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Abstract

Background: Obstructive sleep apnea (OSA) is a public health problem. Detailed analysis of the para-pharyngeal fat
pads can help us to understand the pathogenesis of OSA and may mediate the intervention of this sleeping disorder.
A reliable and automatic para-pharyngeal fat pads segmentation technique plays a vital role in investigating larger
data bases to identify the anatomic risk factors for the OSA.

Methods: Our research aims to develop a context-based automatic segmentation algorithm to delineate the fat
pads from magnetic resonance images in a population-based study. Our segmentation pipeline involves texture
analysis, connected component analysis, object-based image analysis, and supervised classification using an
interactive visual analysis tool to segregate fat pads from other structures automatically.

Results: We developed a fully automatic segmentation technique that does not need any user interaction to extract
fat pads. Our algorithm is fast enough that we can apply it to population-based epidemiological studies that provide a
large amount of data. We evaluated our approach qualitatively on thirty datasets and quantitatively against the
ground truths of ten datasets resulting in an average of approximately 78% detected volume fraction and a 79% Dice
coefficient, which is within the range of the inter-observer variation of manual segmentation results.

Conclusion: The suggested method produces sufficiently accurate results and has potential to be applied for the
study of large data to understand the pathogenesis of the OSA syndrome.

Keywords: Para-pharyngeal fat pads segmentation, Upper airway segmentation, Interactive visual analysis tool,
Obstructive sleep apnea (OSA), Magnetic resonance imaging (MRI)

Background
Obstructive sleep apnea (OSA) is commonly associated
with obesity [1] and is considered as a public health
problem affecting, at least, 2–4% of the middle-aged pop-
ulation [2]. OSA is defined as a recurrent cessation of
respiration during sleep associated with the obstruction
of an upper airway [3]. Obesity is one of the known risk
factors for OSA and is reported in at least 50% of adults
with this syndrome [4]. Obesity is a special one among
other common factors (e.g., gender, age, craniofacial fea-
tures, pharyngeal abductor and dilator muscles) in that

*Correspondence: m.shahid@jacobs-university.de
1Jacobs University, Bremen, Germany
Full list of author information is available at the end of the article

it is reversible and, therefore, may reduce OSA severity
following weight loss [5].
The way by which obesity affects upper airway collapse

during sleep is not completely understood and needs fur-
ther studies. Either increased size of para-pharyngeal fat
pads or reduced distance between left and right para-
pharyngeal fat pads reduce pharyngeal airway volume
[6]. A smaller pharyngeal airway space has been identi-
fied in patients with OSA syndrome [7] and may result
from enlargement of surrounding soft tissues, small dis-
tance between left and right fat pads, altered craniofa-
cial morphology or a combination of all [8]. It is clear,
however, that upper airway anatomy is important in the
pathogenesis of obstructive sleep apnea [9]. In order to
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fully understand upper airway anatomy, we need to exam-
ine the volume of the airway and surrounding upper
airway structures [10]. Fat pads segmentation from MRI
is of considerable importance in providing noninvasive
information about them that helps radiologists to visu-
alize and study their anatomy [11]. For these reasons,
fat pads segmentation from head MRI is an essential
part of epidemiological study of OSA, and success of the
study mostly depends on the segmentation accuracy and
automation.
There is a number of publications dealing with OSA

pathogenesis, symptoms, and treatment, but only few
publications are available discussing automatic segmen-
tation of pharyngeal airway and surrounding soft tis-
sues. The lack of automatic segmentation technique is
a great limitation in analyzing large datasets and epi-
demiological cohort studies. Schwab et al. [7] manu-
ally performed volumetric analysis of upper airways to
analyze anatomic alterations. Liu et al. [12] proposed
a semi-automatic framework for upper airway segmen-
tation using fuzzy connectedness. Here, an operator
defined a volume of interest and seed points in T1-
and T2-weighted MR images manually. Ivanovska et al.
[11] presented a semi-automatic segmentation pipeline
for pharyngeal air column. Their approach consists of
three steps: smoothing, thresholding, and 2D and 3D
connected component analysis. Whereas the first two
steps are rather common, the third step provides a
set of general rules for extraction of the pharyngeal
airway. Their method takes less than one minute to
delineate the pharyngeal airway. The approach needs
a small amount of interaction like defining the ending
axial slice of oropharynx. Shahid et al. [10] described
a fully automatic segmentation technique to segregate
pharyngeal airway from head MRI. They performed pre-
processing, object-based image analysis (OBIA), visual
analysis of the feature space, and a refinement and extrac-
tion of the pharyngeal air column. They utilized the
concept of dividing the image into small groups called
“objects” having same basic features at voxel level. In
this way, they explored additional features of differ-
ent regions at the object level to classify them using
interactive visual analysis tool. Their approach does
not need any user interaction and consumes less than
half of a minute to produce the complete segmentation
results.
In summary, over the last few years we noticed

