines)
and large (dashed lines) supervoxels respectively.

The average run-time on the OSD dataset using parameter
set P1 (P2) was 549 ms (370 ms) with 518 ms (365 ms)
spent computing the supervoxels and 31 ms (5 ms) for the

segmentation using a Intel Core i7 3.2 GHz processor. Note,
supervoxel calculation is currently not parallelized using
GPUs, which should lead to a more than 10-fold speed-up.

C. Robotic application

Finally, we applied our algorithm to a robot scenario where
a KUKA LWR robot-arm [18] was used to grasp some
objects. Several aspects, such as object recognition [19],
robot grasping control [20], [21], and movement execution
[22], rely on published work and will not be described here
in detail.

The task for the robot was to identify eight different
objects in a scene (Fig. 5 D) and grasp some of them by
their handle to lift them above the table. In addition to
segmentation, this task also requires object classification.
General object classification, a difficult problem in its own
right, is outside the scope of this paper. Here we have
restricted the problem to only those eight classes and we
could, thus, use an established classification algorithm [19]
to recognize them.

The flow diagram of the implementation is presented in
Fig. 5. As input to the robot-system we used the point clouds
obtained from Kinect data (for segmentation) as well as a
high resolution DSLR image (for object recognition). We
enhanced our segmentation algorithm by an initial ground
plane separation step (using PCL) and used the overall
setup for two aspects required to solve this problem: 1)
object-segmentation from the background (Fig. 5 B) and 2)
partitioning the individual parts of a given object (Fig. 5 C).
Parameters for (1) and (2) are necessarily different. Ground
plane subtraction is necessary because the object-to-table and
handle-to-object-body transitions are geometrically similar
(90◦ edge) and the object-segmentation can thus not be
solved by LCCP segmentation. As an additional benefit, it
helps to segment very thin objects like the knife, which can
hardly be (geometrically) distinguished from the supporting
surface when laying on the side, because of the limited
resolution and accuracy of the Kinect. For object and handle
recognition we used the classification algorithm from [19],
which is based on a combination of SIFT-features [23],
CyColor-features and a radial orientation scheme [19]. We
used a two layer architecture. The first layer consists of a
classifier which is trained on all eight complete objects in the
scene (see Fig. 5 A). This classifier finds the desired object(s)
in the scene using the DSLR image on the eight possible
object candidates, segmented by the object-segmentation step
(Fig. 5 B). Here it detects the heat gun (Fig. 5 D). The
second layer consists of several binary classifiers (one for
each object), which classify a part, segmented by the part
partitioning step (Fig. 5 C), as being “handle” or “body”.
Thus, for handle classification we trained eight classifiers on
handles vs. body of the respective object. Here it splits the
heat gun into body and handle as required (Fig. 5 E) and the
same happens for all objects in the scene.

For action execution we used the library of manipulation
actions from [21], which is based on Semantic Event Chains
(SECs) [20] and Modified Dynamic Movement Primitives



TABLE I
COMPARISON OF DIFFERENT SEGMENTATION METHODS.

WOv tp fp fn Fos Fus

Mean Mean SD Mean SD Mean SD Mean Mean
LCCPP1 (βThresh = 10◦) 87.0% 90.7% 8.7% 4.3% 2.5% 9.3% 8.7% 8.4% 3.9%
Richtsfeld et al. [12] - - - - - - - 4.5% 7.9%
Ückermann et al. [13] - 92.2% 7.3% 1.9% 3.3% 7.8% 7.3% - -

Fig. 5. Flow diagram of robotic application: A) Original image of the scene, B, C) object/part segmentation, D, E) object/part classification and F) action
execution – robot grasping a heatgun by its handle. LCCP segmentation was applied after an initial ground plane subtraction. While part segmentation uses
the usual parameters (P1, βTresh = 10◦), they are necessarily different for object segmentation: (v = 0.75 cm, s = 2 cm, βThresh = 180◦, nfilter = 2).

(MDMPs) [22]. Here, specifically, we used a pick-and-place
action, where the pose of the handle was calculated from its
3D shape obtained from the part partitioning algorithm. Note
that in this case we have predefined grasps (grasp from top or
grasp from side depending on the orientation of the handle)
for specific objects. In Fig. 5 F we demonstrate a successful
grasp on the handle for the heat gun (see supplementary
video for grasping of other objects).