major advancements in the field of upper airway seg-
mentation from MRI, prompted by an increased use
of MRI for soft tissues. Although there has been
an effort towards developing an automatic segmenta-
tion technique for upper airway analysis, segmenta-
tion algorithms for fat pads have not been developed
yet.

Methods
The first step towards the endeavor of an epidemiological
cohort study is to develop a reliable automatic segmen-
tation technique to segregate para-pharyngeal fat pads
from the head MRI for the pathogenesis of OSA. In
this paper, we describe a reliable automatic segmenta-
tion pipeline for the fat pads from MR images. In our
segmentation methodology, we extract coarse objects as
candidates, analyze their feature values using a multidi-
mensional feature view, develop a supervised classifier
using an interactive visual analysis tool, and finally refine
the shape.
However, accurate and reproducible automatic seg-

mentation of para-pharyngeal fat pads from head MRI
meets many challenges. First of all, fat pad structures
are inhomogeneous in terms of spatial repetitiveness of
individual voxel intensities. They have irregular shape
and diverse appearance in different subjects as shown
in Fig. 1. They show inter- and even intra-subject vari-
ability of shapes, appearance, and textures. In some
axial slices, fat pads are difficult to separate because
of intensity values similar to blood vessels and other
soft tissues. Consequently, a general segmentation algo-
rithm may work well for one, but not for another
subject, or only on certain axial slices of a particular
subject.
Some of the challenges are due to the employment of

MRI instead of computed tomography (CT) for airways
imaging. Although, the X-ray CT is used more commonly

Fig. 1 Diverse appearance of para-pharyngeal fat pads on axial slices
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for airways imaging and considered to be the gold stan-
dard for this purpose, its use in an epidemiological cohort
study for research purposes is ethically not justified. Here,
MRI as a non-radiation based scanning method gains an
increasing popularity. MR imaging provides a good con-
trast between soft tissue structures and is used to study
brain and throat tissues [13]. MRI makes it possible to
conduct large-scale epidemiological cohort studies to ana-
lyze the role of fat pads in sleep apnea syndrome because
it involves little or no risk to healthy volunteers. State-
of-the-art segmentation methods for X-ray CT images
are not applicable to the MRI, due to large differences in
structure and tissue properties, and intensities.
Further challenges are imposed by the requirement

of full automation of the segmentation technique. In
practice, manual segmentation of fat pads is a tedious
and time-consuming task. MRI scanners produce
three dimensional images by generating multiple two-
dimensional cross-sections (slices), and the radiologist or
medical expert has to go through the 3D dataset slice by
slice for selecting the most accurate contours from which
the relevant regions or volumes are carefully generated
[14]. However, if the person drawing the contours is not a
medical expert or radiologist, it will most likely generate
poor segmentation results. The task of delineating the
fat pads slice by slice sometimes limits the expert’s view
and control, and generates jaggy regions. Needless to say,
manual fat pads segmentation is also operator dependent
and the selected volume is subject to large intra- observer
variability.
To evaluate the performance of segmentation algorithm

quantitatively, we employed three quality metrics based
on voxel ratios: Dice coefficient (DICE), true positive vol-
ume fraction (TPVF), and false positive volume fraction
(FPVF) [15]. Let Mauto and Mman represent the binary
masks produced by the algorithm and the manual seg-
mentation, respectively. Then DICE, TPVF, and FPVF are
defined as follows:

DICE = 2 · |Mman ∩ Mauto|
|Mman| + |Mauto|

TPVF = |Mman ∩ Mauto|
|Mman|

FPVF = |Mauto \ Mman|
|Mman|

Segmentation algorithms can be categorized into
region-based, boundary-based, or model-based appro-
aches. Region-based approaches may be categorized as
being based on thresholding, clustering, or region grow-
ing. They do not work very well for inhomogeneous
data sets. Boundary-based approaches only work in case

of clearly extractable boundaries, while model-based
approaches only work if the shape of the to-be-segmented
object is well-defined or if a large training dataset in the
form of an atlas is available. As, to our knowledge, no
existing approaches exist that specifically target fat pad
segmentation from MR images, we evaluated our method
by comparing against commonly used, generally appli-
cable segmentation algorithms. Since fat pads are not
well-defined objects and we do not have large training
datasets, we can only compare against region-based and
boundary-based approaches. Prominent representatives
of the three groups of region-based approaches are mul-
tiOtsu thresholding [16], fuzzy c-means clustering [17],
seeded region growing [18].Worthmentioning boundary-
based segmentation algorithms are watershed transform
[19], and level sets segmentation [20].
The inter-observer reliability [21] is computed in terms

of kappa (κ) statistics for the manually segmented ground
truths. The kappa statistic (κ) is a better measure that
takes account of the agreement expected solely on the
basis of chance.

Kappa (κ) = O − E
1 − E

where O is the observed agreement and E is the expected
agreement. The kappa statistic indicates how much the
actual agreement beyond chance (O − E) represents rel-
ative to this potential (1 − E). We compared our results
againstmanually established ground truths. Our results lie
within the range of inter-observer variability.

Material
The Study of Health in Pomerania (SHIP) [22], a cohort
study conducted in Northeast Germany, provides us the
test datasets. In the SHIP study, more than 3 400 partic-
ipants aged 20 to 89 years participated. The test datasets
are isotropic, three dimensional T1-weighted head MRI
with an image size of 176 × 256 × 176 voxels, where each
voxel has an isotropic volume of 1 mm3. These head MR
images contain only the upper airways and its surrounding
tissues which are considered to contain the most essential
information to study the OSA syndrome in the frame of
an epidemiological study. Upper airway imaging is a best
way to examine the pharyngeal airway and its surrounding
soft tissues. Magnetic resonance scanning is considered
an ideal modality for soft tissues, since it can accurately
quantify pharyngeal fat pads in axial, sagittal and coronal
planes without radiation [23].
Thirty individual head MRI datasets were randomly

selected for our experiments and tests. Among the 30
datasets, 10 were selected randomly for generating ground
truths by manual segmentation by two observers under
the supervision of an experienced radiologist.
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Para-pharyngeal fat pads segmentation
To develop the segmentation algorithm for the fat pads
around the oropharynx, we took a number of steps.
First, we applied the segmentation algorithm proposed by
Shahid et al. [10] to extract the retropalatal oropharynx
from MRI datasets. Next, we applied texture analysis to
discard the low contrast axial slices in the process of fat
pads seed selection. Then, we applied thresholding and
connected component analysis to identify 3D objects as
initial fat pad candidates. After that, object-based image
analysis is employed to extract the features describing
the appearance and orientation of each 3D fat pad can-
didate. These features form a multidimensional feature
space, which is visually explored by an interactive visual
analysis tool to distinguish fat pad objects from other can-
didate objects. Then, a supervised classifier is designed
to select the fat pad objects. Finally, fat pad objects are
refined and redundant voxels or regions are discarded in
a slice-wise refinement step. The complete segmentation
pipeline of our algorithm is shown in Fig. 2. Our approach
does not need any user interaction and is fully automatic.
We evaluated our results on ten datasets using a manu-
ally segmented ground truth. The following subsections
describe each step of the pipeline in detail.

Retropalatal oropharynx extraction
For the analysis of obstructive sleep apnea syndrome, we
are interested in the analysis and segmentation of the fat
pads around the retropalatal oropharynx which is consid-
ered to be the narrowest region of the upper airway [10].
In Fig. 3, red color is used to represent the retropalatal
oropharynx. However, all MRI datasets do not start at
identical position with respect to the body of the patient.
The oropharynx regions can start at different axial slices
in the head MRI datasets of our subjects. Therefore,
we extracted the retropalatal oropharynx region auto-
matically using the segmentation algorithm developed by
Shahid et al. [10].