IV. DISCUSSION

In this paper we presented a novel algorithm for the
segmentation of 3D point clouds that can be used to partition
objects into parts or to segment different objects from each
other. The latter is a special case of the former. We demon-
strated that our quite simple approach can compete with
more complex state-of-the-art partitioning methods and that
it performs equally well. We also presented an application of
our algorithm in a robot scenario where the task of the robot
was to grasp objects by their handle. In the following we
will discuss our approach and relate it to existing methods.

A. State of the Art

In general there exist several bottom-up, data-driven as
well as top-down, model-based approaches. Several bottom-
up approaches have recently been reported [24]–[26], which,
however, do not reach the same level of performance com-
pared to the method presented here. Most similar to our
segmentation algorithm is the method from Moosmann et al.
[11] sharing our thought to exploit convexities/concavities

for segmentation using LIDAR data. The relatively noise-
free LIDAR measurements allow direct use of 3D-points,
different from RGB-D data. Our approach makes use of
supervoxels [15] and a different set of criteria to gain
robustness, which is not possible with the methods of Moos-
mann et al.. Recent top-down methods [12], [13], [16], [27]
sometimes perform exceedingly well on similar benchmarks,
but usually require quite a complex machinery to achieve the
segmentation. It is, thus, remarkable that our very simple
data-driven approach can compete with that of Richtsfeld
et al. [12] as well as Ückermann et al. [13]. We take this
as an indication of just how powerful the feature of local
convexity is and suggest that it should also be considered
as an important feature for future top-down approaches. In
addition, our part partitioning bears a high similarity to the
way a human would “describe” the parts of an object. We
suggest that this might be a better starting point for “defining
an object” (by composition from its parts) as compared to
more arbitrary geometrical and surface model assumptions
often found in the existing top-down approaches.

B. A compositional view on affordances and objects
Why does our algorithm easily segment handles from the

body of the object? The reason lies in the fact that almost all
handles are designed so as to lead to a concave discontinuity
relative to the body and this holds true also for many other
handles, which we considered in our experiments (data not
shown). Arguably the same is true for other manipulation-
relevant parts like knobs, buttons, lids, etc., although the
concavity might be hard to detect in RBG-D data using



current cameras, which have quite a low resolution. There
is no proof for this, but “looking around” seems to strongly
support this speculation: most human-made manipulation-
relevant parts seem to form a concave connection to the ob-
ject body. Thus, the here presented algorithm will for all such
cases produce a good guess for detecting the manipulation-
relevant parts for a robot. The approach demonstrated in
our robot experiments is, thus, a novel and efficient way to
arrive at manipulation affordances for an artificial agent. In
addition, parts as defined by our algorithm will many times
form a convex figure and this figure will usually take a simple
geometrical shape (cylinder, sphere, cube, torus, pyramid,
etc.) which may be somewhat distorted and/or curved. Still,
it should be possible to train classifiers for these object parts
and thereby arrive at a compositional, generative approach
for the (de-)construction and the understanding of complex
object geometries. This is work in progress and we hope to
be able to report on this in the near future.

APPENDIX

A. Formalism of the Segmentation Algorithm

Let us define local convexity and concavity for two neigh-
boring surface patches as follows (see also Fig. 6 A). A
convex connection of two linear surface patches is given
when a straight line joining the patch centroids travels
through regions that are inside the object, according to the
direction of the patch normals. A concave connection is
given when the line segment joining the patch centroids
travels through free space, i.e., regions that are outside. In the
following all steps of the algorithm are presented in detail.

1) Building a Linear Patch Graph: We build a linear
patch graph using an approximation of the point cloud
by finite linear patches with a neighborhood relation. An
effective way to construct such an approximation is using
a Supervoxel adjacency graph G(V,E) [15], where each
supervoxel ~pi = (~xi, ~ni, . . . ), ~pi ∈ V is taken as a linear
patch. In the following the centroid of patch ~pi will be
denoted as ~xi and its normal vector as ~ni. Supervoxels allow
feature specific weights to be set to respect boundaries in
different features (e.g. color, normal direction). As we are
interested only in geometric features, we set all weights
to zero except the spatial weight ws = 1 and the normal
direction weight wn = 4. Two parameter settings for the
voxel size v and supervoxel size s were used (see Tab. II).

2) Building a Convexity Graph: Afterwards, we create a
segmented graph model by classifying edges of the linear
patch graph. To decide whether the connection e = (~pi, ~pj)
between two patches is convex or concave/invalid we present
one criterion for the basic convexity decision and an addi-
tional criterion increasing the robustness of the decision.

Convexity Criterion (CC): Consider two adjacent linear
patches with centroids at the positions ~x1, ~x2 and normals
~n1, ~n2 as depicted in Fig. 6 A. Whether the connection
between these patches is convex or concave can be inferred
from the relation of the surface normals to the vector joining
the two patch centroids.