Texture analysis
Texture analysis describes the characteristics of image
regions by their texture content. Texture analysis can be

useful when a region in an image is more character-
ized by its texture than by gray levels. We attempt to
quantify the intuitive qualities such as smooth, homoge-
neous, or random as a function of the intensity varia-
tions. Homogeneous regions have no variation, smooth
regions are slowly changing and as such have small local
variations, while random parts exhibit largest variations.
Hence, standard statistical measures (standard deviation,
entropy, homogeneity, average, variance etc.) are used to
characterize the texture of a region in our image. They
indicate the local variability of voxel gray levels in the
image.
We applied texture analysis to discard the axial slices

having relatively smooth regions and low contrast in the
process of obtaining initial 3D objects for fat pads. In low
contrast axial slices, we have region leakage problem for
the fat pads which causes strong artifacts in the shape
of fat pads. These artifacts lead to uncertain variations
in the shape features of the fat pad candidates. Omission
of the low contrast axial slices during the seed selection
process does not have any major effect on the segmen-
tation process because we just need a good starting axial
slice as a starting point for our segmentation algorithm. In
this way, we achieve more consistency in terms of shape
features.

Connected component analysis
After having reduced the number of slices to be ana-
lyzed in the texture analysis, a median filter of kernel size
3× 3× 5 is applied to minimize the salt and pepper noise
[24] from the headMRI. Then, an anisotropic diffusion fil-
ter [25] is applied to smooth the image while keeping the
object boundaries intact.
There is a number of general segmentation techniques

available to generate a set of fat pad candidates by over-
segmentation. We apply a coarse intensity clustering [26]
to the image volume to generate fat pad candidates by
over-segmentation due to its low computational com-
plexity. Since fat pads are bright regions in T1-weighted
MRI, we select bright regions in image as fat pad can-
didates. Figure 4 demonstrates an axial slice of the T1-
weighted head MRI, where the bright objects as fat pad

Retropalatal Oropharynx
Extraction

Texture Analysis Connected Component
Analysis

Object-Based Image
Analysis

Visualization of
Feature Space

Slice-wise Refinement

Fig. 2 Complete segmentation pipeline
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Fig. 3 Red color represents the retropalatal region of oropharynx

candidates are highlighted. After slice-wise intensity clus-
tering, we have bright regions on axial slices of the head
MRI datasets which includes the para-pharyngeal fat pads
and other bright regions like mandible tissues, and blood
vessels.
Having bright regions on axial slices, we connect them

using connected component analysis in order to build 3D
fat pad candidates. We use a 26-neighborhood relation-
ship in a 3D connected component analysis. As a result
to the connected component analysis on bright regions,

Fig. 4 Fat pad candidates on axial slice

we obtain a considerably small number of 3D regions that
serve as fat pad candidates.

Object-based image analysis
State-of-the-art segmentation algorithms mainly rely on
a voxel level to draw the contours of organs. However,
when operating exclusively on a voxel level, only a lim-
ited number of features and properties can be utilized to
separate the fat pads from surrounding structures and tis-
sues. Thus, we overcome the limitations of voxel-based
processing by examining the image as atomic regions
(called objects) in their local semantic context [27]. Atomic
regions introduce additional features that are not avail-
able on a voxel level such as intensity statistics, orientation
vectors, and shape descriptors.
Within our work, we define the image regions as pos-

sible candidates and extract the descriptive features of
objects using the methodology of object-based image
analysis introduced by Homeyer et al. [27]. They assign to
objects a set of features regarding their shape, orientation
profile, and intensity statistics. We define features that we
consider potentially helpful in describing fat pads and dis-
criminating them from other candidates. Hence, we define
features for 3D objects that describe their intensity profile,
their relative and absolute position, and their shape.
To describe the intensity profile, we compute differ-

ent statistical measures of intensity, including minimum,
maximum, and average values as well as median, and
upper and lower quartiles.
To describe the absolute position of the objects, we use

their center of gravity. For the relative position, we com-
pute x-axis and y-axis projections of distances between
centers of gravity of pharynx and the fat pad candidates
as distance features. This requires us to know the pharynx
location. As mentioned above, the pharynx segmentation
is obtained using the approach of Shahid et al. [10]. The
relative distances are then computed by

X-axis_Proj. = (xobj − xph)2

Y -axis_Proj. = (yobj − yph)2

where (xobj, yobj) represents the coordinates of the cen-
ter of gravity of fat pad objects and (xph, yph) defines the
coordinates of the center of gravity of pharynx.
Many shape descriptors are available in literature

including a number of methods to compute the rotation
invariant shape features [28].We apply the concept of cen-
tral image moments [29] to a 3D setting to compute the
shape features of the binary mask of a region b, where
b(x, y, z) = 1 if the voxel (x, y, z) belongs to the region and
b(x, y, z) = 0 otherwise. The central image moments of
the order p, q, r for a binary image b(x, y, z) are defined by

μpqr(b) =
∑

x

∑

y

∑

z
(x − x)p(y − y)q(z − z)rb(x, y, z)
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where (x, y, z) defines the coordinates of the center of
gravity and the zero-order moment describes the volume
of the region. Furthermore, additional orientation and
shape features can be computed by applying the princi-
pal component analysis [30] on the voxel distribution of
the region. The principal eigenvectors and correspond-
ing eigenvalues (λ1 ≥ λ2 ≥ λ3) are computed by the
covariance matrix of b, which is defined by

cov(b) =
⎡

⎣
μ200(b) μ110(b) μ101(b)
μ110(b) μ020(b) μ011(b)
μ101(b) μ011(b) μ002(b)

⎤

⎦ .

The principal eigenvectors represent the region’s orien-
tation, while the ratio of their corresponding eigenvalues
measures the region’s eccentricity.

eccentricity = 1 − 27 · λ1 · λ2 · λ3
(λ1 + λ2 + λ3)3

.

By using the eigenvalues and vectors, additional ori-
entation features measuring compactness can be derived
as

elongation = 1 −
√

λ1
λ2

.

Perfect spherical objects have zero elongation. Another
feature, flatness, is defined as

flatness = 1 −
√

λ2
λ3

.

Sheet-like objects have a flatness close to one (for
infinitely wide, infinitely thin sheet). Wire-like structures
have flatness close to zero, just like spherical objects.
All these descriptive features form a multidimensional

feature space, where each object corresponds to a multi-
dimensional point in that feature space. We normalized
the numerical values of the features to have a uniform
range. Now, the task is to explore the multidimensional
feature space of useful features in order to determine the
decisive contribution of features.

Visualization of feature space
We analyze the influence of the features individually using
histograms to find a single feature which can serve our
purpose in a best way. However, it is evident from their
histograms shown in Fig. 5 that there does not exist a sin-
gle decisive feature which can discriminate fat pad objects
from other candidates. Nevertheless, some features have
a narrow spread of values with low variance for fat pad
objects and their combination with other features might
be helpful to single out fat pad objects.
Hence, we visualize the descriptive features collectively,

which form a multidimensional feature space, to find

Fig. 5 Histograms of individual features. Top: Elongation values of 3D
objects. Bottom: Eccentricity values of 3D objects

suitable weights of feature values for separating our candi-
dates. Dimensionality reductionmethod is utilized to map
multidimensional data to a low-dimensional 2D space
for a visual exploration of the data distribution. Princi-
pal component analysis (PCA) [30] or multi-dimensional
scaling [31] are the most commonly used dimensionality
reduction methods. The selection of an optimal method
generally depends upon preservation of distances, com-
putational efficiency, and cluster preservation [32]. Since
we aim to develop an intuitive interactive system, linear
projection is the best available choice, as they are econom-
ical in terms of computational cost and do not introduce
non-linear distortion, which makes them intuitive.
The linear projection of the n-dimensional feature space

Q onto a 2-dimensional projection space U can be imple-
mented by using a 2×n projection matrix P. The columns
of the projection matrix represent the coordinates of the
basis vector images mapped from Q to U space. Since the
origin of the projection space coincides with the origin of
feature space, the columns of linear projection matrix are
considered as axes of a star-coordinates widget.
In the default configuration, all axes of the widget are

uniformly distributed over the unit circle as shown in
Fig. 6, having the linear projection matrix:

P =
[
1 cos (2π/n) ... cos (2π(n − 1)/n)

0 sin (2π/n) ... sin (2π(n − 1)/n)

]
.