Fig. 6. A) Illustration of convex and concave connections between two
linear patches. B,C) Illustration of the sanity criterion: B) A singular
connection can be obtained by measuring the angle ϑ between the line of
intersection ~s of the two planes represented by the patches and the vector
~d, which connects the centroids of the patches. C) Change of the angle ϑ
when the relative position of the patches is changed. The shared boundary
is reduced by decreasing ϑ, until a singular configuration is reached.

The angle of the patch normals to the vector ~d = ~x1 −
~x2 joining the centroids can be calculated easily using the
identity for the dot product ~a · ~b = |~a| · |~b| · cos(α) with
α = ](~a,~b). One can see in Fig. 6 A, that α1 is smaller
than α2 for convex connections. This can be expressed as:

α1 < α2 ⇒ cos(α1)− cos(α2) > 0⇔ ~n1 · d̂− ~n2 · d̂ > 0,

where d̂ = ~x1− ~x2

|| ~x1− ~x2|| . Similarly, for a concave connection we
get:

α1 > α2 ⇔ ~n1 · d̂− ~n2 · d̂ < 0.

Note that the choice which patch is ~x1, i.e. in which direction
the vector ~d points, is arbitrary and does not change the
result. Also the criterion is still valid if the ~xi are displaced,
as long as they stay in the area of the patch.

To compensate for the noise in the RGB-D data, a bias
is introduced to treat concave connections with very similar
normals, that is

β = ](~n1, ~n2) = |α1 − α2| = cos−1( ~n1 · ~n2) < βThresh ,

as convex, since those usually represent flat surfaces. De-
pending on the value of the threshold, concave surfaces with



low curvature are seen as convex and thus merged in the
segmentation. This behavior may be desired to ignore small
concavities. This results in the definition of the convexity
criterion CC:

CC(~pi, ~pj) :=

{
true ( ~n1 − ~n2) · d̂ > 0 ∨ (β < βThresh)
false otherwise.

(1)

We also experimented using local convexity as defined by
Moosmann et al. [11] instead, but achieved lower perfor-
mance, presumably because their criterion is susceptible to
the noise present in the Kinect point clouds.

Sanity criterion (SC): In certain cases, the classification
of the connection of two linear patches into convex or
concave does not make sense. If the surface is discontinuous
this is evidence for a geometric boundary. This means that
the corresponding (originally potentially convex) connections
should be identified and invalidated.

The vector ~d connecting the patch centroids and the line of
intersection ~s of the planes represented by the linear patches
can be calculated using ~d(~x1, ~x2) = ~x1−~x2 and ~s(~n1, ~n2) =
~n1 × ~n2. As illustrated in Fig. 6 B, singular configurations
can be identified by looking at the angle ϑ between ~d and ~s.
For two patches sharing one side of their boundary, the two
directions are orthogonal. If the directions are parallel, the
situation is clearly singular. Because the orientation of ~s is
arbitrary, we define ϑ to be the minimum angle between the
two directions, that is:

ϑ(~p1, ~p2) = min(](~d,~s),](~d,−~s))
= min(](~d,~s), 180◦ − ](~d,~s)) (2)

The angle ϑ changes with the relative positions of the patches
(see Fig. 6 C). If we start at a valid configuration where both
patches have a common boundary edge (ϑ = 90◦) and slide
one patch along the boundary of the other, it can be seen that
ϑ is decreased. Singular configurations occur for small values
of ϑ and can thus be handled by introducing the threshold
ϑThresh. For ϑ < ϑThresh the connection must be invalidated.
Similar to the convexity criterion, this condition has to be
relaxed for patches with very similar normals, to compensate
for sensor noise. This is done by setting ϑThresh(](~n1, ~n2))
to a sigmoid function of the angle between normals:

ϑThresh(β) = ϑmax
Thresh · (1 + exp [−a · (β − βoff) ] )

−1
, (3)

where β = ](~n1, ~n2) is the angle between normals. We use
the experimentally derived values ϑmax

Thresh = 60◦, βoff = 25◦

and a = 0.25.
The sanity criterion SC is then defined as

SC(~pi, ~pj) :=

{
true ϑ(~pi, ~pj) > ϑThresh(β(~n1, ~n2))
false otherwise

(4)

Note that the criterion is most effective if the aspect ratio of
the considered patches does not deviate too much from one.

3) Convex connected components: The previously pre-
sented criteria are combined to the overall predicate

TABLE II
PARAMETER SETS USED FOR PART SEGMENTATION.