Our interactive visual analysis system allows us to
manipulate the projection by varying the positions of the
end-points of basis vectors. The projection matrix is then
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Fig. 6 Top: Default configuration of star-coordinate widget. Bottom:
Projected space of default star-coordinates widget

recomputed to project the feature space. Moving the end-
point of a basis vector to the origin cancels out the effect
of selected feature by leading a corresponding column of
zero elements in the projection matrix.
We visualize the training datasets, where we know the

class of each sample, to find a configuration of the star-
coordinates widget which can visually decouple the fat
pads class from the background class. We started with a
default configuration of the star-coordinates widget where
the uniformly distributed axes of the widget represent the
all possible features. We use two colors for the projected
samples as shown in Fig. 6, where each color corresponds
to a different class. We determine the influence of each
individual feature on projected space by varying the length
and angle of its corresponding basis vector in the star-
coordinates widget. We eliminate the feature from the
default configuration of the widget if it affects both classes
in a same way and does not help us to visually decouple

both classes. In this way, we are left with few efficacious
features which distinguish both classes vividly.
In general, it is not always possible to find a configu-

ration of the widget that classifies the samples perfectly.
However, we achieved a perfect separation of the classes.
We found a configuration of the star-coordinates widget
that exhibits a region with all red samples representing fat
pads in the projected space. There is no blue sample of the
background class in that region. We observed that only
few salient features suffice to create this projected space
as shown in Fig. 7.
After this training phase, we can apply the derived

knowledge to any test data or data set with no known
ground truth. We saved the respective projection matrix
from the training session for the classification of test data
with no known ground truth. In order to classify the test
data, we map the new feature space using the recorded
projection matrix. Then, silhouette coefficients for each
sample of the test data when tentatively adding that sam-
ple to the cluster of fat pad objects are computed. The
best silhouette coefficient, then, selects the sample that
is matching the cluster of fat pad objects best, i.e., it is
supposed to represent the fat pad in the test data. The
silhouette coefficient [33] is defined by

s(i) = b(i) − a(i)
max {a(i), b(i)}

Fig. 7 Top: Star-coordinate widget configuration. Bottom: Red and
blue samples represent fat pad and non fat pad objects, respectively,
in projected view
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where s(i) is the value of the silhouette coefficient for
the ith sample of the test data, a(i) is the average of the
Euclidean distances from ith sample of the test data to
all fat-pad samples in the training data, and b(i) is the
average of the Euclidean distances from the ith sample
of the test data to all non-fat-pad samples in the training
data. All fat-pad and non-fat-pad samples are shown as
red and blue points, respectively, in the projected space
of Fig. 7.
On average, for our data as described above there are

twelve samples in each dataset while only two samples
are classified as (left and right) fat pads. To evaluate the
performance of our classifier in practice, holdout vali-
dation method is employed for the thirty datasets. We
partitioned our datasets into two sets of ten datasets for
training and twenty datasets for testing. We built the clas-
sifier using the training set and evaluated it using the
testing set. We run multiple rounds of handout validation,
and the validation results are averaged over the rounds
to reduce the variability. We achieved excellent results for
our supervised fat pad classifier which detected all fat pad
samples accurately in our datasets with no false positives
and no false negatives. The perfectly designed classifier
laid the foundation for the complete automation of our
segmentation algorithm.

Slice-wise refinement
Our classified fat pad objects include some false sur-
rounding voxels due to intensity inhomogeneity and low
contrast of MR images. More precisely, the connected
component step leaked into surrounding regions, which
we need to cut off in this last step. We used only inten-
sity clustering for generating the fat pad candidates in
the connected component analysis step to keep the algo-
rithm simple and fast which created extra artifacts. There-
fore, we need to remove these redundant voxels and

regions from fat pad objects in a refinement step. This
refinement is performed on a slice-wise basis in axial
direction.
We start refining the fat pad object from the axial slice

where fat pads tend to be convex. From our a priori
domain knowledge, fat pads have close-to-convex shape
in general. After finding the best axial slice, we measure
the statistics (center of gravity, area, average intensity, and
intensity variance) of the fat pad object for processing in
other axial slices. First, we move in the downward and
then in the upward direction to process all axial slices of
fat pad objects. For each axial slice, a specific area around
the center of gravity of the adjacent processed axial slice
is selected which is still comparatively much smaller than
the entire axial slice. Then iterative MultiOtsu thresh-
olding [16] is applied to separate fat pads for statistical
analysis. In statistical analysis, different features (center of
gravity, area, average intensity, and intensity variance) of
delineated regions are computed, and regions like blood
vessels and mandible tissues are discarded depending
upon a defined criterion. Only those regions are consid-
ered as fat pad regions which do not show a variation of
more than 30% from the adjacent slice features. It helps
us to remove blood vessels (more bright in intensity) and
mandible tissues (far away from the center of fat pad) from
fat pad objects.
Moreover, we face a problem of leaking regions in few

axial slices where regions of fat pad and mandible tis-
sues are connecting with each other as shown in Fig. 8.
To address this issue, we build and invert a distance map
and then apply a watershed transform [34] to the inverted
distancemap. The watershed transform separates the con-
necting regions by building boundaries. After having dif-
ferent regions as a result of the watershed transform, only
overlapping regions with the adjacent slice are considered
as fat pad regions.

Fig. 8 Left: Surrounding regions connecting with fat pad. Right: Exclusion of surrounding regions
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After applying all these refinement steps and proce-
dures, we are left with fat pad objects where all redun-
dant and extra regions have been excluded. In the end,
we perform a morphological closing operation [35] to
fill the holes and cavities and to remove the boundary
irregularities.

Results
The para-pharyngeal segmentation algorithm has been
tested on randomly selected thirty datasets; each dataset
represents a separate subject. The processing of each MRI
with 176 × 256 × 176 voxels takes not more than one
minute on a computer with Intel Core i5 2.67 GHz CPU
with 4 GB RAM. There is no need to tune any parameter
to segregate fat pads from head T1-weighted MR images.
To evaluate the accuracy of our supervised classifier, we
applied our classifier on thirty datasets. Our supervised
classifier produced accurate results in the selection of fat
pad candidate from initial 3D objects. We got 100% true
positives with 0% false positives. The main reason of such
a high positive rate is our pre-processing and working
on 3D objects instead of 2D objects. The highly accurate
classifier laid the foundation of full automation of the seg-
mentation algorithm. We also analyzed qualitatively the
results of our segmentation pipeline on all thirty datasets

and we found them promising. The results of our segmen-
tation pipeline on a single subject are shown visually as
red regions in Fig. 9.
To compute the quality metrics, we got the manually

segmented ground truths for the randomly selected ten
datasets from two observers under the supervision of a
radiologist. These three metrics are used to compute the
results of our segmentation pipeline and to compare them
with the ground truths of the second observer against the
first observer.We presented our results against the ground
truths of the first observer in Table 1. These quality met-
rics give us a complete insight of our algorithm. They do
not only indicate the error but also inform us about the
nature and origin of the error. These quality factors show
intuitively whether an error is due to wrong inclusion of
surrounding voxels or wrong exclusion of object regions.
Higher values of DICE and TPVF fraction and lower value
of FPVF indicate better results. For ideal results, we would
have DICE and TPVF fractions showing 100% results and
FPVF fraction indicating 0%.
We also visually analyzed our segmentation results in a

box and whisker plot in Fig. 10. Table 1 shows that our
algorithm performs very well in terms of DICE (mean
value is around 78%) and TPVF (mean value is close to
79%). However, the value for FPVF is about 24%. Our

Fig. 9 Different views of segmented fat pads
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Table 1 Evaluation and comparison of our segmentation results
with observer2 against observer1

Masks DICE TPVF FPVF
(%) (%) (%)

Observer2 Avg. 80.4 82.5 22.8

Std. 3.0 6.5 10.9

Automatic Avg. 77.9 79.1 24.1

Std. 4.1 6.8 10.5

results are very close to those of the observer2 in terms
of these three metrics against the first observer. We com-
puted p-value (0.14) for our results and found that the
difference between our algorithm and the observer2 is not
statistically significant for a significance level of 0.05. The
error in our results can be partially explained by the error
introduced due to the manual segmentation of ground
truth. The manual segmented ground truth is also oper-
ator dependent and is subject to large intra- and inter-
observer variability. The manual extraction of the fat pads
does not produce significantly more accurate results than
our segmentation pipeline. The manual error is mainly
due to the voxels on the boundary of fat pads which
are affected by the partial volume effect. The ambiguous
boundary of fat pad emphasizes the subjectivity of the
human experts. On each axial slice of our dataset, we have
on average 80 voxels for each fat pad and 35 out of them
are boundary voxels. As mentioned above, we obtained
additional manual segmented ground truths from a sec-
ond observer to measure inter-observer variability and to
understand the amount and the nature of the error better.
Furthermore, the head MRI dataset contains only a small
volume of fat pad: on average 1 000 to 1 500 voxels of
each (left or right) fat pad, so minute deviation or wrong
inclusion or exclusion of 20 to 30 voxels per slice produces

substantial false positive or false negative results. In addi-
tion, we have strong artifacts due to low contrast and
inhomogeneity of headMRI datasets whichmay introduce
high false positive and negative errors.
We also measured the inter-observer reliability [21]

in terms of kappa (κ) statistics for our two manually
segmented ground truths. First, we calculated observed
agreement (O) equal to 0.98 for our ground truths.
The observed agreement has the disadvantage that some
agreement would exist even if both observers simply
guessed the result.We found κ=0.8 in our case which indi-
cates a substantial agreement according to the guidelines
of Landis and Koch [36].
We compare our results against the five approaches, see