Parameter set v s nfilter

P1 0.5 cm 2 cm 3
P2 0.75 cm 6 cm 1

conv(~pi, ~pj) defining local convexity:

conv(~pi, ~pj) :=

{
true CC(~pi, ~pj) ∧ SC(~pi, ~pj)
false otherwise (5)

The last step of the segmentation is to find all compo-
nents connected by convex edges (defined by the convexity
predicate). This can be achieved by region growing. In the
beginning, an arbitrary seed supervoxel is chosen as a start
point. The segment label 1 is assigned to this supervoxel and
this label is propagated over the graph with a depth search
that is only allowed to grow over convex edges. Once no new
supervoxel can be assigned to the segment, we increment
the assigned label by 1 and choose a new seed supervoxel
that has not been processed yet. We then propagate the new
label in the same way as before and repeat the process until
segment labels have been assigned to all supervoxels. Note
that all our criteria are commutative, so the output of the
region growing does not depend on the choice of the seeds.

4) Noise filtering: Concave boundaries are more reliably
detected if the merging threshold βThresh in the convexity
criterion (CC) is low. For low thresholds, the segmentation
will however suffer from small isolated patches that are
created from noise present in the normal estimation. In these
cases a post-processing step filtering the noise patches may
improve quality. We implement a simple filter using the user
selected filter size nfilter ∈ N+. For every segment Si of
the segmentation, we check if it consists of at least nfilter
supervoxels. If a segment’s size |Si| is smaller or equal to the
filter size, we merge it with the largest neighboring segment.
Filtering continues until no segments (that have neighbors)
smaller than the filter size are present in the image.

B. Definition of Measures

We define the ground-truth partition G =
{G1, G2, . . . , GM} as a set of human annotated regions Gi

and the segmentation S = {S1, S2, . . . , SN} as a set of
pixel regions Sj of the same image. Furthermore NG := |G|
is the number of ground-truth regions.

1) Maximum Overlap: For every object represented by
a ground-truth region, the segment with the greatest over-
lap is taken as the best estimator. Thus, we define the
maximum overlap for ground-truth region Gi as Ovi =
maxSj (|Gi ∩ Sj |/|Gi ∪ Sj |). The overall score, Weighted
Overlap (WOv), is computed as a weighted average with
respect to the size of the regions [16], [17]:

WOv =
1∑
i |Gi|

∑
i

|Gi| · Ovi. (6)

Values range from 0 to 1, where 1 is considered the perfect
segmentation with identical segmentation and ground-truth



partition.
2) True- and False-positive Scores: Let us define true

positive (correctly segmented) points TPi = Gi ∩ Si as
overlap of both sets. Then we can define false positive points
FPi = Si \TPi and false negative points FNi = Gi \TPi,
which are exclusively assigned to one of the ground truth
sets. Finally, average scores are defined as follows [13]:

tp =
1

NG

∑
i

|TPi|
|Gi|

, fp =
1

NG

∑
i

|FPi|
|Si|

,

fn =
1

NG

∑
i

|FNi|
|Gi|

. (7)

3) Over- and Under-segmentation: Over-segmentation Fos

is the number of correctly assigned object pixels normal-
ized by the number of all object pixels, whereas under-
segmentation Fus is the number of incorrectly assigned
pixels normalized by the number of all object pixels [12]:

Fos = 1− Ntrue

Nall
, Fus =

Nfalse

Nall
. (8)

C. Evaluation problems
It seems necessary to point out to the community that

some problems arise when benchmarking 3D point cloud
segmentation. In general, one wants to evaluate how good
a segmentation algorithm performs in continuous 3D point
cloud space. Since currently there are no evaluation methods
for 3D data available, one has to fall back on conventional 2D
methods. However, this leads to evaluation problems, which
are mainly due to the way the ground-truth partition was
created. 3D ground-truth data is usually simply constructed
by transferring the labels from the RGB camera (2D image).
An example of such a case is shown in Fig. 7 where a scene
(panel A), its ground-truth (panel B) from the OSD data set
and the segmentation result of our algorithm (panel C) are
presented. Due to mismatches in the calibration between the
depth and rgb sensor, the ground truth is inconsistent with the
3D geometry of the scene (this is the case for all scenes).
Despite being virtually perfect from the view of the point
cloud, the pictured segmentation achieves only a weighted
overlap of WOv = 91.3%. These problems should be kept
in mind when interpreting the absolute values in Fig 4.

Fig. 7. A) Original image, B) ground-truth from point cloud perspective
from the OSD dataset and C) segmentation result of our method.
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