Fig. 11. Table 2 summarizes the comparison of our seg-
mentation pipeline against the general segmentation tech-
niques. The generally applicable methods did not produce
good results, as they are often embedded in a pipeline with
several pre- and post-processing steps.
It can be seen that no single algorithm manages to

achieve accurate results. Seeded region growing algo-
rithm and level sets segmentation method need user
interaction to select the seed points for the segmenta-
tion of the object. The seeded region growing method
faces severe region leakage problem in low contrast slices
of the data set. MultiOtsu thresholding and fuzzy c-
means algorithm could not produce better results when
applied on complete image. Moreover, multiOtsu thresh-
olding is expensive in terms of time. The watershed
transform also faces limitations like over-segmentation
and under-segmentation for different slices of a dataset,
and could not produce sufficient results. For all the algo-
rithms, preprocessing is applied on the image before
the application of the segmentation method. The region
growing algorithm faces the problem of region leak-
age due to the low contrast of the data sets. Other

Fig. 10 Box and whisker plot to compare our segmentation results with manual segmentation of observer2 against observer1
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Fig. 11 Comparison of different segmentation techniques. Results of fat pads segmentation are shown in red color. a region growing b fuzzy
c-means cmultiOtsu thresholding d watershed transformation e level sets f our algorithm

algorithms fail due to the inhomogeneous nature of fat
pads. As a comparison to them, our proposed method
produces desirable results, does not involve any user
interaction and takes less than one minute for each
subject.

Table 2 Comparison of our segmentation results with generally
available segmentation methods

Masks DICE TPVF FPVF
(%) (%) (%)

Our Algorithm Avg. 77.9 79.1 24.1

Std. 4.1 6.8 10.5

Region Growing Avg. 35.8 46.9 181.8

Std. 18.3 27.3 289.3

Fuzzy c-means Avg. 43.4 52.3 92.1

Std. 13.3 20.3 78.4

MultiOtsu Avg. 39.8 71.6 226.4

Std. 12.4 10.6 151.5

Watersheds Avg. 28.6 19.8 10.8

Std. 23.7 18.3 14.1

Level Sets Avg. 40.0 43.8 68.3

Std. 20.6 31.8 119.0

Discussion
A fast and fully automatic segmentation technique has
been presented to segregate para-pharyngeal fat pads
from T1-weighted head MR images. The complete
pipeline includes texture analysis, connected component
analysis, object-based image analysis, and supervised clas-
sifier using interactive visual analysis tool. The algorithm
is fast, as the whole processing consumes less than a
minute for a single MRI dataset. The method has been
tested on thirty random datasets. The proposed algo-
rithm generates sufficiently reliable and accurate results
and has potential to be applied for the study of large data
in epidemiological studies such as SHIP to understand
the pathogenesis of the obstructive sleep apnea syndrome.
Our algorithm could also be readily integrated in clinical
routine.
Our idea of defining a supervised classifier using the

interactive visual analysis tool can be employed to develop
a classifier for the segmentation of other organs and tis-
sues. The core idea of our segmentation algorithm can
be applied to solve many medical segmentation problems.
Initially generating coarse objects as fat pad candidates
using intensity clustering improves the speed of our algo-
rithm and then, refining the fat pad object increases the
accuracy of our segmentation method.
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As future work, we plan to extract different features
and properties of segmented fat pads and visualize them
to understand the pathogenesis of OSA. Furthermore, we
are also interested in studying the role of fat pads in the
treatment of OSA.

Conclusions
The proposed segmentation algorithm delineates para-
pharyngeal fat pads automatically without any user inter-
action. The algorithm is fast enough to be applied in a
cohort study to investigate OSA. Different image features
like fat pads’ volume, and distance between left and right
fat pads are measured from the segmented fat pads. These
image features will be further analyzed to determine their
associations with OSA.
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